
The ADO.NET Entity Framework:
Making the Conceptual Level Real

José A. Blakeley, David Campbell, S. Muralidhar, Anil Nori
Microsoft Corporation

One Microsoft Way

Redmond, WA 98052-6399, USA

{joseb, davidc, smurali, anilnori}@microsoft.com

 ABSTRACT

This paper describes the ADO.NET Entity Framework, a

platform for programming against data that raises the level of

abstraction from the logical (relational) level to the

conceptual (entity) level, and thereby significantly reduces

the impedance mismatch for applications and data services

such as reporting, analysis, and replication. The conceptual

data model is made real by a runtime that implements an

extended relational model (the Entity Data Model aka the

EDM), that embraces entities and relationships as first class

concepts; a query language for the EDM; a comprehensive

mapping engine that translates from the conceptual to the

logical (relational) level, and a set of model-driven tools that

help create entity-object, object-xml, and entity-xml

transformers.

1. INTRODUCTION
Modern applications require data management services in all

tiers. They need to handle increasingly richer forms of data

which includes not only structured business data (customers,

orders) but also XML, email, calendar, files, and documents.

These applications need to integrate data residing in multiple

data sources and enable end-to-end business insight by

collecting, cleaning, storing, and preparing business data in

forms suitable for an agile decision making process.

Developers of these applications need data access,

programming and development tools to increase their
productivity.

This paper describes the ADO.NET Entity Framework, a

platform for programming against data that significantly

reduces the impedance mismatch for applications and data

services such as reporting, analysis, and replication. We

argue that modern applications and data services need to

target a higher-level conceptual model based on entities and

relationships rather than the relational model and that such a

conceptual model needs to be implemented concretely in a

data platform. The Entity Framework makes the conceptual

data model concrete by a runtime that implements an

extended relational model – the Entity Data Model, or the

EDM - that embraces entities and relationships as first class

concepts, a query language for the EDM, a comprehensive

mapping engine that translates from the conceptual to the

logical (relational) level, and a set of model-driven tools that

help create entity-object, object-xml, and entity-xml

transformers. The Entity Framework is part of a broader

Microsoft Data Access vision supporting a family of

products and services so customers derive value from all
data, birth through archival.

Section 2 describes the physical, logical, conceptual and

programming levels as well as other terms used throughout

the paper. Section 3 describes the evolution of applications

and data services and motivates the need for making the

conceptual level central to application and data services

design. Section 4 introduces the Entity Data Model and the

concrete manifestation of this model in the Entity
Framework. Section 5 presents a summary and conclusions.

2. DATABASE MODELING LAYERS
Today’s dominant information modeling methodology for

producing database designs factors an information model

into four main levels: Physical, Logical (Relational),
Conceptual, and Programming/Presentation.

The physical model describes how data is represented in

physical resources such as memory, wire or disk. The

vocabulary of concepts discussed at this layer include record

formats, file partitions and groups, heaps, and indexes. The

physical model is typically invisible to the application -

applications usually target the logical or relational data

model described in the next section. Changes to the physical

model should not impact application logic, but may impact
application performance.

A logical data model is a complete and precise information

model of the target domain. The relational model is the

representation of choice for most logical data models. The

concepts discussed at the logical level include tables, rows,

and primary key-foreign key constraints, and normalization.

While normalization helps to satisfy important application

requirements such as data consistency and increased

concurrency with respect to updates and OLTP performance,

it also introduces significant challenges for applications.

(Normalized) Data at the logical level is too fragmented and

application logic needs to aggregate rows from multiple

tables into higher level entities that more closely resemble

the artifacts of the application domain. The conceptual level

This paper is a revised version of one that appeared in the Proceedings of the

25th International Conference on Conceptual Modeling, Tucson, AZ, USA,
November 6-9, 2006, available from Springer at:

http://www.springer.com/east/ home/generic/search/results?SGWID=5-40109-
22-173696005-0. The authors thank Springer for their permission to publish

this revised paper.

SIGMOD Record, Vol. 35, No. 4, December 2006 31

introduced in the next section is designed to overcome these
challenges.

The conceptual model captures the core information entities

from the problem domain and their relationships. A well-

known conceptual model is the Entity-Relationship Model

introduced by Peter Chen in 1976 [1]. UML is a more recent
example of a conceptual model [2].

Most significant applications involve a conceptual design

phase early in the application development lifecycle.

Unfortunately, however, the conceptual data model is

captured inside a database design tool that has little or no

connection with the code and the relational schema used to

implement the application. The database design diagrams

created in the early phases of the application life cycle

usually stay “pinned to a wall” growing increasingly disjoint

from the reality of the application implementation with time.

However, a conceptual data model can be as real, precise,

and focused on the concrete “concepts” of the application

domain as a logical relational model. A goal of the Microsoft

Data Access vision is to make the conceptual data model

(embodied by the Entity Data Model, described in Section
4.2) a concrete feature of the data platform.

Figure 1: Physical, logical, conceptual and multiple

programming and presentation views of an Order.

The programming/presentation model describes how the

entities and relationships of the conceptual model need to be

manifested (presented) in different forms based on the task at

hand. Some entities need to be transformed into

programming language objects to implement application

business logic; others need to be transformed into XML

streams for web service invocations; still others need to be

transformed into in-memory structures such as lists or

dictionaries for the purposes of user-interface data binding.

Naturally, there is no universal programming model or

presentation form; thus applications need flexible

mechanisms to transform entities into the various
presentation forms.

 Most developers, and most of the modern data services want

to reason about high-level concepts such as an “Order” (See

Error! Reference source not found.), not about the several

tables that an order may be normalized over in a relational

database schema. They want to query, secure, program,

report on the order. An order may manifest itself at the

presentation/programming level as a class instance in Visual

Basic or C# encapsulating the state and logic associated with

the order, or as an XML stream for communicating with a

web service. We believe there is no “one proper presentation

model”; and that the real value is in making the conceptual

level real and then being able to use that model as the basis

for flexible mappings to and from various presentation
models and other higher level services.

3. APPLICATION AND DATA

SERVICES EVOLUTION
This section describes the platform shift that motivates the

need for a higher level data model and data platform. We will

look at this through two perspectives: application evolution

and SQL Server’s evolution as a product. A key point we

make in this section is that the need for rich data model is

motivated not just for developing application logic but also

for supporting building higher-level data services such as
reporting and replication.

3.1 Application Evolution
Data-based applications 10-20 years ago were typically

structured as data monoliths; closed systems with logic

factored by verb-object functions that interacted with a

database system at the logical schema (e.g. relational) level.

A typical order entry system built around a relational

database management system (RDBMS) 20 years ago would

have logic partitioned around verb-object functions

associated with how users interacted with the system. In fact,

the user interaction model via “screens” or “forms” became

the primary factoring for logic – there would be a new-order

screen, and update-customer screen. The system may have

also supported batch updates of SKU’s, inventory, etc. The

application logic was tightly bound to the logical relational
schema.

Much of the data-centric logic (e.g. validation logic) is

embedded within the application logic. People typically

wrote batch programs to interact directly with the logical

schema to perform updates. Programming languages did not

support representation of high-level abstractions directly –

objects did not exist. These applications can be characterized

as being closed systems whose logical data consistency was

maintained by application logic implemented at the logical

schema level. An order was an order because the new-order
logic ensured that it was.

A key reason for custom data-centric logic by applications is

the well-known application impedance mismatch problem.

The logical schema does not match the level of abstraction of

the application. Applications address this problem by

developing at the data abstraction (e.g. relational) and by

writing custom mapping code to bridge the gap between the

application and the data abstractions. This not only leads to

duplication of effort but also reduces application

development productivity. In the next sections we will show

how the Entity Framework and the Language Integrated

Query innovations in .NET languages help to minimize this
impedance mismatch.

32 SIGMOD Record, Vol. 35, No. 4, December 2006

Several significant trends have shaped the way that modern

data-based applications are factored and deployed today.

Chief among these are object oriented factoring, service level

application composition, and higher level data services.

When we think about the factoring, composition, and

services from above, we can see that the conceptual entities

are an important part of today’s applications. It is also easy to

see how these entities must be mapped to a variety of

representations and bound to a variety of services. There is

no one correct representation or service binding. XML,

Relational and Object representations are all important but no
single one will suffice.

Figure 2 Order Entry System circa 2005

Consider a “StockNotifications” application which deals with

concepts like Customer Order, Product, and Stock. How do

we make them real and use our conceptual understanding of

them throughout the system whether they are stored in a

multi-dimensional database for analytics, in a durable queue
between systems, in a mid-tier cache; a business object, etc.

Figure 2 captures the essence of this issue by focusing on

several entities in our order entry system. Note that

conceptual level entities have become real. Also note that the

conceptual entities are communicating with and mapping to

various logical schema formats, e.g. relational for the

persistent storage, messages for the durable message queue

on the Submit Order service, and perhaps XML for the Stock
Update and Order Status web services.

3.2 SQL Server Evolution
The data services provided by a “data platform” 20 years ago

were minimal and focused around the logical schema in an

RDBMS. These services included query & update, atomic

transactions, and bulk operations such as backup and

load/extract.

SQL Server itself is evolving from a traditional RDBMS to a

complete data platform that provides a number of high value

data services over entities realized at the conceptual schema

level. While providing services such as reporting, analysis,

and data integration in a single product and realizing synergy

among them was a conscious business strategy, the means to

achieve these services and the resultant ways of describing

the entities they operate over happened more organically –

many times in response to problems recognized in trying to
provide higher level data services over the logical schema

level. There are two good examples of the need for concrete

entity representation for services now provided within SQL

Server: logical records for merge replication, and the
semantic model for report builder.

Early versions of merge replication in SQL Server provided

for multi-master replication of individual rows. In this early

mode, rows can be updated independently by multiple

agents; changes can conflict; and various conflict resolution

mechanisms are provided with the model. This row-centric

service had a fundamental flaw – it did not capture the fact

that there is an implicit consistency guarantee around entities

as they flow between systems. To address this flaw, the

replication service introduced “logical records” as a way to

describe and define consistency boundaries across entities

comprised of multiple related rows at the logical schema

level. “Logical records” are defined in the part of the SQL

catalog associated with merge replication. There is no proper

design-time tool experience to define a “logical record” such

as an Order that includes its Order Details – applications do
it through a series of stored procedure invocations.

Report Builder (RB) is another example of SQL Server

providing a data service at the conceptual entity level. Since

it operates at the logical schema level though, writing reports

requires knowing how to compose queries at the logical

schema level – e.g. creating an order status report requires

knowing how to write the join across the several tables that

make up an order. End users and analysts, however, want to

write reports directly over Customers, Orders, Sales, etc.

Thus, the SQL Server team created a means to describe and

map conceptual entities to the logical schema layer we call
the Semantic Model Definition Language (SMDL).

These are just two of a number of mapping services provided

within SQL Server – the Unified Dimensional Model (UDM)

SIGMOD Record, Vol. 35, No. 4, December 2006 33

provides a multi-dimensional view abstraction over several

logical data models. A Data Source View (DSV), on which

the BI tools work, also provides conceptual view mapping
technology.

Figure 3: SQL Server 2005

A key observation is that several higher-level data services in

the SQL Server product are increasingly delivering their

services at the conceptual schema level. Currently, each of

these services has a separate tool to describe conceptual

entities and map them down to the underlying logical schema

level. Figure 3 illustrates the evolution of SQL Server into a

data platform with many high value data services and

multiple means to map conceptual entities to their underlying
logical schemata.

4. ENTITY FRAMEWORK
This section describes the ADO.NET Entity Framework that

makes the conceptual level real. We start with the rationale

that led us to the development of an Entity Data Model

(EDM) followed by an overview of the EDM. We present an

architectural description of the entity framework

implementing a runtime supporting the EDM, a query

language, and mapping. We conclude the section with a
description of the development process around the EDM.

4.1 Why a new model?
The Entity Data Model (EDM) is intended for developing

rich data-centric applications. The obvious question that

arises is: “why not use (or extend) one of these established

data models? There are at least four other modern candidates
for such a data model:

• The SQL data model (tables, columns, keys,

referential integrity constraints...). SQL99 extends

this core model to include object relational features

(user defined-, structured-, and distinct-types,

methods, typed tables, refs…).

• The CLR data model (classes, fields, methods,

properties, value, and Ref types, collections…)

• The XSD model based on XML Infoset (Atomic-,

list-, and union-types, primitive- and derived-types,

token, ID, IDREF, ENTITY…)

• The UML data model (classes, objects, associations,

generalizations, attributes, operations,

aggregations…)

The overall reason is that we need something that maps

cleanly to both the CLR and to relational databases like SQL

Server, for programmability and persistence respectively.

None of the other candidates has all the needed facilities for

both. The CLR is an object-oriented, imperative-

programming runtime, and has no native data model or

notions of integrity constraints, relationships, or persistence.

SQL99 lacks data modeling concepts like relationships, and

does not have good programming language integration. The

XSD specification does not support concepts like keys,

relationships, and persistence. In addition, the full XSD

specification is complex and has awkward mapping to both

the runtime and to relational database models. The UML is

too general: it requires application developers to add precise
semantics, especially for persistence.

The EDM has been designed to map downward cleanly to

both the CLR and to a relational database, and upward to a

specialization of UML. Designers can work with concepts

familiar from UML, which can be compiled in phases to
XML, CLR programs, and SQL.

An important aspect of EDM is that it is value based like the

relational model (and SQL) rather than object/reference

based like C# (CLR). One or more object programming

models can be easily supported on top of EDM. Similarly,

the EDM can mapped to one or more relational DBMS

implementations for persistence.

4.2 EDM Overview
The EDM extends the classic relational model with concepts

from E-R modeling. The central concepts in the EDM are

entities and relationships. Entities represent top-level objects

with independent existence and identity, while Relationships

are used to relate (or, describe relationships between) two or
more entities.

4.2.1 Types
An EntityType describes the definition of an entity. An entity

typically is a top-level object with independent existence. An

entity has a payload - zero or more properties that describe

the structure of the entity. Additionally, an entity type must

define a key – a set of properties whose values uniquely

identify the entity instance within its container. EntityTypes

may derive from (or subtype) other entity types. EDM
supports a single inheritance model.

The properties of an entity may be simple or complex types.

A SimpleType (or a PrimitiveType) represents scalar (or

atomic) types (e.g. integer, string), while a ComplexType can

be used to represent structured properties (e.g. an Address).

A ComplexType is composed of zero or more properties,
which may themselves be scalar or complex type properties.

A Relationship type is a specialized entity type that

describes relationships between two (or more) entity types.

Initially, the EDM supports one kind of relationship, namely

Association, which models peer-to-peer entity relationships

(e.g., Supplier-Part). Containment parent-child relationships

(e.g. Order-Line) are modeled as associations with cascading

34 SIGMOD Record, Vol. 35, No. 4, December 2006

actions. The key for a relationship type is usually, but not

necessarily, the concatenated keys of the entity types

participating in the relationship. Relationships – especially

many-to-many relationships - may optionally contain
properties of the relationship itself.

EDM Schemas provide a grouping mechanism for types –
types must be defined in a schema.

In addition to the types above, the EDM supports transient

types in the form of RowTypes and CollectionTypes. These

occur mostly in the context of query operations (e.g.,

projections, joins). A RowType is an anonymous type that is

structurally similar to a ComplexType. A RowType’s

structure depends on the sequence of typed and named

members that it is comprised of. A rowtype has no identity

and cannot be inherited from. Instances of the same row type

are equivalent if the corresponding members (in order) are

respectively equivalent. Rows have no behavior beyond their

structure. A CollectionType represents a homogenous

collection of objects.

4.2.2 Primitive Types
The EDM is a data model, not a type system. The EDM

defines shaping constructs (entity types etc.), but the actual

types (and their semantics) are defined by the hosting

environment. The EDM does define a set of abstract (or

template) primitive types, and a set of associated facets, that

enable the abstract primitive types to represent primitive

types of the hosting environment (SqlServer databases, the

CLR, etc.). These abstract types are proxies for the real

primitive types defined by the host, and the semantics of
operations over these types are entirely governed by the host.

4.2.3 Instances
Entity instances (or just entities) are logically contained

within an EntitySet. An EntitySet is a homogenous collection

of entities (i.e.) all entities in an EntitySet must be of the

same (or derived) EntityType. An entity instance must

belong to exactly one entity set. In a similar fashion,

relationship instances are logically contained within a

RelationshipSet. The definition of a RelationshipSet scopes

the relationship, that is, it identifies the EntitySets that hold

instances of the entity types that participate in the

relationship. SimpleTypes and ComplexTypes can only be
instantiated as properties of entity instances.

An EntityContainer is a logical grouping of EntitySets and

RelationshipSets – akin to how a Schema is a grouping

mechanism for EDM types.

4.2.4 Examples
<?xml version="1.0"?>
<Schema Namespace="CNorthwindSchema"
 xmlns="urn:schemas-microsoft-com:windows:storage">
<!—
Typical Entity definition, has identity and some members
-->
 <EntityType Name="Product" Key="ProductID">
 <Property Name="ProductID" Type="System.Int32" />
 <Property Name="ProductName" Type="System.String"
 Size="max" />
 ...
 </EntityType>

<!—
A derived product
-->
 <EntityType Name="DiscontinuedProduct" BaseType="Product">
 <Property Name="DiscReason" Type="System.String"
 Size="max" />

 </EntityType>

<!—
A complex type defines structure but no identity. It can be
used inline
in 0 or more Entity definitions
-->
 <ComplexType Name="CtAddress" >
 <Property Name="Address" Type="System.String"
 Size="max" />
 <Property Name="City" Type="System.String"

Size="max" />
 <Property Name="PostalCode" Type="System.String"
 Size="max" />
 ...
 </ComplexType>
<!—
A Customer Entity
-->
 <EntityType Name="Customer" Key="CustomerID">

 <!— Address is a member which references a
complextype -->

 <Property Name="Address" Type="CNorthwind.CtAddress" />
 <Property Name="CustomerID" Type="System.String"

 Size="max" />
 </EntityType>
<!—
An example of an association between Product [defined above]
and
OrderDetails [not shown for sake of brevity]
-->
 <Association Name="Order_DetailsProducts">
 <End Name="Product" Type="Product" Multiplicity="1" />
 <End Name="Order_Details" Type="OrderDetail"
 Multiplicity="*" />
 </Association>

</Schema>

<!—
The Entity Container defines the logical encapsulation of
EntitySets (sets of (possibly) polymorphic instances of a
type) and
AssociationSets (logical link tables for relating two or more
entity instances)
-->
 <EntityContainer Name="CNorthwind">
 <Using Namespace="CNorthwindSchema" />

 <EntitySet Name="Products" EntityType="Product" />
 <EntitySet Name="Customers" EntityType="Customer" />
 <EntitySet Name="Order_Details"

EntityType="OrderDetail" />
 <EntitySet Name="Orders" EntityType="Order" />

 <AssociationSet Name="Order_DetailsProductsSet"

Association="Order_DetailsProducts">
 <End Name="Product" EntitySet="Products" />
 <End Name="Order_Details" EntitySet="Order_Details"/>
 </AssociationSet>
 </EntityContainer>

4.3 Entity Framework Architecture
This section briefly describes the architecture of the Entity

Framework being built as part of ADO.NET. The main

functional components of the ADO.NET Entity Framework
(see Error! Reference source not found.) are:

Data source-specific providers. The Entity
Framework builds on the ADO.NET data provider
model. There are specific providers for several
relational, non-relational, and Web services sources.
EntityClient provider. The Entity Framework
includes a new data provider, the EntityClient
provider. This provider houses the services
implementing the mapping transformation from
conceptual to logical constructs. The EntityClient
provider is a value-based, outside-the-store view
runtime where data is accessed in terms of EDM
entities and relationships and queried/updated using an
entity-based SQL language (eSQL). The EntityClient
provider includes the following services:

SIGMOD Record, Vol. 35, No. 4, December 2006 35

• EDM/eSQL. The EntityClient provider processes and

exposes data in terms of the EDM values. Queries and

updates are formulated using eSQL. They are processed

through the query and update pipeline engines which

incorporate mapping transformations and knowledge

about the specific capabilities of the data sources.

• Mapping. View mapping, one of the key services of the

EntityClient provider, is the subsystem that implements

bidirectional (read and write) views that allow

applications to manipulate data in terms of entities and

relationships rather than rows and tables. The mapping

from tables to entities is specified declaratively through

a mapping definition language.

• Store-specific bridge. The bridge component is a

service that supports the query execution capabilities of

the query pipeline and coordinates the generation of

queries using provider specific syntax.

• Metadata services. The metadata service supports all

metadata discovery activities of the components running

inside the EntityClient provider. All metadata associated

with EDM concepts (entities, relationships, entitysets,

relationshipsets), store concepts (tables, columns,

constraints), and mapping concepts are exposed via

metadata interfaces. The metadata services component

also serves as a link between the domain modeling tools

which support model-driven application design.

• Transactions. The EntityClient provider integrates with

the transactional capabilities of the underlying stores.

• API. The API of the EntityClient provider follows the

ADO.NET provider model based on Connection,

Command, and DataReader objects. The EntityClient

provider accepts commands in the form of eSQL text or

canonical trees and produces DataReader objects as

results.

Occasionally Connected Components. The Entity
Framework enhances the well established disconnected
programming model of the ADO.NET DataSet. In
addition to enhancing the programming experiences
around the typed and un-typed DataSets, the Entity
Framework embraces the EDM to provide rich
disconnected experiences around cached collections of
entities and entitysets.
Embedded Database. The Entity Framework
encompasses the capabilities of a low-memory
footprint, embeddable database engine to enrich the
services for applications that need rich middle-tier
caching and disconnected programming experiences.
Design and Metadata Tools. The Entity Framework
integrates with domain designers to enable model-
driven application development. The tools include
EDM, mapping, and query modelers.
Programming Layers. ADO.NET allows multiple
programming layers to be plugged onto the value-
based entity data services layer exposed by the
EntityClient provider. The Object Services component
is one such programming layer that surfaces CLR
objects. There are multiple mechanisms by which a
programming layer may interact with the entity
framework. One of the important mechanisms is LINQ
expression trees.
Services. Rich SQL data services such as reporting,
replication, business analysis will be built on top of the
Entity Framework.

Figure 4 Entity Framework Architecture

4.4 Making the Conceptual Level real
This section outlines how one may define a conceptual

model and work against it. We use a modified version of the
Northwind database for familiarity.

4.4.1 Build the conceptual model
The first step is to define one’s conceptual model. The EDM

allows you to describe the model in terms of entities and

relationships. The model may be defined explicitly by hand

writing the XML serialized form of the model as shown

36 SIGMOD Record, Vol. 35, No. 4, December 2006

above. Alternately, a graphical EDM designer tool may be
used.

4.4.2 Apply the mapping
After we define the EDM conceptual model, we identify a

target store, and then map the conceptual model to the target

store’s logical schema model. As with the conceptual EDM,

one can hand write an explicit mapping or use a mapping

tool. For example, the Northwind store may stripe data

across multiple tables (the vertical partitioning strategy);

however, applications would want to reason about the data as

a single entity without the need for joins or knowledge of the

relational model. The mapping layers isolate the application
from knowledge of the store’s schemas.

4.4.3 Automatically Generated Classes
Having the conceptual level is indeed sufficient for many

applications as it provides a domain model that is live within

the context of a comfortable pattern (ADO.NET commands,

connections and data readers) and allows for late bound

scenarios. Many applications, however, prefer an object

programming layer (See Figure 5). This can be facilitated

through code generation driven from the EDM description.

For increased flexibility and data independence between the

object and conceptual level, a mapping may be defined

between classes and the conceptual model. The mapping

between classes and the conceptual model is a

straightforward member-wise mapping. This enables

applications built against these classes to be reused against

other versions of the conceptual model, provided a legal map

can be defined.

4.4.4 Using Objects
One can interact with objects and perform regular Create,

Read, Update and Delete (CRUD) operations on the objects.

The example below demonstrates the use of Language

Integrated Query (LINQ) to identify all orders that are newer
than a given date

class DataAccess

{

 static void GetNewOrders(DateTime date) {

 using (NorthWindDB nw =

new NorthWindDB ()) {

 var orders = from o in nw.Orders

 where o.OrderDate > date

 select new {o.orderID, o.OrderDate,

Total = o.OrderLines.Sum(

 l => l.Quantity);

foreach (SalesOrder o in orders) {

 Console.WriteLine("{0:d}\t{1}\t{2}",

 o.OrderDate, o.OrderId, o.Total);

 }

 }

}

4.4.5 Using Values
There are many ISVs, framework and data services

developers who just prefer to work against a .NET data

provider; the EntityClient Provider is intended for such usage

scenarios. The EntityClient Provider has a connection and a

command and returns a DbDataReader when one invokes

EntityCommand.ExecuteReader(). An example of a query
using the EntityCommandCommand is as follows:

public void DoValueQueries(DateTime date)

{

 using (EntityConnection conn =

new EntityConnection (connString))

 {

 conn.Open();

 EntityCommand command =

conn.CreateCommand();

 command.CommandText =

@"select value e from Employees as e

 where e.HireDate > @HireDate";

 command.Parameters.Add(

new EntityParameter ("HireDate",

date));

 DbDataReader reader =

 command.ExecuteReader();

 while(reader.Read()) {

 //--- process record

 }

 }

}

5. SUMMARY AND CONCLUSION
Significant application and database technology trends

require richer services at the conceptual rather than at the

logical schema level. The Entity Framework provides a

broad data platform with a rich and concrete conceptual

schema to enable new applications and data services. The
data platform includes the following components:

1. Entity Framework. A value-based runtime that

implements an extended relational model - EDM - that

embraces entities and relationships as first class

concepts, a query language for the EDM, and a

comprehensive mapping engine from the conceptual to

the logical (relational) level.

2. Comprehensive programming model. We need

programming model innovations that bridge the gap

between different data representations (XML, relational,

objects). In fact, by developing programming languages

and APIs at the conceptual level, we will be able to

liberate the programmer from the impedance

mismatches that exist among different logical models.

Programming language extensions such as Linq [5]

provide richer, declarative programming models across

different data representations.

SIGMOD Record, Vol. 35, No. 4, December 2006 37

3. Data services targeting the conceptual level. Examples

include Synchronization/ Replication, Reporting, and

Security.

4. Design-time tools. Data modeling tools today produce

models that are largely abstract. They are used

sometimes to produce a logical or physical design for a

relational database implementation. We envision

design-time tools that are used to: (a) build EDM

models, (b) map EDM models to logical (relational) as

well as other programming and presentation

representations, and (c) semantics tools where you may

introduce synonyms, aliases, translation and other

semantic adornments for natural language and end user

query.

6. ACKNOWLEDGMENTS
We would like to thank all members of the ADO.NET

team for their contributions to building this system.

7. REFERENCES
[1] Chen, P. The Entity-Relationship Model—toward a

unified view of data, ACM Transactions on Database
Systems, Vol. 1, Issue 1, March 1976, pp. 9-36.

[2] Unified Modeling Language. http://www.uml.org/.

[3] Microsoft. The ADO.Net Entity Framework Overview.

http://msdn.microsoft.com/data/default.aspx?pull=/libr

ary/en-us/dnvs05/html/ADONETEnFrmOvw.asp, June

2006.

[4] Blakeley, J.A., Campbell, D., Gray, J., Muralidhar, S.,

Nori, A.. Next-Generation Data Access: Making the

Conceptual Level Real.

http://msdn.microsoft.com/data/default.aspx?pull=/

library/en-us/dnvs05/html/nxtgenda.asp, June 2006.

[5] Microsoft. The Linq Project.

http://msdn.microsoft.com/data/ref/linq/default.aspx.

Ca te gorie s

Custome rs

CustomerID nvarchar(5)

CompanyName nvarchar(40)

ContactName nvarchar(30)

ContactTitle nvarchar(30)

Address nvarchar(60)

City nvarchar(15)

Region nvarchar(15)

PostalCode nvarchar(10)

Country nvarchar(15)

Phone nvarchar(24)

Fax nvarchar(24)

Employ e e s

O rde r De ta ils

O rde rs

Products

Shippe rs

Supplie rs

Pe rsona lInfo

Conta ctInfo

Figure 5: Entity Data Model for Northwind.

38 SIGMOD Record, Vol. 35, No. 4, December 2006

