
SQL:2003 Has Been Published

Andrew Eisenberg
IBM, Westford, MA 01886

andrew.eisenberg@us.ibm.com

Jim Melton
Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Krishna Kulkarni
IBM, San Jose, CA 94151

krishnak@us.ibm.com

Jan-Eike Michels
IBM, San Jose, CA 94151

janeike@us.ibm.com

Fred Zemke
Oracle Corp., Redwood Shores, CA 94065

fred.zemke@oracle.com

Guest Introduction
SQL:2003 has finally achieved final publication as an
International Standard, replacing SQL:1999.
SQL:2003 is popularly believed to be largely a “bug-
fix release” of the SQL standard — except, of course,
for the SQL/XML work on which we have previously
reported. However, as you will learn from this and
future columns, there are many compelling new
features in the 2003 edition of the SQL standard.

We are pleased that three of the more active SQL
proposal writers have joined forces to present several
of those new features in this month’s column.
Krishna Kulkarni is, among other responsibilities, the
formal International Representative for the INCITS
H2 Technical Committee for Database. Jan-Eike
Michels is a frequent USA representative to the
corresponding international group, ISO/IEC
JTC1/SC32/WG3. Fred Zemke is widely
acknowledged as a principle expert in many areas of
the SQL standard and also a regular USA
representative to WG3. In the coming months, we
will provide information about even more of
SQL:2003’s new features.

Introduction
SQL:2003 makes revisions to all parts of SQL:1999
and adds a brand new part, Part 14: SQL/XML
(XML-Related Specifications). In addition, there is
some slight reorganization of the parts inherited from
SQL:1999. A substantial chunk of SQL:1999's Part 2:
SQL/Foundation that dealt with the Information
Schema and Definition Schema is split off into its
own part, Part 11: SQL/Schemata in SQL:2003.
SQL:1999's Part 5: SQL/Bindings has been
eliminated in SQL:2003 by merging all the material

contained in that part into SQL:2003's Part 2:
SQL/Foundation.

In this article, we focus on describing the
following new features introduced into SQL:2003's
Part 2: SQL/Foundation:

• New data types
• Enhancements to SQL-invoked routines
• Extensions to CREATE TABLE statement
• A new MERGE statement,
• A new schema object - the sequence

generator,
• Two new sorts of columns - identity

columns and generated columns.

Future articles will cover the remaining new
features of SQL:2003’s Part 2: SQL/Foundation, such
as retrospective check constraints, OLAP (on-line
analytical processing) extensions in the form of new
built-in functions (both scalar functions and
aggregate functions) and a new WINDOW clause in
query expressions (published previously as an
Amendment to SQL:1999), support for the use of
sampled data for better performance, improved
savepoint handling, enhanced diagnostics
management, etc.

New Data Types
SQL:2003 retains all data types that existed in
SQL:1999 with the exception of the BIT and BIT
VARYING data types. Those two were removed from
the standard due to the lack of support in existing
SQL database engines, and the lack of expected
support in the future. SQL:2003 introduces three new
data types: BIGINT, MULTISET, and XML. Since
the XML data type is part of SQL/XML [1], we will
not elaborate on it here further. For further details on

SIGMOD Record, Vol. 33, No. 1, March 2004 119

this type, as well as related extensions in Part 14:
SQL/XML, the interested reader is referred to [2] and
to an upcoming article in a future issue of this
publication.

The new data types are first class data types,
meaning they can be used in all the contexts that any
other (existing) SQL data type can be used; e.g., as
column types, parameter and return types of SQL-
invoked routines, etc.

The BIGINT data type is a new numerical type
similar to the existing SMALLINT and INTEGER
types, just with a greater precision (or more precisely,
a precision no smaller). Though a particular precision
for an INTEGER type (or any of the other numerical
data types) is not mandated in the SQL standard,
actual implementations in general support 32-bit
INTEGER values. Those implementations then
usually support 64-bit BIGINT values. However, a
conforming implementation could also choose any
other precision (even the choice of decimal or binary
precision is left open in the SQL standard). The
BIGINT type supports the same arithmetic
operations as the INTEGER type; e.g., +, -, ABS,
MOD, etc.

The MULTISET data type is a new collection
type similar to the existing ARRAY type, but without
an implied ordering. Conceptually, a multiset is an
unordered collection of elements, all of the same type
(the element type), with duplicates permitted. The
element type can be any other supported SQL data
type. For example, INTEGER MULTISET denotes
the type of a multiset value whose element type is
INTEGER and whose actual value could be (5, 30,
100, 45, -8, 9). The element type could also be
another collection type, which allows for deeply
nested collections; though those are an advanced
feature as far as the standard is concerned. A multiset
is an unbounded collection, with no declared
maximum cardinality; unlike arrays which have
either a user-specified or, in absence of such, an
implementation-defined maximum cardinality. This
does not mean, however, that the user can insert
elements into a multiset without limit, just that the
standard does not mandate that there should be a
limit. This is analogous to tables, which have no
declared maximum number of rows. Values of a
MULTISET type can be created either by
enumerating the individual elements or by supplying
the elements through a query expression; e.g.,
MULTISET[1, 2, 3, 4] or
MULTISET(SELECT grades FROM
courses). The latter example shows how a table or
part of a table can be converted into a multiset.
Conversely, a multiset value can be used as a table

reference in the FROM clause using the UNNEST
operator. Example 1 shows how this would work.

Example 1: Using UNNEST to reference a
multiset in the FROM clause.

SELECT T.A, T.A*2 AS TIMES_TWO
FROM UNNEST(MULTISET[4, 3, 2, 1])
 AS T(A)
returns the following:

A TIMES_TWO

4 8

3 6

2 4

1 2

The MULTISET type supports operations for casting
a multiset into an array or another multiset with a
compatible element type, for removing duplicates
from the multiset, for returning the number of
elements in a given multiset, and for returning the
only element of a multiset that has exactly one
element. Additionally, the union, intersection, and
difference of two multiset values are supported, as
well as three new aggregate functions to create a
multiset from the value of the argument in each row
of a group (COLLECT), to create the multiset union
of a multiset value in all rows of a group (FUSION),
and to create the multiset intersection of a multiset
value in all rows of a group (INTERSECTION).

Example 2 illustrates the three multiset aggregate
functions. Predicates are supported to test two
multiset values for equality, inequality, and
distinctness, to test whether a given value is a
member of a multiset, to test whether a given multiset
is a subset of another multiset, and to test whether a
multiset contains duplicates. Host language programs
access multisets through locators in the same way
they access arrays.

Example 2: New multiset aggregate functions.

Given the this table FRIENDS:

FRIEND HOBBIES

'John' MULTISET['READING', 'POP-
MUSIC', 'RUNNING']

'Susan' MULTISET['MOVIES', 'OPERA',
'READING']

'James' MULTISET['MOVIES', 'READING']

The following query:

SELECT COLLECT(FRIEND) AS
 ALL_FRIENDS,
 FUSION(HOBBIES) AS
 ALL_HOBBIES,

120 SIGMOD Record, Vol. 33, No. 1, March 2004

 INTERSECTION(HOBBIES) AS
 COMMON_HOBBIES
FROM FRIENDS

Returns:

ALL_
FRIENDS

ALL_HOBBIES COMMON_
HOBBIES

MULTISET
['John',
'Susan',
'James']

MULTISET
['READING',
'READING',
'READING',
'POP-MUSIC',
'RUNNING',
'OPERA',
'MOVIES',
'MOVIES']

MULTISET
['READING']

Table Functions
Table functions are new in SQL:2003, though many
users might already be familiar with them, since they
have been available in SQL products for a quite some
time. A table function is an SQL-invoked function
that returns a “table”. For specification purposes in
the standard, the return type is equivalent to a
multiset of rows (i.e., a MULTISET type whose
element type is a ROW type) and not a real table, but it
can be queried just like a table. Table functions are
useful in their own right and consequently, the
standard does not mandate support of multisets in
order to support table functions. It should be obvious
where table functions get their name. Additionally,
the syntaxes for defining and invoking table functions
reflect this by requiring the TABLE keyword in
various places. When a table function is defined, its
RETURNS clause specifies the keyword TABLE
followed by a list of column name/data type pairs.

Example 3 and Example 4 show the definitions
of an external and an SQL-bodied table function,
respectively. External table functions allow the
incorporation of data that is not stored in tables but
comes from outside the database into queries against
the database. Example 3 returns a set of rows
representing cities and their current weather
conditions. Several options can be specified for
external functions that govern the expected behavior
of the function.

Here, the actual function implementation (for
brevity, not shown) is written in C (indicated by the
LANGUAGE C clause) – which is important to know
for the parameter passing mechanism used, the
function itself does not call back to the SQL engine
to execute SQL statements (indicated by NO SQL) –
which is important to know for transaction
management, different invocations with the same
input values (none in this case) return different
results (indicated by NOT DETERMINISTIC) –

which is important to know for potential
optimizations, and each input and output parameter
has a null indicator associated with it (indicated by
PARAMETER STYLE SQL).

Example 3: Definition of an external table
function.

CREATE FUNCTION weather()
 RETURNS TABLE (
 CITY VARCHAR(25),
 TEMP_IN_F INTEGER,
 HUMIDITY INTEGER,
 WIND VARCHAR(5),
 FORECAST CHAR(25))
 NOT DETERMINISTIC
 NO SQL
 LANGUAGE C
 EXTERNAL
 PARAMETER STYLE SQL;

SQL-bodied table functions, on the other hand, allow
for so called “parameterized views” (as a reminder,
regular SQL views are fixed at the time they are
created). In Example 4, the only input parameter of
the function — by virtue of being used in the
predicate of the WHERE — clause determines the
subset of rows that is returned; i.e., for different input
values (department numbers) the function returns
different sets of rows (the employees in the
department identified by the department number).

Example 4: Definition of an SQL-bodied table
function.

CREATE FUNCTION DEPTEMPS
 (DEPTNO CHAR(3))
 RETURNS TABLE (
 EMPNO CHAR(6),
 LNAME VARCHAR(15),
 FNAME VARCHAR(12))
 LANGUAGE SQL
 READS SQL DATA
 DETERMINISTIC
 RE
 SELECT EMPNO, LASTNAME, FIRSTNME

TURN TABLE(

 FROM EMPLOYEE
 WHERE EMPLOYEE.WORKDEPT =
 DEPTEMPS.DEPTNO)

Again, options can be specified that govern the
behavior of the function. LANGUAGE SQL indicates
that the body of the function is written in SQL (in this
example it consists of only one statement, the
RETURN statement). READS SQL DATA indicates
that it accesses data stored in the database in a read-
only fashion. DETERMINISTIC indicates that the

SIGMOD Record, Vol. 33, No. 1, March 2004 121

function returns the same result given the same input
values and the same database state.

When a table function is invoked in the FROM
clause, it is preceded by the keyword TABLE, either
in addition to other table references or as the only
table reference, as can be seen in Example 5.

Example 5: Invocation of a table function.

SELECT W.CITY, W.TEMP_IN_F,
 W.FORECAST
FROM TABLE(weather()) AS W
 WHERE W.TEMP_IN_F > 65

The SQL standard specifies the exact rules of how an
external table function is invoked by the SQL engine.
Simplified, it consists of three phases. In the first
phase, the function is invoked once with a special
value for one of the parameters that indicates that the
function is invoked for the first time (the “open
call”). This allows the function to set up any data
structures it needs in subsequent invocations. The
second phase consists of as many invocations (each
one a “fetch call”) as are needed to transmit all rows
to the SQL engine. One row is transmitted per
invocation.

When there are no more rows to supply, the
external function indicates this using a special value
for one of the return parameters. The third and last
phase consists again of a single invocation of the
function (the “close call”) with a special value for
one of the parameters indicating to the function that
the SQL engine acknowledges that there are no more
rows to fetch and allowing the function to dispose of
all resources it may have allocated to satisfy the
previous requests.

Other Enhancements to SQL-
Invoked Functions
Besides the major new functionality of table
functions, several “smaller” enhancements for SQL-
invoked routines were introduced. It is now possible
to successfully invoke an SQL-invoked function with
an untyped dynamic parameter marker (commonly
known as a “?”) as long as exactly one executable
function can be determined using the standard subject
routine determination algorithm. It is also possible to
execute SQL-schema and SQL-dynamic statements
within external as well as SQL-bodied routines.
Besides being executed with the privileges of its
definer, a routine can now alternatively be defined to
be executed with the privileges of the invoker.
Furthermore, it is possible to qualify a parameter
name inside the routine body with the name of the
routine to avoid a potential naming conflict
(DEPTEMPS.DEPTNO in Example 4).

CREATE TABLE LIKE
Extensions
Without exaggeration, the most important DDL
statement is the CREATE TABLE statement that lets
the users define the tables to store their data.
Simplified, tables consist of columns, which have a
name and an associated SQL data type (e.g.,
INTEGER, VARCHAR, DATE, BLOB, or any of the
new data types mentioned earlier). Constraints within
a table (such as unique and/or primary keys, and
check constraints) and relationships between tables
(using foreign keys) can be expressed. Default values
can be assigned to columns that are used if the user
does not explicitly specify a value for the column in,
for example, an INSERT statement.

New in SQL:2003 are the possibility to declare a
column as an identity column or as a generated
column (described later in this article). In either case,
the value for such a column is automatically
generated and supplied whenever a new row is
inserted into the table. New are also two
enhancements to the CREATE TABLE statement
that are particularly valuable for database
designers/administrators when they design or
prototype new tables that are based on or similar in
structure to existing tables.

Already in SQL:1999, a user could specify that a
new table should look like one or more existing
tables. This was done by a special clause (the LIKE
clause) that allows copying the structure of one or
more existing tables into the new table in addition to
zero or more new columns. However, the copying
was restricted to the column names and data types of
the existing table(s). Example 6 shows what was
possible in SQL:1999. Given table T1 as defined in
the first CREATE TABLE statement, the definition of
table T2 is equivalent to the definition of table T3.
Since several tens or even hundreds of columns in
tables in real-world applications are not the exception
but rather the norm, it can be easily seen what kind of
benefits this functionality can bring in the
development and testing process.

Example 6: Existing CREATE TABLE LIKE
functionality

CREATE TABLE T1 (
 C1 INTEGER GENERATED ALWAYS
 AS IDENTITY (START WITH 1,
 INCREMENT BY 2),
 C2 VARCHAR(100) NOT NULL
 DEFAULT 'test',
 C3 CHAR(30));

CREATE TABLE T2 (
 LIKE T1,

122 SIGMOD Record, Vol. 33, No. 1, March 2004

 C4 CHAR(50));

CREATE TABLE T3 (
 C1 INTEGER,
 C2 VARCHAR(100),
 C3 CHAR(30),
 C4 CHAR(50));

As can also be seen in Example 6, the structure of
table T1 contains more information than table T2;
e.g., the information that C1 was an identity column
is lost. Thus, in SQL:2003 additional (optional)
options for the LIKE clause were introduced that
allow for copying more information (such as identity
column options, the expressions used for generated
columns, and the default values). Example 7 shows
the new options for copying the identity information
and default values. Table T4 has now exactly the
same structure as table T1. If no options are
specified, then the same semantics as in SQL:1999
apply with the exception that if the column that a new
column is based on is known to be not null (i.e., it
was declared with NOT NULL), then the new column
is known to be not null too.

Example 7: New options of the CREATE TABLE
LIKE.

CREATE TABLE T4 (
 LIKE T1
 INCLUDING COLUMN DEFAULTS
 INCLUDING IDENTITY);

It is worthwhile pointing out that the CREATE
TABLE LIKE statement does not create a
dependency between the new table and the table(s)
used in the LIKE clause(s).

CREATE TABLE AS Extensions
The CREATE TABLE LIKE extensions presented
above are useful if the user wants to create a new
table that can copy the complete structure of one or
more existing tables. There are, however, also
circumstances when it would be useful to copy only a
subset of the structures of one or more existing tables
or more generally any query expression. For these
cases the CREATE TABLE statement has an
extension (commonly referred to as CREATE
TABLE AS) that allows the creation of a table with
the structure (i.e., the column names, data types, and
nullability characteristics) of a query expression. This
extension also allows to rename the columns, if
needed, and to insert the rows that this query
expression yields into the newly created table.
Example 8 shows how to create a new table and
populate it in the same step.

Example 8: CREATE TABLE AS

CREATE TABLE T5 (D1, D2, D3, D4) AS
 (SELECT T1.C1, T1.C2, T2.C3, T2.C4
 FROM T1, T2
 WHERE T1.C2 = T2.C2) WITH DATA

While the syntax of the CREATE TABLE AS
statement is similar to what is known as Materialized
Query Tables (MQTs) or Materialized Views in many
commercial products, the semantics are different. The
standard’s CREATE TABLE AS statement does not
create a dependency of the new table on the
underlying query expression and, after the table is
initially populated, updates to the tables in the query
expression will not automatically be reflected in the
new table. Because SQL products form a tight
linkage between an MQT and its underlying query
expression , the use of MQTs allows optimization
when a user’s query can be (at least partly) answered
by using a populated MQT rather than by re-
evaluating the complete query expression (which, in
general, is not as trivial as in the example above).

MERGE statement
Prior to SQL:2003, SQL provided three statements
for updating the database, popularly known as
INSERT, UPDATE, and DELETE statements. An
INSERT statement adds one or more new rows to an
existing table or view. An UPDATE statement
replaces values of one or more columns of one or
more rows in an existing table or view. A DELETE
statement removes one or more rows from an existing
table or view. SQL:2003 adds a fourth statement,
MERGE.

A frequent requirement that arises in database
applications is to be able to transfer a set of rows
from a “transaction table” (for example a shipment
table or trades table) to a master table maintained by
the database (for example a parts table, or accounts
table). Typically, the transaction table contains
updates to the existing rows in the master table and/or
new rows that should be inserted into the master
table. Contents of the transaction table can be
transferred to the master table in two separate steps,
executing an UPDATE statement for those rows that
have a matching counterpart in the master table and
an INSERT statement for those rows that do not have
a matching counterpart in the master table. The
MERGE statement introduced in SQL:2003 effectively
combines the two steps into a one-step process,
making it more efficient, as well as easier for the user
to specify.

For example, assume the INVENTORY table
lists the master list of all parts in a company and the

SIGMOD Record, Vol. 33, No. 1, March 2004 123

SHIPMENT table lists parts that were received on
any given day. Further assume that both tables have a
column PARTNUM that acts as the primary key. For
illustration purpose, assume that contents of
INVENTORY and SHIPMENT tables are as shown
in Table 1 and Table 2, respectively.

Table 1 — INVENTORY table

PARTNUM DESCRIPTION QUANTITY
1 Cool Part 10
2 Another Cool

Part
15

3 Really Cool Part 20

Table 2 — SHIPMENT table

PARTNUM DESCRIPTION QUANTITY
2 Another Cool

Part
5

4 Yet Another
Cool Part

15

1 Cool Part 10

Note that the first and third rows in SHIPMENT table
each have a counterpart in INVENTORY table while
the second row in SHIPMENT table does not. Here is
how the new MERGE statement would be used to
update the matching rows in INVENTORY table at
the same time as adding the new row:

MERGE INTO INVENTORY AS INV
 USING (SELECT PARTNUM,
 DESCRIPTION,
 QUANTITY FROM SHIPMENT)
 AS SH
 ON (INV.PARTNUM = SH.PARTNUM)
WHEN MATCHED THEN UPDATE
 SET QUANTITY = INV.QUANTITY +
 SH.QUANTITY
WHEN NOT MATCHED THEN INSERT
 (PARTNUM, DESCRIPTION, QUANTITY)
 VALUES (SH.PARTNUM,
 SH.DESCRIPTION,
 SH.QUANTITY)

Table 3 lists the contents of INVENTORY table after
the execution of MERGE statement.

Table 3 — INVENTORY table after MERGE

PARTNUM DESCRIPTION QUANTITY
1 Cool Part 20
2 Another Cool

Part
20

3 Really Cool Part 20
4 Yet Another

Cool Part
15

Note that the SHIPMENT table does not have to have
the same format as the INVENTORY table. It merely
has to have one or more columns for matching
purpose and whatever columns are required in the
INSERT and UPDATE parts of the MERGE
statement.

Sequence Generators
Consider the PARTNUM column of the SHIPMENT
table used in MERGE example. Clearly, the
PARTNUM value for each part must be unique since
it serves as the primary key. Either some one in the
company must take on the task of coming up with
unique PARTNUM values or one can get SQL to
generate unique values automatically. SQL:2003
provides a new feature, sequence generators, for this
purpose.

A sequence generator is a new kind of database
object with an associated time-varying exact numeric
value. A sequence generator comes into existence
when a CREATE SEQUENCE statement is executed.
As part of the CREATE SEQUENCE statement,
users can specify a minimum value, a maximum
value, a start value, an increment, and a cycle option
for the sequence generator they are creating.

The following example illustrates the creation of
a sequence generator called PARTSEQ:

CREATE SEQUENCE PARTSEQ AS INTEGER
 START WITH 1
 INCREMENT BY 1
 MINVALUE 1
 MAXVALUE 10000
 NO CYCLE

A sequence generator has a time-varying current
base value and a cycle that consists of all the possible
values between the minimum value and the
maximum value that are expressible as (current base
value + M * increment), where M is a non-negative
number. When created, the current base value of a
sequence generator is initialized to the start value.
SQL:2003 provides a new built-in function, NEXT
VALUE FOR, which, when applied on a sequence
generator, modifies the current base value of that
sequence generator to a value V taken from the
sequence generator’s current cycle such that V is
expressible as (current base value + N * increment)
where N is a non-negative number and returns the
new current base value to the invoker. For example,

124 SIGMOD Record, Vol. 33, No. 1, March 2004

repeated applications of NEXT VALUE FOR
function on PARTSEQ may yield values 1, 2, 3, 4, ...

The following example illustrates how a
sequence generator can be used to assign unique
PARTNUM values:

INSERT INTO SHIPMENT (
 PARTNUM, DECRIPTION, QUANTITY)
 VALUES (NEXT VALUE FOR PARTSEQ,
 'Display', 20);

While creating a sequence generator, users can
specify a CYCLE or NO CYCLE for that sequence
generator. If NO CYCLE is specified, then an
exception is raised when an application of NEXT
VALUE on a sequence generator, SG, attempts to
return a value that does not lie in the interval
bounded by the minimum and maximum value of SG.
On the other hand, if CYCLE is specified and if an
application of NEXT VALUE on a sequence
generator, SG, attempts to return a value that does not
lie in the interval bounded by the minimum and
maximum value of SG, then the actual result value
returned is the minimum value of SG (if the
increment of SG is a positive number) or the
maximum value for of SG (if the increment of SG is a
negative number).

SQL also provides an ALTER SEQUENCE
statement to alter the properties of a sequence
generator and a DROP SEQUENCE statement to drop
a sequence generator. Using an ALTER SEQUENCE
statement, users can alter the increment, maximum
value, minimum value, and the cycle option of a
sequence generator by using the ALTER SEQUENCE
statement. In addition, users can specify a restart
value using the ALTER SEQUENCE ...
RESTART WITH ... A value so specified is
returned as the result of the NEXT VALUE FOR
function applied immediately following the ALTER
SEQUENCE operation. This option is useful
whenever users want the sequence generator to
generate future values starting from a specified value
rather than starting from the result of previous
application of the NEXT VALUE FOR function.

Identity Columns
While sequence generators put SQL in charge of
generating unique values, users are still burdened
with tasks such as creating a sequence generator and
invoking the NEXT VALUE FOR function at
appropriate times. SQL:2003 provides another new
feature, identity columns, that provides a more
convenient mechanism by making it unnecessary for
users to perform these additional tasks.

Identity columns are columns designated with the
special keyword IDENTITY, as shown below:

CREATE TABLE PARTS (
 PARTNUM INTEGER GENERATED ALWAYS
 AS IDENTITY (START WITH 1
 INCREMENT BY 1
 MINVALUE 1
 MAXVALUE 10000
 NO CYCLE),
 DESCRIPTION VARCHAR (100),
 QUANTITY INTEGER)

As can be seen from the above example, identity
columns share the same attributes as sequence
generators. This is because a sequence generator that
inherits the identity column attributes gets associated
conceptually with each identity column. Note that at
most one column in a table can be designated as an
identity column.

Users do not need to specify a value for an
identity column whenever a new row is inserted into
a table containing that identity column. The value for
such a column is generated automatically by invoking
the NEXT VALUE FOR function implicitly under the
covers. For example, the following INSERT
statement:

INSERT INTO PARTS
 (DESCRIPTION, QUANTITY)
VALUES ('WIDGET', 30)

adds a new part named WIDGET to the PARTS
table. The value for the PARTNUM column is
generated automatically, following the same rules
that are used for generating values of sequence
generators. That is, the value of PARTNUM column
for the first row would be the START WITH value
specified for that column, and the values for
subsequent rows would follow the formula we
described previously for sequence generators.

What we said above is true if the user had
specified GENERATED ALWAYS for the identity
column, which is the case for PARTNUM column in
our example. SQL:2003 provides another option,
GENERATED BY DEFAULT. If the user chooses
this option, automatic generation takes place only
when values are not provided in the VALUES clause.
This feature is very useful for making copies of tables
with identity columns.

Generated Columns
It is well known that the performance of applications,
particularly in the area of data warehousing, can be
improved greatly if commonly used expressions are

SIGMOD Record, Vol. 33, No. 1, March 2004 125

evaluated once and their results stored for future use.
This is especially true for those applications that
involve computationally expensive expressions.
SQL:2003 provides a new feature known as
generated columns aimed at such applications.

Users can designate one or more columns of the
table as generated columns. Each generated column
is associated with a scalar expression. Whenever a
row is inserted into a table that contains a generated
column, the expression associated with the generated
column is evaluated and the resulting value is
assigned as the value of that column.

For example, consider the following CREATE
TABLE statement:

CREATE TABLE EMPLOYEES (
 EMP_ID INTEGER,
 SALARY DECIMAL(7,2),
 BONUS DECIMAL(7,2),
 TOTAL_COMP GENERATED ALWAYS
 AS (SALARY + BONUS))

TOTAL_COMP is a generated column of the
EMPLOYEES table. The data type of the
TOTAL_COMP is the data type of the expression
(SALARY_BONUS). Users may optionally specify a
data type for a generated column, in which case the
specified data type must match with the data type of
the associated expression.

The following INSERT statement:

INSERT INTO EMPLOYEES
 (EMP_ID, SALARY, BONUS)
VALUES (501, 65000.00, 5000.00)

would automatically generate a value for the
TOTAL_COMP column by evaluating the expression
(SALARY + BONUS) and insert the row (501,
65000.00, 5000.00, 70000.00) into EMPLOYEES
table.

If a generated column is included in the column
list of an INSERT statement, the corresponding entry
in the VALUES clause must be the keyword
DEFAULT; it is an error to specify anything else. For
example, the following statement is legal:

INSERT INTO EMPLOYEES
 (EMP_ID, SALARY,
 BONUS, TOTAL_COMP)
VALUES (501, 65000.00,
 5000.00, DEFAULT)

but the following statement is not:

INSERT INTO EMPLOYEES

 (EMP_ID, SALARY,
 BONUS, TOTAL_COMP)
VALUES (501, 65000.00,
 5000.00, 100000.00)

Whenever the value of any column referenced in the
expression associated with a generated column is
updated, the value of generated column is
automatically reevaluated and the value of the
generated column is assigned the new value. A
generated column could be the target of an UPDATE
statement provided the keyword DEFAULT is
specified as the source; it is an error if anything else
is specified as the source.

Note that all column references in an expression
associated with a generated column must be to
columns of the base table containing that generated
column. In addition, expressions associated with
generated columns are not allowed to reference other
generated columns. Generated columns can be added
to an existing table via the usual ALTER TABLE
ADD COLUMN statement.

Generated columns can lead to higher
performance not only because of reduced
computation, but also because implementations may
allow indexing on such columns. For example, if it is
frequently required to present a query result in
descending order of TOTAL_COMP, that result
might appear on the screen much faster if an index
has been created on the TOTAL_COMP column.

References
[1] Database Languages – SQL, ISO/IEC 9075-
*:2003
[2] Andrew Eisenberg and Jim Melton: SQL/XML is
Making Good Progress. In: ACM SIGMOD Record,
Vol. 31, No. 2, June 2002.

126 SIGMOD Record, Vol. 33, No. 1, March 2004

	SQL:2003 Has Been Published
	�
	Guest Introduction
	Introduction
	New Data Types
	Table Functions
	Other Enhancements to SQL-Invoked Functions
	CREATE TABLE LIKE Extensions
	CREATE TABLE AS Extensions
	MERGE statement
	Sequence Generators
	Identity Columns
	Generated Columns
	References

