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ABSTRACT 
 
The transformation from n-ary relationships to a 
relational database schema has never been really fully 
analyzed. This paper presents one of the several ternary 
cases ignored by the ER-to-RM literature. The case 
shows that the following common belief is wrong: Given 
a set of FDs over a table resulting in a non-3NF 
situation, it is always possible to obtain a fully 
equivalent set of 3NF tables, without adding other 
restrictions than candidate keys and elementary 
inclusion dependencies. 
 
 
 
1. INTRODUCTION 
The transformation from an n-ary relationship of the ER 
model to a relational database schema is considered by 
the literature as an elementary and well known problem. 
But according to my knowledge this subject is 
anywhere fully and systematically described.  
 
It exists two popular approaches for expressing the 
cardinalities of the n-ary relationships: Chen approach 
[4] and Merise approach [10]. Chen approach is used by 
Teorey [12], Ullman-Widom [13], UML [11], IDEF1X 
[2], etc. Merise approach [10] is used by Elmasri-
Navathe [5], Batini-Ceri-Navathe [1], Yourdon-Method 
[14], etc.  
 
In the literature about database design, when the 
translation from ER to relational tables is described, is 
usually limited to a very general description, and only 
one of the two popular approaches is assumed for the 
cardinality. But none of the two approaches, nor the two 
together, allow us to express all the possible 
cardinalities (see McAllister [9]). So, transformations to 
relational tables from some ternary patterns are ignored 
in the literature. A detailed analysis of the 
transformation of all the patterns can be found in [3]. 
 
As an example we will present here a ternary case 
(section 2 and 3) with interesting characteristics (section 
4) that challenge some very common beliefs (section 5).  
 
2. AN ELEMENTARY EXAMPLE 
We assume that if R is a relationship between the 
entities A B and C, then the symbol 1 in the leg of A 
means that each pair of instances, b from B and c from 
C  cannot be associated to more than one instance a 

from A. Remember: each one of the instances of a ternary 
relationship involves actually three entity instances. 
 
We will study the ternary relationship with 1:N:N 
cardinalities in Figure 1. The entities are Product 
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       Product (Pro-id, Pro-type)     
 
      Dealer (Dea-id, Dea-address) 
 
       Concession  ( Pro-id, Sta-id,   Dea-id, Con-date )   

 
Each one of the attributes Dea-id, Pro-id and Sta-id in 
the table Concession should be declared as foreign key 
and not null.  
 
The possible lack of a dealer for a given pair product-
state, is expressed by the non-presence of a row in the 
Concession table for that pair of Pro-id Sta-id. Note that 
it is not possible to reduce the number of tables without 
loosing their normalization (BCNF). 
 
3.  ADDING MORE FDs TO THE 
EXAMPLE 
Now we will add to our elementary example two new 
functional dependencies:  
 

Pro-id  ➔  Dea-id    and          
Sta-id ➔  Dea-id 
 

The two imposed structural constraints are, according to 
the terminology of Jones-Song [6], two Constraining 
Binary Relationships. The semantics of the new ternary 
pattern is now more restricted: a) each product is 
distributed only by one dealer, and b) in each state 
where it exists concessions, only one dealer exists.  

 
                  Figure 2: Two imposed FDs 
 
Note that a product can still be distributed in several 
states and in a state is still possible to distribute several 
products. 
 
In Figure 2 we try to show graphically the new ternary. 
The dotted lines and arrows try to express the two 
imposed binary constraints as subsets of the ternary. In 
fact the subset term is not strictly correct because a 
constraint is not a subset of a relationship. Moreover, if 
we see the constraints as they were a set of instances of 
binary relationships, then a set of 2-tuples can not be a 
subset of a set of 3-tuples. In UML it exist the {subset} 
stereotype to express that an association is a subset of 

another association. Perhaps this UML stereotype can be 
used with the same meaning than the arrows in Figure 2, 
but the lack of a rigorous definition of UML in their 
reference manual [11] do not allow us to be sure. 
 
There is no way to represent the pattern in Figure 2 (and 
some other patterns) using any of the most popular ER 
models, without adding text (or special symbols) to 
express that the binary restrictions are part of the ternary 
relationship.  
 
Abstracting our case to a relationship R between the three 
entities A, B and C, the set of functional dependencies 
between the keys is: 
 

(A-id,C-id) ➔  B-id 
A-id ➔  B-id  
C-id ➔  B-id 

 
So the case is apparently simple and can be represented as: 

 A,  C,    B 
 

This FD ternary pattern is exactly the pattern number 4 in 
the analysis of McAllister [9] or the pattern number 11 in 
the analysis of Jones-Song [7].  
 
In our example, a valid set of instances for  the new 
relationship Concession can be: 
 
  Pro-id                Sta-id       Dea-id            Con-date 
Cocacola Idaho Smith&Sons 1996 Dealer 
Cocacola Texas Smith&Sons 1994 
Fanta  Idaho Smith&Sons 1994 1 1 1 
Sprite  Kansas FreeDrink 1998 
 
Now it should be impossible to additionally insert the 
following instances, because the binary imposed FDs:  Concession 

N N  N N Cocacola            Kansas     Smith&Sons        2000 
Sprite                 Idaho        Smith&Sons        2000 Product  State 
 
As a consequence of the additional constraints, Cocacola 
cannot have a dealer in Kansas because Cocacola has 
already a dealer -Smith&Sons (in Idaho and Texas)- and 
Kansas already has a different dealer, FreeDrink (for 
Sprite). Similar considerations can be made for the pair 
Sprite/Idaho. 
 
It could seem that with only two binary FDs we can 
characterize this case, because applying the augmentation 
rule (one of the Armstrong's rules [12]) that states  
 

if  X ➔  Y  then  (X,Z) ➔  Y  
 
we derive the FD  (A-id,C-id) ➔  B-id  from both of our 
two binary FDs. But remember that the ternary 
relationship, R, has its own attributes, r, and therefore they 

  



are functionally dependent on the pair of keys of A and 
C. So, the full set of FDs is:  
 
   Key FDs:   Non-key FDs:  
   (A-id,C-id) ➔  B-id (A-id,C-id) ➔  r 
   A-id ➔  B-id   A-id ➔  a 
   C-id ➔  B-id   C-id ➔  c 

B-id ➔  b 
  
4. FROM TERNARY TO RELATIONAL  
If we transform our ternary relationship to relations, 
directly representing the full set of FDs of the pattern, 
we obtain the following database schema: 
 
   A (A-id, B-id, a)   B (B-id, b)       
 
    C (C-id, B-id, c)     R (A-id, C-id,  B-id , r)  
 
We are assuming that participation of entities A, B and 
C in the relationship R, is not mandatory. The attributes 
B-id of tables A and C are to be declared as accepting 
nulls. The attribute B-id of table R must be declared as 
non-null. The B-id attributes of tables A, C and R, are 
to be declared foreign keys of table B, and A-id and C-
id of table R as foreign keys of tables A and C. 
 
This schema has intertable redundancy (because B-id) 
and the table R is not in 3NF (nor in 2NF) because of 
the following two dependencies that have non-key 
determinants:   
 

A-id➔  B-id             C-id➔  B-id.  
 
Moreover, the above relational schema is not fully 
representing the semantics of our ternary relationship. 
The two binary dependencies   A-id➔  B-id  and C-id➔  
B-id in tables A and C, should be defined as part of the 
ternary, and in our schema they are not (they are 
independent of R). We could add the following 
inclusion dependencies [5]: 

I) π A-id,B-id R  ⊆   π A-id,B-id A 

II) π A-id,B -id R  ⊇   π A-id,B-id A 

III) π C-id,B-id R  ⊆   π C-id,B-id C 

IV) π C-id,B -id R  ⊇   π C-id,B-id C 
 
The inclusion dependencies I and III can be easily 
expressed in SQL92, adding keys and foreign keys as 
follows: 
 
   - Table A:   UNIQUE (A-id, B-id) 
   - Table C:   UNIQUE (C-id, B-id) 
   - Table R:    
     FOREIGN KEY (A-id, B-id)  REFERENCES A (A-id, B-id) 
     and   
     FOREIGN KEY (C-id, B-id)  REFERENCES C (C-id, B-id) 

 
Note that the UNIQUE declarations are partly redundant 
with the primary keys, but they  make easy the control of 
the inclusion restrictions. 
 
The inclusion dependencies II and IV are a little more 
complex to express in SQL: 
 
      - In table A       CHECK  ( (A-id, B-id)    MATCH 
                            (SELECT A-id, B-id  FROM  R )) 
 
      - In table C       CHECK  ( (C-id, B-id)   MATCH 
                           (SELECT C-id, B-id  FROM  R ))  
 
With all these restrictions, the schema is now fully 
expressing the semantics of our case and avoids the 
possible update problems owning to the redundancy of B-
id and to the lack of normalization of  R. 
 
Let us now start again with the original schema and 
assume that we desire to normalize table R. In order to 
normalize R we can take out its attribute B-id, because the 
additional FDs represented in tables A and C, already 
imply the dependency (A-id,C-id) ➔  B-id. So, the schema 
of R can be reduced to: 
 
 R (A-id, C-id, r)  
 
Now the data base schema formed by the four tables A, B, 
C and R, is normalized in 3NF (and also in BCNF) 
without lost of data and preserving all the FDs. Obviously, 
we must define the attribute B-id of tables A and C, as 
foreign keys referencing table B, and accepting nulls. 
 
But as before, this data base schema is not representing the 
inclusion of the binary restrictions in the ternary 
relationship. So we must add restrictions to enforce that R 
is not independent of the two binary FDs implied by the 
tables A and C. We could enforce: 
  
 a)  π A-id,C-id R  ⊆   π A-id,C-id A*C 
 
 b)  π A-id A ⊆  π A-id R  iff A.B-id is not null 
 
     π C-id C ⊆  π C-id R  iff C.B-id is not null 
 
The constrain a) is more complex than an inclusion 
dependency: it involves a natural join operation. It could 
be expressed in SQL92, for example, using the following 
restriction in table R: 
 
CHECK  ((A-id, C-id)   MATCH 
      (SELECT A-id, C-id  FROM  (A NATURAL JOIN C)))  

   
The two constraints b) could be expressed as an assertion: 
 
CHECK  (  NOT EXISTS   (   
(SELECT A-id  FROM A WHERE B-id IS NOT NULL)    

  



                 EXCEPT (SELECT A-id  FROM R)  ) 
    AND     NOT EXISTS    ( 
(SELECT C-id  FROM C WHERE B-id IS NOT NULL)    
                EXCEPT (SELECT C-id  FROM R)  )  ) 

   
A third possible transformation for our case is to take 
out the foreign key B-id from table A (or, 
symmetrically, table C). Now the schema will be: 
 

A (A-id, a)            B (B-id, b)       
 
C (C-id, B-id, c)      R (A-id, C-id,  r)  
 

We must declare A-id and C-id of table R as foreign 
keys of the corresponding tables, and B-id of the C 
table as foreign key accepting nulls.   But now the FD 
A-id ➔  B-id  is not enforced.  We can enforce it by: 
  
CHECK    (UNIQUE   (SELECT A-id  FROM  
        (SELECT DISTINCT A-id, B-id  FROM   
                             (R NATURAL JOIN C ))))  
 
Because R is ternary, the instances of C associated to 
instances of A must be exactly the same ones that are 
associated to instances of B. That can be enforced by an 
SQL check for equality (remember that C-id from table 
R is already defined as foreign key of C): 
 
CHECK   ((SELECT COUNT(*) FROM  C  
                             WHERE B-id  IS NOT NULL)    
 =   (SELECT COUNT(DISTINCT C-id)  FROM R 
                           WHERE  C-id NOT IN  
     (SELECT  C-id  FROM  C WHERE B-id IS NULL))) 
                               
A fourth, and last, alternative transformation for our 
ternary case, consist of having B-id only in table R. 
Now we have no intertable redundancy but table R is 
not in 3NF.  A-id, B-id and C-id in table R must be 
defined as foreign keys and not null. But we must 
enforce A-id➔  B-id   and  C-id➔  B-id in table R. So, 
we can write: 
 
CHECK  ((UNIQUE   (SELECT A-id  FROM  
                (SELECT DISTINCT A-id, B-id  FROM R)))  
   AND     (UNIQUE   (SELECT A-id  FROM  
                (SELECT DISTINCT A-id, B-id  FROM R)))) 
 
As we have seen , the non-3NF table   

R (A-id, C-id,  B-id , r)   
with the additional FDs A-id➔  B-id   and  C-id➔  B-id, 
cannot be decomposed in a fully equivalent set of 3NF 
tables if we use only candidate keys and inclusion 
dependencies.  

5. AGAINST A COMMON BELIEF             
The ER-to-RM literature ignores some interesting FD 
patterns. The case we have presented here is one of 
these cases. It looks very simple; apparently a harmless 

FD pattern. But it has an interesting behavior that have 
make us remember of Loizou[8] when he says that "the 
central idea in relational databases design is that all the 
integrity constraints in the database should be describable 
in terms of keys and foreign keys" although we know it's 
not always possible. It is a very common belief that given 
a set of FDs over a table resulting in a non-3NF situation, 
it is always possible to obtain a fully equivalent set of 3NF 
tables, without adding other restrictions than candidate 
keys and inclusion dependencies (key or non-key based). 
But as we have seen in our case, it is not actually true. 
These restrictions are not powerful enough. If a correct 
database state is to be guaranteed more complex 
restrictions have to be used.  
 
6. REFERENCES 
[1]  C.Batini, S.Ceri and S.B.Navathe, Database Design: An 
Entity-Relationship Approach, Prentice-Hall, (1991). 
 
[2]  T.Bruce, Designing Quality Databases with IDEF1X 
Information Models, Dorset House Publishing, (1992). 
 
[3]  R.Camps,  "Transforming N-ary Relationships to Database 
Schemas: An Old and Forgotten Problem",  Research Repot LSI-
5-02R  of Universitat Politècnica de Catalunya (Spain). 
 
[4] P.P.S.Chen, "The entity relationship model: toward a unified 
view of data", ACM-Transactions on Database Systems, 1(1) 9-
36 (1976). 
 
[5]  R.Elmasri and S.B.Navathe, Fundamentals of Database 
Systems, 3th ed., Addison-Wesley (1999). 
 
[6]  T.Jones and I.Y.Song, "Analysis of binary/ternary 
cardinality combinations in entity-relationship modeling", Data 
& Knowledge Engineering, 19 (1), 39-64 (1996). 
 
[7]  T.Jones and I.Y.Song, "Binary Equivalents of Ternary 
Relationships in Entity-Relationship Modeling: a Logical 
Decomposition Approach", Journal of Database Management, 
April-June 2000,  12-19 (2000). 
 
[8]  G.Loizou and M.Levene, A Guided Tour of Relational 
Databases and Beyond, Springer-Verlag (1999). 
 
[9]  A.J.McAllister and D.Sharpe, "An Approach for 
Decomposing N-ary Data Relationships" Software Practice & 
Experience, 28(2) , 125-154 (1998). 
 
[10]  A. Rochfeld and H. Tardieu, "MERISE: An information 
system design and development methodology", Information & 
Management, 6, 143-159 (1983). 
 
[11]  J.Rumbaugh, I.Jacobson and G. Booch, The Unified 
Modeling Language Reference Manual, Addison-Wesley (1999). 
 
[12]  T.J.Teorey, Database Modeling & Design, 3th ed., Morgan 
Kaufmann (1998). 
 
[13]  J.D.Ullman and J.Widom, A First Course in Database 
Systems, Prentice-Hall (1997).  
 
[14]  Yourdon,Inc., Yourdon Method, Prentice-Hall (1993). 

  


