
From Ternary Relationship to Relational Tables:
A Case Against Common Beliefs

Rafael Camps Paré
Universitat Politècnica de Catalunya (Barcelona) RCAMPS@LSI.UPC.ES

ABSTRACT

The transformation from n-ary relationships to a
relational database schema has never been really fully
analyzed. This paper presents one of the several ternary
cases ignored by the ER-to-RM literature. The case
shows that the following common belief is wrong: Given
a set of FDs over a table resulting in a non-3NF
situation, it is always possible to obtain a fully
equivalent set of 3NF tables, without adding other
restrictions than candidate keys and elementary
inclusion dependencies.

1. INTRODUCTION
The transformation from an n-ary relationship of the ER
model to a relational database schema is considered by
the literature as an elementary and well known problem.
But according to my knowledge this subject is
anywhere fully and systematically described.

It exists two popular approaches for expressing the
cardinalities of the n-ary relationships: Chen approach
[4] and Merise approach [10]. Chen approach is used by
Teorey [12], Ullman-Widom [13], UML [11], IDEF1X
[2], etc. Merise approach [10] is used by Elmasri-
Navathe [5], Batini-Ceri-Navathe [1], Yourdon-Method
[14], etc.

In the literature about database design, when the
translation from ER to relational tables is described, is
usually limited to a very general description, and only
one of the two popular approaches is assumed for the
cardinality. But none of the two approaches, nor the two
together, allow us to express all the possible
cardinalities (see McAllister [9]). So, transformations to
relational tables from some ternary patterns are ignored
in the literature. A detailed analysis of the
transformation of all the patterns can be found in [3].

As an example we will present here a ternary case
(section 2 and 3) with interesting characteristics (section
4) that challenge some very common beliefs (section 5).

2. AN ELEMENTARY EXAMPLE
We assume that if R is a relationship between the
entities A B and C, then the symbol 1 in the leg of A
means that each pair of instances, b from B and c from
C cannot be associated to more than one instance a

from A. Remember: each one of the instances of a ternary
relationship involves actually three entity instances.

We will study the ternary relationship with 1:N:N
cardinalities in Figure 1. The entities are Product

(identified by Pro-id) S
Dealer (identified by Dea
as follows: a dealer comp
products and a product
dealers, but in each state
by more than one dealer
to a dealer of a product
ternary relationship, has
The meaning of the cardi
and one state, can be as
pair of one state and one
more than one dealer. E
associated to more than o

r

Co

Figure 1: Exam

In terms of functional d
can be expressed as
dependencies in each en
and their attributes are no

 (Pro-id , Sta-id) ➔ D
 because the 1 in
 (Pro-id, Sta-id, Dea-
 because Con-Date

These two dependencies

 (Pro-id , Sta-id) ➔

A relational representat
could consist on one tabl
the Concession relationsh

 State (Sta-id, Sta-ca

Deale

ncession Con-date

Product
tate (
-id). T
any ca

 can
 a pro
. Each
into a
a date
nalities
sociate
 produ
ach p

ne stat

ple of

epende
follow
tity be
t repre

ea-id
the side
id) ➔
 is an a

can be

(Dea-id

ion of
e for ea
ip (key

pital)
State

N

identi
he se
n dis

be di
duct
conc
state,
of co
 is; e
d to
ct ca
air p
e.

 1:N:

ncies
s (th
twee

sente

 of D
Con-d
ttribu

reduc

, Con

 this
ch en
s are
N

fied
manti
tribut
stribu
canno
ession
 each
ncess
ach pa
many
nnot
roduc

N re

, FDs
e o

n the
d):

ea-id
ate
te of

ed to

-date

terna
tity a
 unde
Sta-id
Sta-capital
Pro-id
Pro-type
Dea-id
Dea-adress
1

by Sta-id) and
cs of the case is
e several of our
ted by several
t be distributed
 of distribution

 instance of the
ion (Con-date).
ir of one dealer

 products. Each
be associated to
t-dealer can be

lationship

, this semantics
bvious internal
ir identification

 the relationship

 one:

)

ry relationship
nd one table for
rlined) :

 Product (Pro-id, Pro-type)

 Dealer (Dea-id, Dea-address)

 Concession (Pro-id, Sta-id, Dea-id, Con-date)

Each one of the attributes Dea-id, Pro-id and Sta-id in
the table Concession should be declared as foreign key
and not null.

The possible lack of a dealer for a given pair product-
state, is expressed by the non-presence of a row in the
Concession table for that pair of Pro-id Sta-id. Note that
it is not possible to reduce the number of tables without
loosing their normalization (BCNF).

3. ADDING MORE FDs TO THE
EXAMPLE
Now we will add to our elementary example two new
functional dependencies:

Pro-id ➔ Dea-id and
Sta-id ➔ Dea-id

The two imposed structural constraints are, according to
the terminology of Jones-Song [6], two Constraining
Binary Relationships. The semantics of the new ternary
pattern is now more restricted: a) each product is
distributed only by one dealer, and b) in each state
where it exists concessions, only one dealer exists.

 Figure 2: Two imposed FDs

Note that a product can still be distributed in several
states and in a state is still possible to distribute several
products.

In Figure 2 we try to show graphically the new ternary.
The dotted lines and arrows try to express the two
imposed binary constraints as subsets of the ternary. In
fact the subset term is not strictly correct because a
constraint is not a subset of a relationship. Moreover, if
we see the constraints as they were a set of instances of
binary relationships, then a set of 2-tuples can not be a
subset of a set of 3-tuples. In UML it exist the {subset}
stereotype to express that an association is a subset of

another association. Perhaps this UML stereotype can be
used with the same meaning than the arrows in Figure 2,
but the lack of a rigorous definition of UML in their
reference manual [11] do not allow us to be sure.

There is no way to represent the pattern in Figure 2 (and
some other patterns) using any of the most popular ER
models, without adding text (or special symbols) to
express that the binary restrictions are part of the ternary
relationship.

Abstracting our case to a relationship R between the three
entities A, B and C, the set of functional dependencies
between the keys is:

(A-id,C-id) ➔ B-id
A-id ➔ B-id
C-id ➔ B-id

So the case is apparently simple and can be represented as:

 A, C, B

This FD ternary pattern is exactly the pattern number 4 in
the analysis of McAllister [9] or the pattern number 11 in
the analysis of Jones-Song [7].

In our example, a valid set of instances for the new
relationship Concession can be:

 Pro-id Sta-id Dea-id Con-date
Cocacola Idaho Smith&Sons 1996 Dealer
Cocacola Texas Smith&Sons 1994
Fanta Idaho Smith&Sons 1994 1 1 1
Sprite Kansas FreeDrink 1998

Now it should be impossible to additionally insert the
following instances, because the binary imposed FDs: Concession

N N N N Cocacola Kansas Smith&Sons 2000
Sprite Idaho Smith&Sons 2000 Product State

As a consequence of the additional constraints, Cocacola
cannot have a dealer in Kansas because Cocacola has
already a dealer -Smith&Sons (in Idaho and Texas)- and
Kansas already has a different dealer, FreeDrink (for
Sprite). Similar considerations can be made for the pair
Sprite/Idaho.

It could seem that with only two binary FDs we can
characterize this case, because applying the augmentation
rule (one of the Armstrong's rules [12]) that states

if X ➔ Y then (X,Z) ➔ Y

we derive the FD (A-id,C-id) ➔ B-id from both of our
two binary FDs. But remember that the ternary
relationship, R, has its own attributes, r, and therefore they

are functionally dependent on the pair of keys of A and
C. So, the full set of FDs is:

 Key FDs: Non-key FDs:
 (A-id,C-id) ➔ B-id (A-id,C-id) ➔ r
 A-id ➔ B-id A-id ➔ a
 C-id ➔ B-id C-id ➔ c

B-id ➔ b

4. FROM TERNARY TO RELATIONAL
If we transform our ternary relationship to relations,
directly representing the full set of FDs of the pattern,
we obtain the following database schema:

 A (A-id, B-id, a) B (B-id, b)

 C (C-id, B-id, c) R (A-id, C-id, B-id , r)

We are assuming that participation of entities A, B and
C in the relationship R, is not mandatory. The attributes
B-id of tables A and C are to be declared as accepting
nulls. The attribute B-id of table R must be declared as
non-null. The B-id attributes of tables A, C and R, are
to be declared foreign keys of table B, and A-id and C-
id of table R as foreign keys of tables A and C.

This schema has intertable redundancy (because B-id)
and the table R is not in 3NF (nor in 2NF) because of
the following two dependencies that have non-key
determinants:

A-id➔ B-id C-id➔ B-id.

Moreover, the above relational schema is not fully
representing the semantics of our ternary relationship.
The two binary dependencies A-id➔ B-id and C-id➔
B-id in tables A and C, should be defined as part of the
ternary, and in our schema they are not (they are
independent of R). We could add the following
inclusion dependencies [5]:

I) π A-id,B-id R ⊆ π A-id,B-id A

II) π A-id,B -id R ⊇ π A-id,B-id A

III) π C-id,B-id R ⊆ π C-id,B-id C

IV) π C-id,B -id R ⊇ π C-id,B-id C

The inclusion dependencies I and III can be easily
expressed in SQL92, adding keys and foreign keys as
follows:

 - Table A: UNIQUE (A-id, B-id)
 - Table C: UNIQUE (C-id, B-id)
 - Table R:
 FOREIGN KEY (A-id, B-id) REFERENCES A (A-id, B-id)
 and
 FOREIGN KEY (C-id, B-id) REFERENCES C (C-id, B-id)

Note that the UNIQUE declarations are partly redundant
with the primary keys, but they make easy the control of
the inclusion restrictions.

The inclusion dependencies II and IV are a little more
complex to express in SQL:

 - In table A CHECK ((A-id, B-id) MATCH
 (SELECT A-id, B-id FROM R))

 - In table C CHECK ((C-id, B-id) MATCH
 (SELECT C-id, B-id FROM R))

With all these restrictions, the schema is now fully
expressing the semantics of our case and avoids the
possible update problems owning to the redundancy of B-
id and to the lack of normalization of R.

Let us now start again with the original schema and
assume that we desire to normalize table R. In order to
normalize R we can take out its attribute B-id, because the
additional FDs represented in tables A and C, already
imply the dependency (A-id,C-id) ➔ B-id. So, the schema
of R can be reduced to:

 R (A-id, C-id, r)

Now the data base schema formed by the four tables A, B,
C and R, is normalized in 3NF (and also in BCNF)
without lost of data and preserving all the FDs. Obviously,
we must define the attribute B-id of tables A and C, as
foreign keys referencing table B, and accepting nulls.

But as before, this data base schema is not representing the
inclusion of the binary restrictions in the ternary
relationship. So we must add restrictions to enforce that R
is not independent of the two binary FDs implied by the
tables A and C. We could enforce:

 a) π A-id,C-id R ⊆ π A-id,C-id A*C

 b) π A-id A ⊆ π A-id R iff A.B-id is not null

 π C-id C ⊆ π C-id R iff C.B-id is not null

The constrain a) is more complex than an inclusion
dependency: it involves a natural join operation. It could
be expressed in SQL92, for example, using the following
restriction in table R:

CHECK ((A-id, C-id) MATCH
 (SELECT A-id, C-id FROM (A NATURAL JOIN C)))

The two constraints b) could be expressed as an assertion:

CHECK (NOT EXISTS (
(SELECT A-id FROM A WHERE B-id IS NOT NULL)

 EXCEPT (SELECT A-id FROM R))
 AND NOT EXISTS (
(SELECT C-id FROM C WHERE B-id IS NOT NULL)
 EXCEPT (SELECT C-id FROM R)))

A third possible transformation for our case is to take
out the foreign key B-id from table A (or,
symmetrically, table C). Now the schema will be:

A (A-id, a) B (B-id, b)

C (C-id, B-id, c) R (A-id, C-id, r)

We must declare A-id and C-id of table R as foreign
keys of the corresponding tables, and B-id of the C
table as foreign key accepting nulls. But now the FD
A-id ➔ B-id is not enforced. We can enforce it by:

CHECK (UNIQUE (SELECT A-id FROM
 (SELECT DISTINCT A-id, B-id FROM
 (R NATURAL JOIN C))))

Because R is ternary, the instances of C associated to
instances of A must be exactly the same ones that are
associated to instances of B. That can be enforced by an
SQL check for equality (remember that C-id from table
R is already defined as foreign key of C):

CHECK ((SELECT COUNT(*) FROM C
 WHERE B-id IS NOT NULL)
 = (SELECT COUNT(DISTINCT C-id) FROM R
 WHERE C-id NOT IN
 (SELECT C-id FROM C WHERE B-id IS NULL)))

A fourth, and last, alternative transformation for our
ternary case, consist of having B-id only in table R.
Now we have no intertable redundancy but table R is
not in 3NF. A-id, B-id and C-id in table R must be
defined as foreign keys and not null. But we must
enforce A-id➔ B-id and C-id➔ B-id in table R. So,
we can write:

CHECK ((UNIQUE (SELECT A-id FROM
 (SELECT DISTINCT A-id, B-id FROM R)))
 AND (UNIQUE (SELECT A-id FROM
 (SELECT DISTINCT A-id, B-id FROM R))))

As we have seen , the non-3NF table

R (A-id, C-id, B-id , r)
with the additional FDs A-id➔ B-id and C-id➔ B-id,
cannot be decomposed in a fully equivalent set of 3NF
tables if we use only candidate keys and inclusion
dependencies.

5. AGAINST A COMMON BELIEF
The ER-to-RM literature ignores some interesting FD
patterns. The case we have presented here is one of
these cases. It looks very simple; apparently a harmless

FD pattern. But it has an interesting behavior that have
make us remember of Loizou[8] when he says that "the
central idea in relational databases design is that all the
integrity constraints in the database should be describable
in terms of keys and foreign keys" although we know it's
not always possible. It is a very common belief that given
a set of FDs over a table resulting in a non-3NF situation,
it is always possible to obtain a fully equivalent set of 3NF
tables, without adding other restrictions than candidate
keys and inclusion dependencies (key or non-key based).
But as we have seen in our case, it is not actually true.
These restrictions are not powerful enough. If a correct
database state is to be guaranteed more complex
restrictions have to be used.

6. REFERENCES
[1] C.Batini, S.Ceri and S.B.Navathe, Database Design: An
Entity-Relationship Approach, Prentice-Hall, (1991).

[2] T.Bruce, Designing Quality Databases with IDEF1X
Information Models, Dorset House Publishing, (1992).

[3] R.Camps, "Transforming N-ary Relationships to Database
Schemas: An Old and Forgotten Problem", Research Repot LSI-
5-02R of Universitat Politècnica de Catalunya (Spain).

[4] P.P.S.Chen, "The entity relationship model: toward a unified
view of data", ACM-Transactions on Database Systems, 1(1) 9-
36 (1976).

[5] R.Elmasri and S.B.Navathe, Fundamentals of Database
Systems, 3th ed., Addison-Wesley (1999).

[6] T.Jones and I.Y.Song, "Analysis of binary/ternary
cardinality combinations in entity-relationship modeling", Data
& Knowledge Engineering, 19 (1), 39-64 (1996).

[7] T.Jones and I.Y.Song, "Binary Equivalents of Ternary
Relationships in Entity-Relationship Modeling: a Logical
Decomposition Approach", Journal of Database Management,
April-June 2000, 12-19 (2000).

[8] G.Loizou and M.Levene, A Guided Tour of Relational
Databases and Beyond, Springer-Verlag (1999).

[9] A.J.McAllister and D.Sharpe, "An Approach for
Decomposing N-ary Data Relationships" Software Practice &
Experience, 28(2) , 125-154 (1998).

[10] A. Rochfeld and H. Tardieu, "MERISE: An information
system design and development methodology", Information &
Management, 6, 143-159 (1983).

[11] J.Rumbaugh, I.Jacobson and G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley (1999).

[12] T.J.Teorey, Database Modeling & Design, 3th ed., Morgan
Kaufmann (1998).

[13] J.D.Ullman and J.Widom, A First Course in Database
Systems, Prentice-Hall (1997).

[14] Yourdon,Inc., Yourdon Method, Prentice-Hall (1993).

