
The XML Typechecking Problem�

Dan Suciu

University of Washington

1 Introduction

When an XML document conforms to a given type (e.g. a DTD or an XML Schema type) it is called a valid

document. Checking if a given XML document is valid is called the validation problem, and is typically

performed by a parser (hence, validating parser), more precisely it is performed right after parsing, by the

same program module. In practice however XML documents are often generated dynamically, by some

program: checking whether all XML documents generated by the program are valid w.r.t. a given type is

called the typechecking problem. While a validation analyzes an XML document, a type checker analyzes a

program, and the problem's diÆculty is a function of the language in which that program is expressed. The

XML typechecking problem has been investigated recently in [MSV00, HP00, HVP00, AMN+01a, AMN+01b]

and the XQuery Working Group adopted some of these techniques for typechecking XQuery [FFM+01]).

All these techniques, however, have limitations which need to be understood and further explored and

investigated. In this paper we de�ne the XML typechecking problem, and present current approaches to

typechecking, discussing their limitations.

2 Background

2.1 XML Data

For the purpose of this paper we view XML documents as ordered trees, with nodes labeled with tag or

attribute names, or atomic values. This is a subset of the XQuery data model [FFM+01], which is suÆcient

to illustrate typechecking. For the purpose of typechecking we ignore the data values and only consider their

atomic types instead. Thus, we �x an alphabet � of tag names, attribute names, and atomic type names,

and denote T� the set of ordered trees where each node is labeled with an element from �. For a simple

illustration, the document in Fig. 1 (a) is represented as the tree in (b). Here:

� = f ELEMENT catalog; ELEMENT product; ATTRIBUTE name; ELEMENT mfr-price;

ELEMENT sale-price; ELEMENT color; INTEGER; STRINGg

2.2 XML Types

A type is a subset of T� that is a regular tree language [RS97, Tho90]. We use XQuery's syntax to specify

types.

Example 2.1 Consider the type de�nition:

TYPE Catalog = ELEMENT catalog(Products)

TYPE Products = (ELEMENT product(Product))*

TYPE Product = (ATTRIBUTE name(STRING)?,

(ELEMENT mfr-price(INTEGER) | ELEMENT sale-price(INTEGER))*,

(ELEMENT color(STRING))*)

�Database Principles Column. Column editor: Leonid Libkin, Department of Computer Science, University of Toronto,

Toronto, Ontario M5S 3H5, Canada. E-mail: libkin@cs.toronto.edu.

1

<catalog>

<product name="Widget">

<mfr-price> 55 </mfr-price>

<color> Red </color>

</product>

<product name="Gizmo">

<mfr-price> 99 </mfr-price>

<sale-price> 79 </sale-price>

</product>

<product>

<color> Green </color>

<color> Blue </color>

</product>

</catalog>

(a)

ELEMENT

ELEMENT

product product
ELEMENT

mfr−price
ELEMENTELEMENTATTRIBUTE

name

ELEMENT
product

catalog

STRING INTEGER INTEGER

sale−price

(b)

Figure 1: An XML Example and its Tree Representation

Here, Catalog, Products, Product are type identi�ers. Catalog de�nes the set of trees with the following

structure: the root is labeled catalog, all its children are labeled product, and their children form a sequence

as de�ned by the Product type.

Formally, a type is de�ned by a set of type identi�ers, T , and associates to each identi�er a regular

expression over �� T .

This de�nition of types hides much of the complexities of XML Schema, and it is actually more powerful

than XML Schema types. To see this, consider the set of pairs (�; t) 2 � � T that occur in the regular

expression for some type identi�er. XML Schema requires that � be a key in this collection. In other words

if both (�; t) and (�; t0) occur in this regular expression, then t = t
0 (they are the same identi�er). A DTD

imposes an even stricter restriction, that � be a key in the entire collection of pairs in all regular expressions.

Regular tree languages have been extensively studied for ranked trees, and are de�ned in terms of tree

automata [RS97, Tho90]. XML trees, however, are unranked: there are several ways to carry over the

de�nition of regular sets to unranked trees, by extending tree automata to unranked trees [BKMW98], as

specialized DTDs [PV00], by mapping unranked trees into ranked binary trees [MSV00], or by de�ning types

as in XDuce [HP00], XQuery [FFM+01] (and as de�ned here). All these de�nitions are equivalent, see [Suc01]

for a more detailed discussion.

For typechecking we need an important property of regular tree languages: given two types �1; �2, one

can check whether �1 � �2. In general, this problem is EXPTIME complete [Sei90], but it is in PTIME

when �2 corresponds to a deterministic tree automaton. A practical algorithm speci�cally designed for XML

typechecking is described in [HVP00].

2.3 The XML Typechecking Problem

Recall that in the validation problem we are given a tree t 2 T� and a type � and have to decide whether

t 2 � . The tree in Fig. 1 is valid w.r.t. the type Catalog in Example 2.1.

In the typechecking problem we are given a program P , de�ning a function P : D ! T�, and a type

� � T�, and need to decide whether 8x 2 D, P (x) 2 � . Here, D denotes the program's input domain and

will be discussed below.

One should think of the type-checker as a module which analyzes both the program and the XML output

type, and decides whether all documents produced by the program are valid, and returns yes or no. If

the answer is no we would also like to know where in the program typechecking failed. This however may

hard, because typechecking is a global property and it may be impossible to say which subexpression caused

2

the typechecker to fail. In XQuery the user can annotate expressions with their expected type1 reducing

the granularity of the type-checker from the entire program to smaller expressions. A more serious issue

is that typechecking may not be possible, as we show below, and we may need to settle for an incomplete

type-checker, which may return false negatives, i.e reject a program even if it typechecks.

A related problem is the type inference problem. Here, we are asked to compute, for the given program

P , the type P (D) = fP (x) j x 2 Dg. When type inference is possible, we have a simple solution to the

typechecking problem: given P; � , �rst compute P (D), then check if �P � � . However, type inference is

not always possible, and in practice we may need to accept some incomplete type inference, which computes

some superset of P (D). Incomplete type inference can be used to do incomplete type checking.

2.4 Applications

We restrict our discussion to two applications: XML publishing and XML transformations. Each imposes

certain kinds of restrictions on the program P , which can be exploited in typechecking.

XML Publishing In this application the XML document is a view over a relational database [FST00,

SSB+00]. Here, the program's domain is D = Inst(S), the set of all database instances of some schema, S.

We assume S to include key and foreign key constraints. We will restrict P to perform only simple select-

project-join queries on the database, nest the results and add appropriate XML tags, which is suÆcient for

most XML publishing needs. SilkRoute [FST00] and TreeQL [AMN+01a] are examples of such languages.

In this paper we shall use XQuery syntax to express such programs, as in the following example:

Example 2.2 Consider the following relational database schema:

S =

8
<
:

product(pid:STRING, name:STRING, mfrprice:INTEGER),

colors(cid:STRING, pid:STRING, color:STRING),

sale(sid:STRING, pid:STRING, price:INTEGER)

Underlined attributes represent keys, and there are foreign key constraints suggested by attribute names.

Assuming a standard XML representation of the relational schema [ABS99] the following XQuery program

generates an XML view of the relational database, similar to that in Fig. 1:

<catalog>

{ FOR $p IN $db/product/tuple

RETURN <product name = { data($p/name) } >

<mfr-price> { data($p/price)} </mfr-price>

{ FOR $s in $db/sale/tuple

WHERE $p/pid = $s/pid

REUTRN <sale-price> { data($s/sprice) } </sale-price>,

{ FOR $c in $db/color/tuple

WHERE $p/pid = $c/pid

REUTRN <color> { data($c/color) } </color>

}

}

</catalog>

XML Transformations Such applications include mapping between two di�erent XML Schemas, tag

renamings, projections, simple �eld computations, and translation of XML data into HTML (for displaying).

In these applications the input is an XML document itself, i.e. the program's domain D is either T� or some

XML type � , and the program traverses recursively and modi�es the input tree. Here, we restrict the

language to a subset of XSLT that includes the following features:

� recursive templates

1The \upcast" construct, Expr : Type [FFM+01].

3

� modes

� apply-template can be called along any XPath axis [Cla99]: child, descendant, parent, ancestor,

following-sibling, etc.

� variables can be bound to nodes in the input tree, then passed as parameters

� an equality test can be performed between node ID's, but not between node values.

We omit a formal description of this language. We refer the reader to [BMN00] for a description of a similar

fragment (although more powerful than this) and an illustration of the features above. The important

property this language fragment has is that it can be expressed in terms of k-pebble tree transducers [MSV00];

readers interested in a proof of this statement may consult [Suc01], where a related language is translated

into k-pebble tree transducers.

3 Type Inference and Its Limitations

Consider the program in Example 2.2. Inspecting it carefully, we can actually infer its output type as:

TYPE T1 = ELEMENT catalog(T2)

TYPE T2 = (ELEMENT product(T3))*

TYPE T3 = ATTRIBUTE name(STRING), ELEMENT mfr-price(INTEGER)

(ELEMENT sale-price(INTEGER))*, (ELEMENT color(STRING))*

Clearly the program returns a catalog tag at the root (hence, T1), with several product children (hence,

T2). By analyzing the RETURN clause we further infer that the product has exactly one name attribute, one

mfr-price child, and several sale-price and color children. The atomic types are further inferred from

the relational database.

This approach is very simple, and very powerful. The general idea is that one infers the type of a RETURN

expression from the types of its components. The XQuery formal Semantics [FFM+01], building on earlier

work on XDuce [HP00], applies this to the entire XQuery language by providing type inference rules for each

language construct, and [PV00] describe a complete type inference procedure for a simpler language.

Type inference is used to do typechecking. For example assume that the output to our program needs

to conform to the Catalog type in Example 2.1. For that it suÆces to infer the program's output type T1,

then check that T1 � Catalog.

An enhancement to XQuery's type inference rules needed in XML publishing is to use the constraints

in the input database schema S to further re�ne the inferred type. This is because often the correct

output type can only be inferred from keys and foreign keys constraints. For example, assume that in the

table sale(sid, pid, price) pid is also a key, meaning that each product has at most one sale prices.

Then we can re�ne the inferred type by replacing (ELEMENT sale-price(INTEGER))* in T3 with (ELEMENT

sale-price(INTEGER))?.

Limitations Unfortunately type inference is not complete, as illustrated by the following example.

Example 3.1 The relational schema has a single table, R(x,y) and the XQuery is:

<result>

{ FOR $x IN $db/R/tuple RETURN <a/>,

FOR $x IN $db/R/tuple RETURN

}

</result>

This creates an <a/> for each tuple in the database, then creates a for each tuple. XQuery infers

the following output type:

TYPE T = ELEMENT result((ELEMENT a)*, (ELEMENT b)*)

4

But in fact, the real output type is:

P(D) = fELEMENT result((ELEMENT a)
n

, (ELEMENT b)
n

) j n � 0g

since we have the same number of a's and b's. Obviously, this is not a regular tree language, hence, we cannot

\infer" it, and we settle for T instead. But T is an ad-hoc choice, and, as a consequence, the type-checker

may fail sometimes to perform typechecking correctly. For example, assume that the user needs to generate

XML documents of the following output type:

T1 = ELEMENT result() j

ELEMENT result(ELEMENT a; (ELEMENT a)�; ELEMENT b; (ELEMENTb)�)

It says that there are either no a's and no b's, or there is at least one a and one b (it rules out the cases (0; 1+)

and (1+; 0)). The program typechecks w.r.t to T1, since it will return no a's and no b's when the database

is empty, and at least one a and one b otherwise. But the type-checker rejects the program, because T 6� T1.

This is a serious problem, since the user cannot run a program which is correct. The current solution is for

the user to rewrite the program in a cumbersome way to help the system typecheck it w.r.t. T1. Moreover,

the user won't be able to understand why her program was rejected and how to rewrite it unless she knows

all the type inference rules of the language: there is no mathematical property that singles out T as a good

candidate for the inferred output type other than the speci�c choice of inference rules. These, however, may

change over time or di�er from vendor to vendor.

Can we re-design the type inference rules to choose a better output type ? Unfortunately no. There is

no \best" regular tree language, say T', that approximates P (D), because any such approximation can be

further improved to T0 � ftg, for some tree t 2 T0 � P(D).

4 Type Checking and Its Limitations

Another approach is to do typechecking without relying on type inference. If we impose certain restrictions on

the programming language, and sometimes on the output type, then one can �nd algorithms that always do

correct typechecking. We illustrate here two such techniques, for XML publishing and XML transformation.

4.1 Typechecking for XML Publishing

Recall that the input to the program P is a relational database. Given P and an output type � , we can

typecheck P by enumerating all \small" input databases (up to a size which depends only on P and �),

running P on each of them, and checking that the output conforms to � . If for some database the output

fails to validate against � then we return no; otherwise we return yes. Since there are only �nitely many

databases up to a given size, the algorithm will eventually halt. This procedure, described in [AMN+01a], is

rather ineÆcient, but it always returns the correct answer, and at least provides an existence proof that the

typechecking problem is decidable: more eÆcient typechecking algorithms may be discovered in the future.

However, we need to impose the following two restrictions on the output type � for this procedure to be

correct.

� � is a DTD type.

� all regular expressions in � are \star-free".

Star-free regular expressions [RS97, Per90] are much more expressive than their name suggests. We

are not allowed to use the Kleene closure, however we can use the complement, denoted compl, and the

empty set, ;. For example, if � = fa; b; cg, then compl(;) denotes ��, compl(��
:b:�� j ��

:c:��) denotes a�.

Thus, regular expressions like a
�
:b
�
:(c j a:b�) and even (a:b)� are star-free. In fact, all examples of regular

expressions used in this paper are star-free, and one could well argue that star-free regular expressions are

suÆcient for virtually all practical applications. An example which is not star-free is (a:a)�.

Theorem 4.1 [AMN
+
01a] Typechecking for XML publishing is decidable when the query language is re-

stricted as in Sec. 2.4, and the output type is a star-free DTD.

5

It is possible to lift the restriction on the output type to be star-free, but then we need to require the

queries to have no projections [AMN+01a].

Limitations Unfortunately the restrictions in Theorem 4.1 are critical: if we allow output types that

are not DTDs, or try to increase the expressive power of the language, then typechecking becomes unde-

cidable [AMN+01a]. This has two consequences in practice. First, we need to accept some incomplete

typechecking algorithm after all. Second, type inference remains the best known approximation algorithm

in this case: if we apply the procedure described in this section (enumerating all \small" databases) in cases

that do not statisfy the conditions in Theorem 4.1 then one may get false positives, i.e. it may fail to detect

that a program does not typecheck, which is inacceptable for most applications.

4.2 Typechecking for XML Transformation

Recall that here we consider a certain XSLT fragment, discussed in Sec. 2.4. The unexpected property that

this fragment has is that one can do inverse type inference. Formally, if P : T� ! T� is a transformation

expressed in this language and � � T� is a type (i.e. a regular tree language), then P
�1(�) = fx j P (x) 2 �g

is also a type (i.e. regular tree language). We illustrate this with an example.

Example 4.2 The following program, P, is an XSLT variant of the query in Example 3.1:

<xsl:template match="p">

<r> <xsl:apply-templates mode="mode-a"/>

<xsl:apply-templates mode="mode-b"/>

</r>

</xsl:template>

<xsl:template mode="mode-a" match="q">

<a/>

</xsl:template>

<xsl:template mode="mode-b" match="q">

</xsl:template>

For example on some input document of the form:

<p> <q/> <q/> . . . <q/> </p>

P returns results of the form:

<r> <a/> . . . <a/> . . . </r>

(same number of a's and b's.) The same discussion as in Example 3.1 applies here: the naively inferred

type, T, is incomplete, and cannot be used to typecheck if the output type is T1. However, assume we �x

the output type T1 and decide to do inverse type inference, i.e. compute P�1(T1). Assuming � = fp, qg,
the result of inverse type inference is simply Any, de�ned as:

P�1(T1) = Any

Any = ELEMENT p(Any*) | ELEMENT q(Any*)

(any XML tree over p and q). For a more interesting example, consider the output type:

T2 = ELEMENT r(ELEMENT a, ELEMENT a, (ELEMENT a)*, (ELEMENT b)*)

(it requires at least two a's). Then the inferred input type is:

P�1(T2) = ELEMENT p(Any*, ELEMENT q(Any*), Any*, ELEMENT q(Any*), Any*)

(the root must be labeled p and it must have at least two q children).

6

While this example illustrates inverse type inference only for a simple, non-recursive XSLT program,

inverse type inference is possible for much more complex programs, that are recursive, use modes, navigate

through the XML trees using all XPath axis, and make use of XSLT variables and parameters in the restricted

way discussed in Sec. 2.4. This enables us to do typechecking, as follows. Given P : D ! T�, and an output

type � , compute P
�1(�) then check D � P

�1(�): recall that D is either T�, or some regular tree language
� � T�. Formally:

Theorem 4.3 [MSV00, Suc01] For any program P in the XSLT fragment considered in Sec. 2.4 and any

regular tree language � , P
�1(�) is also a regular tree language. In consequence typechecking for this language

is decidable.

The algorithm resulting from the proof in [MSV00] is very ineÆcient (hyperexponential), but it applies to

a more powerful formalism than the XSLT fragment described here. A more eÆcient algorithm (exponential)

for a di�erent fragment of XSLT is described in [Toz01].

Limitations Like before, this result only holds for the XSLT fragment described. If we add, for example,

joins to the language (by allowing comparisons between parameters' values) then typechecking becomes

undecidable [MSV00], hence we need to accept some approximation algorithm here too. However, unlike

in XML publishing, a typechecking algorithm may be better than one based on type inference2: [MSV00]

describes an extension of the typechecking algorithm to queries with joins, by replacing each join comparison

with a non-deterministic choice, then typechecking the resulting non-deterministic transformation. This

may return false negatives, but it can typecheck more programs than type inference (e.g. the program in

Example 4.2).

5 Discussion

XML typechecking is clearly an important problem, because we need to validate dynamically generated

XML documents. We have seen two approaches to typechecking: an incomplete method, based on heuristic

type inference, and two complete methods, using specialized algorithms. None is completely satisfactory in

practice. The �rst results in systems that reject correct programs without warnings. The second may work

in some cases, but the decidable cases seem to be more the exception than the rule. Moreover, even where

typechecking is decidable, the complexity is high.

Today, the front-runner in practice is the type inference method, because it is easy to extend, even if

incompletely, to a variety of language constructs3. What is intriguing about type inference is that, despite

its theoretical incompleteness, it seems to be \complete" for practical applications. In our example in Sec. 3,

the type T1 that caused typechecking to fail is arti�cial, and one can argue that such types do not occur in

practice. One could make the argument that with the inferred type T the system can correctly typecheck the

program for all \practical" output types (since the output types on which it fails, like T1, are \arti�cial").

But so far no formal statements of this kind have been proven. This raises several questions:

� Is there a notion of \practical" types for which type inference is complete ? This notion should exclude

the type T1 in Sec. 3, while allow interesting types with Kleene closures (perhaps with the limitations

of star-free languages), alternations, and optional elements.

� Is it possible to issue a warning when type inference fails ? We would like the typechecking algorithm

to return yes, no, or unknown rather than return false negatives.

� As alternative techniques to type inference one might consider approximation, or randomized type-

checking algorithm. Of course, type inference o�ers an approximation algorithm already, but it is not

clear yet that is is the best in practice.

Acknowledgments The author thanks Frank Neven for his comments. The author is supported by the

NSF CAREER Award 0092955, a Sloan Fellowship and a gift from Microsoft Research.

2Except for the complexity.
3Inverse type inference (Sec. 4.2) seems a promising approach too, but is less investigated.

7

References

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to Semistructured

Data and XML. Morgan Kaufmann, 1999.

[AMN+01a] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking XML views of relational

databases. In LICS, pages 421{430, 2001.

[AMN+01b] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values: Typechecking

revisited. In PODS, pages 138{149, 2001.

[BKMW98] A. Bruggemann-Klein, M. Murata, and D. Wood. Regu-

lar tree languages over non-ranked alphabets, 1998. Available at

ftp://ftp11.informatik.tu-muenchen.de/pub/misc/caterpillars/.

[BMN00] G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive fragment of XSLT. In

Lloyd et al., editor, Computational Logic { CL 2000, volume 1861 of Lecture Notes in Arti�cial

Intelligence, pages 1137{1151. Springer, 2000.

[Cla99] James Clark. XML path language (XPath), 1999. available from the W3C,

http://www.w3.org/TR/xpath.

[FFM+01] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys, J. Simeon, and P. Wadler. XQuery 1.0

formal semantics, 2001. available from the W3C, http://www.w3.org/TR/query-semantics.

[FST00] M. Fernandez, D. Suciu, and W. Tan. SilkRoute: trading between relations and XML. In

Proceedings of the WWW9, pages 723{746, Amsterdam, 2000.

[HP00] Haruo Hosoya and Benjamin C. Pierce. XDuce: An XML processing language (preliminary re-

port). In WebDB'2000, pages 226{244, 2000. http://www.research.att.com/conf/webdb2000/.

[HVP00] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expression types for XML.

In Proceedings of ICFP, pages 11{22, 2000.

[MSV00] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In Proceedings of the

ACM Symposium on Principles of Database Systems, pages 11{22, Dallas, TX, 2000.

[Per90] D. Perrin. Finite automata. In Formal Models and Semantics, volume B of Handbook of

Theoretical Computer Science, chapter 1, pages 1{57. Elsevier, Amsterdam, 1990.

[PV00] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In Proceedings of

PODS, pages 35{46, Dallas, TX, 2000.

[RS97] G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer Verlag, 1997.

[Sei90] Helmut Seidl. Deciding equivalence of �nite tree automata. SIAM J. Comput, 19(3):424{437,

1990.

[SSB+00] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh, and B. Rein-

wald. EÆciently publishing relational data as xml documents. In Proceedings of VLDB, pages

65{76, Cairo, Egipt, September 2000.

[Suc01] D. Suciu. Typechecking for semistructured data. In Proceedings of the International Workshop

on Database Programming Languages, Italy, September 2001. Springer Verlag. (to appear).

[Tho90] W. Thomas. Automata on in�nite objects. In Formal Models and Semantics, volume B of

Handbook of Theoretical Computer Science, chapter 4, pages 133{192. Elsevier, Amsterdam,

1990.

[Toz01] Akihiko Tozawa. Towards static type inference for xslt. In Proc. of ACM Symposium on

Document Engineering, 2001.

8

