
Constraint databases: A tutorial introduction
�

Jan Van den Bussche

Limburg University, Belgium

1 Introduction

We give a tutorial introduction to the basic de�ni-

tions surrounding the idea of constraint databases,

and survey and indicate some of the achieved re-

search results on this subject. This paper is not

written as a scholarly piece, nor as polished course

notes, but rather as something like the transcript of

an invited talk I gave at a meeting bringing together

researchers from �nite model theory, database the-

ory, and computer-aided veri�cation, which was

held at Schloss Dagstuhl in October 1999.

Very recently the �rst book on the subject ap-

peared [20]. It covers the state of the art in con-

straint databases up to, say, mid 1999 [20]. You

should see this paper merely as an appetizer for the

book. I will also not try to be complete in my bibli-

ographical references. Again, see the book for that.

2 Genesis and growth of the

idea

In 1988, Paris Kanellakis visited IBM Watson Re-

search Center. At that time, a group of people

around Jean-Louis Lassez back there were active

in the subject of constraint logic programming [8].

Constraint logic programming is a generalization of

standard logic programming. Recall that standard

logic programming has matching as a basic opera-

tion. For example, if we have a rule

R(2; x; y) S(x; y)

and a goal

R(z; u; u);

then the goal will match with the head of the rule

by the matching

z = 2 and u = x = y;

�Database Principles Column.

Column editor: Leonid Libkin, Bell Laboratories, 600

Mountain Avenue, Murray Hill, NJ 08974. E-mail:

libkin@research.bell-labs.com.

yielding a new goal

S(u; u):

In constraint logic programming, one starts from

the observation that matching is only a very simple

kind of constraint solving, and generalizes standard

logic programming by replacing matching by con-

straint solving. For example, in the system CLP(<)

developed at IBM Watson, you can program with

linear inequality constraints over the reals. So, if

you match a rule

R(x; y) x < y

and a goal

R(2z; z);

the new goal becomes

2z < z;

which the system can \solve" as z < 0.

In view of the applicability of standard logic pro-

gramming to databases by using Datalog programs

as a query language [25], Paris's insight was to try

to do the same with constraint logic programming.

Development of this idea with Gabi Kuper and Pe-

ter Revesz lead to a seminal paper entitled \Con-

straint Query Languages" at PODS'90, which intro-

duced the idea of constraint databases (a full jour-

nal version appeared later [18]).

In the '90s, the topic was vigorously taken up

and pursued by a relatively small group of enthu-

siasts, mostly from the database theory commu-

nity. As a result, currently, 10 years later, con-

straint databases have become a relatively main-

stream database research topic, with practical as

well as theoretical motivations, as should be the

case with any good research topic.

3 Classical database theory:

The Universe of Discourse

neglected

In our tutorial introduction to the notion of a con-

straint database, let us begin by reviewing rela-

1

tional databases as they are classically formalized

in database theory.

A relational database is traditionally formalized

as a collection of �nite relations over some universe

U of atomic values. This \Universe of Discourse"

typically has a structure of its own. For example,

you will have numbers in it, with predicates like <

and functions like + de�ned on them, and strings,

with predicates such as like in SQL and operations

such as concatenation. In SQL we routinely write

queries like

select x+ y

from R

where x < y.

However, this structure on U has often been ne-

glected in classical database theory. For example,

it is no problem to de�ne the relational algebra or

calculus (mathematically, �rst-order logic) with in-

terpreted functions and predicates, but in research

on the theory of query languages these were often

left out [1]. (Here it has to be said, to be fair, that

already without them a lot of di�cult issues arose,

and it made sense to try to solve these issues �rst

without the added complications arising from inter-

preted functions and predicates.)

4 A direct approach

A direct approach to formalize databases and query

languages in the presence of structure on the uni-

verse U is the following. Consider U as a struc-

ture in the sense of mathematical logic. So it is a

(typically in�nite) set equipped with predicates and

functions on that set. We will hopefully not confuse

the reader by denoting just the set by U, and also

the whole structure by the same symbolU. Now we

de�ne a relational database simply as an expansion

of the structure U with a �nite number of addi-

tional, �nite relations on U.

For example, U could be the following structure:

U = (U;Number ; <;+;String; like; concat):

Here, imagine that the set U is the union of the

set of all integers and the set of all strings over the

ASCII alphabet. The unary predicate Number is

true of the integers and false of the strings, and the

unary predicate String is true of the strings and

false of the integers. The predicates< and like and

the functions + and concatwere already mentioned

above. Then a database D with three relations R,

S, T will be an expansion of U, and thus be of the

form

(U;R;S; T):

The relation R in D could contain, for example the

two tuples

(john; 30) and (mary; 25);

among others.

We can now continue to use the popular logic-

based query languages such as �rst-order logic

(FO), Datalog, etc. The structure on U is now

automatically fully visible to queries expressed in

these languages, because it is part of the databases

themselves in the way we formalized databases. For

example, the SQL query above is written in FO as

follows:

fx+ y j R(x; y) ^ x < yg:

5 Two immediate problems

with the direct approach

The universe U is usually in�nite, and is now for-

mally the domain of any database, since we de�ned

a database as an expansion ofU. This implies, how-

ever, that the variables in our logic formulas range

over the whole of U. Consequently, the result of a

query may well be in�nite, as in the following ex-

ample:

fx+ y j S(x) _ T (y)g:

This is, of course, nothing but the classical safety

problem we all know and love, and occurs as well

without structure onU, as in the following example:

f(x; y) j S(x) _ T (y)g:

Even without an in�nite result, we still have the

problem of e�ective evaluation: how are we going

to compute the result of a query if variables range

over an in�nite universe?

6 De�nable relations

We can deal with the problem of in�nite results

as follows. We begin by noting that an FO query

might just query the universe, without looking at

the database relations at all. For example, on a

universe consisting of integers, the query

fx j 9y x = y + yg

retrieves the in�nite set of all even integers. Re-

lations de�ned by FO formulas that look only at

the predicates and functions of the universe, not

at database relations, are called de�nable relations.

We will represent such de�nable relations, which

will often be in�nite, simply by their de�ning for-

mulas. This symbolic representation is a �rst major

idea in constraint databases.

2

7 Constraint databases: First

de�nition

In databases we usually insist that output relations

can later be used as input relations. This principle

of compositionality, or closure as we often call it in

databases, is important for example in views.

Hence, we should allow, instead of only �nite re-

lations over U, any de�nable relations over U in a

database! Again, such relations will be represented

symbolically by their de�ning formulas. This idea

of a database consisting of de�nable relations rep-

resented by formulas is a second major idea in con-

straint databases.

So we come to our �rst de�nition of what a con-

straint database is (we will later re�ne it). A con-

straint database over U is a �nite collection of �rst-

order formulas over U:

('R; 'S ; 'T ; : : :):

Each formula de�nes a (possibly in�nite) relation

over U:

(R;S; T; : : :):

The constraint database represents the in�nite

structure obtained from expanding the structure of

the universe U with these relations, for example:

(U;<;+; ;R;S; T):

We should point out at this time that classical

�nite relational databases can be viewed as special

cases of constraint databases, as follows. The only

structure on U that we have are constant symbols

for all elements of U, and the equality predicate of

course.1 A �nite relation like, for example, R:

john 30

mary 25

can then always be de�ned by a formula, for exam-

ple 'R:

(x1 = john ^ x2 = 30)

_(x1 = mary ^ x2 = 25)

8 Plug-in evaluation

How do we solve the problem of e�ective evaluation

described above? Answer: we simply don't eval-

uate! All we do is plug in the de�nitions of the

1
Recall that in logic, constant symbols are 0-ary function

symbols.

database relations in the query formula. For exam-

ple, if we have the query

8x((9y x = y + y)! S(x))

on a database where relation S is de�ned by formula

'S , we plug this formula in the query formula and

obtain a de�nition of the result of the query on that

database:

8x((9y x = y + y)! 'S(x))

Note that this is a formula over U only: it does not

mention any database relations, and thus is indeed

the symbolic representation of a de�nable relation

as we introduced above, and as we agreed to rep-

resent symbolically using formulas. Note also that

the query was actually a yes/no query, and corre-

spondingly, our result formula is a sentence (formula

without free variables) which will, on U evaluate to

either true or false.

9 Testing emptiness of de�n-

able relations

So far, so good. It is all well to just use formulas

over U as symbolic representations of possibly in�-

nite, de�nable relations overU. But what can we do

with these representations? Can we compute with

them? For one thing, can we even decide whether

the relation de�ned by a given formula over U is

empty or not?

We can do this if the �rst-order theory of U,

that is, the set of all sentences over U that evaluate

to true on U, is a decidable set. There are many

examples of structures that do not have a decid-

able theory. Two famous examples are the natural

numbers with plus and times: (N; +;�), and the

strings over some alphabet � with the single-letter

strings as constants and concatenation as function:

(��; (a)a2�; concat).

However, there are also a few structures that do

have a decidable theory:

� (Z; +; 0; 1;<): the integers with their order and

addition, but without multiplication;

� the same with the rationals Q instead of the

integers Z;

� (R; +;�; 0; 1; <): the reals, even with multipli-

cation!

� The algebra of all terms built using a given

signature of function symbols;

3

� Boolean algebras.

It is with such universes that we can play the game

of constraint databases.

Of course there is also the issue of computational

complexity. Typically, decidable theories have a

huge complexity: it is usually not easy to determine

the truth of a sentence. However, this complexity

can often be isolated in the number of quanti�ers

of the sentence. For example, Basu's algorithms for

the theory of the reals [2] split up into a combina-

torial part, which deals with the actual polynomi-

als occurring in the formula (obtained by applying

plus and times to variables), and in an algebraic

part, which deals with the actual number of vari-

ables and quanti�ers, the degree of the polynomials,

etc. It is only in the algebraic part that the algo-

rithms are exponential. The combinatorial part is

polynomial-time. In constraint databases, we would

like similarly to keep the algebraic part really sim-

ple so that the algorithms have a better chance of

being e�cient in their totality. This brings us to

the next point.

10 Quanti�er elimination

The method of quanti�er elimination is an old tech-

nique from the �eld of model theory in mathemat-

ical logic [11, 16]. When we try to apply it to a

structure U, we try to express every formula over

U as a boolean combination of \base formulas". If

we can do with just the atomic formulas as base

formulas, then we say that \U has quanti�er elim-

ination": in this case every formula can be written

as a quanti�er-free one. Often, however, the atomic

formulas alone are not enough, and other formulas

must be used as base formulas as well.

So, the idea of applying quanti�er elimination to

U amounts to expanding U with suitable de�nable

functions or predicates, until we actually have quan-

ti�er elimination. For example, take the structure

(Z; +; 0; 1; <). We cannot express the formula

9x y = x+ x+ x+ 2

without quanti�ers, but if we add all modulo func-

tions, we can: then it becomes equivalent to the

quanti�er-free formula

y mod 3 = 2:

The method of quanti�er elimination can be suc-

cessfully applied to all the structures we mentioned

above with a decidable theory.

11 Constraint databases: Sec-

ond de�nition

We are now ready for an improvement of our �rst

de�nition of what constraint databases are. The

idea is to use only structures U with a decidable

theory, and which have quanti�er elimination. For-

mulas in the constraint databases can then without

loss of expressive power be required to be quanti-

�er free. Query evaluation is still plug-in evalua-

tion as explained earlier, but the result of the plug

in still has the quanti�ers from the query formula.

We eliminate these (remember that we now assume

that the universe has quanti�er elimination), and

the resulting quanti�er-free formula is the real re-

sult of the query.

Working only with quanti�er-free formulas helps

tremendously in keeping the complexity of test-

ing emptiness of our de�nable relations down. Al-

though quanti�er elimination algorithms typically

have a very high computational complexity, we now

have a handle to control this complexity. Indeed, as

we just saw, we only have to eliminate the quanti-

�ers that were in the query, and the query is �xed,

regardless of how large the database is to which we

apply it. So, the number of quanti�ers to be elimi-

nated is �xed, and hence complexity stays manage-

able.

We should immediately admit, however, that we

are painting here a very optimistic picture of con-

straint query evaluation. In practice we still have

to worry about other things, such as the sizes of the

logical terms resulting from quanti�er elimination,

which could also become very big. But, it remains

indisputable that having only quanti�er-free formu-

las in the database helps a lot.

12 Research in constraint

databases

Research in constraint databases could be classi�ed

as follows:

1. Classical database theory topics reconsidered,

now that the universe has a structure. So here

we are dealing with the special case of �nite

databases over U.

2. New research topics made possible by the new

possibilities given by full constraint databases,

notably, to represent in�nite relations.

However, numerous links between 1 and 2 exist.

Sometimes we have to do type-1 research before we

4

even can begin to do type-2 research.

In the remainder of this paper I will give some

samples of the two kinds of research in constraint

databases.

13 O-minimal structures

If we know something more about our universe

U, apart from what we already agreed on (decid-

able theory, quanti�er elimination), we can obtain

further results. One nice property is that of o-

minimality. This property is an abstraction of the

nice properties the universe of the reals has in con-

nection with the \tame" topological behavior of de-

�nable sets in the reals [26].

Concretely, a structure U is called o-minimal if

it is ordered : one of its predicates is a total ordering

on U, and in addition the following holds:

1. Take a formula over U:

'(x1; : : : ; xk):

2. Substitute values a2; : : : ; ak for x2; : : : ; xk.

Note that we leave x1 free!

3. Then the set

fx1 2 U j '(x1; a2; : : : ; ak) true in Ug

is a �nite union of intervals in the given order

on U (where we agree that an isolated point is

also an interval).

The prototypical example of an o-minimal struc-

ture is that of the reals.

14 Natural-active collapse

One result we obtain when the structure is o-

minimal is natural-active collapse. It is a result

about �nite databases, so this is type-1 research.

Consider a �nite database over U. We all know

what its active domain is: it is the �nite set of

atomic elements of U actually occurring in the re-

lations in the database.

Recall that when we write a query such as

9r8x8y(R(x; y)! x2 + y2 = r2);

the quanti�ers range over the whole of U. For ex-

ample, ifU is the reals, this query says that all pairs

(x; y) in relation R lie on a common circle with the

origin as center. It is crucial that the quanti�er

9r ranges over all reals and not just over the ac-

tive domain of the input database. Indeed, it is not

because all pairs lie on a common circle, that the

radius of that circle actually is in the active domain!

However, in this particular example, we can

rewrite the query so that it is okay to let quanti�ers

range over the active domain only. Indeed, we note

that the common radius (or rather, its square), if it

exists, equals x2
0
+y2

0
for some arbitrary pair (x0; y0)

in relation R. So, we can equivalently rewrite the

query as follows:

9x09y08x8y(R(x; y)! x2 + y2 = x2
0
+ y2

0
);

and here it is perfectly okay if the quanti�ers range

over the active domain only.

Now is this just a peculiar example, or can we

always pull such a trick? If U is o-minimal, you

can indeed always do this, and there even is an al-

gorithm that will do the rewriting for you [6].

15 Safety

Another issue of type 1, so �nite databases only.

Let's return to the safety problem: is the result of

my query always �nite on �nite inputs? For exam-

ple, the following query is not safe if the universe

is the rationals or the reals (which are densely or-

dered):

fz j 9x9y(R(x; y) ^ x < z < y)g

The following query is safe:

fz j 9x9y(R(x; y) ^ z = x+ y)g

Recall that we basically dismiss this problem in

constraint databases: we simply allow in�nite rela-

tions (represented symbolically as formulas). But in

many applications, especially if the input is �nite,

it can still be nice if you can somehow guarantee

that your output is also �nite. Without a struc-

ture on U, this is well known: we have the class

of \syntactically safe" relational calculus formulas

[24]. Can we do something similar with a structure

on the universe?

Again under the assumption thatU is o-minimal,

the answer is \yes" [7]. One can use special formulas

over U called \algebraic" to specify �nite sets of

values. We now accompany every FO query with

such an algebraic formula, with the following range-

restricted semantics: we only evaluate the query

within the �nite upper bound of values given by the

algebraic formula, so that it is enforced to be safe.

Then all safe queries can be speci�ed in this way.

In other words, if a query happens to be safe, you

can always precompute, by an algebraic formula,

the �nite set of values it will need to form its result

relation.

5

16 Conjunctive query contain-

ment

Still on �nite databases, another natural question

we may ask is whether the classical problem of con-

junctive query containment remains decidable when

we now have a structure on our universe U. Given

our basic assumption that the theory of U is decid-

able, the answer is \yes" [17, 3].

Of course conjunctive queries also make perfect

sense on general constraint databases with in�nite

relations. Much less is known about containment

testing in this setting, however.

17 Spatial databases as con-

straint databases

Now some attention to type-2 research. Using the

reals as our universe U, and using de�nable k-ary

relations over the reals, we get what is known in real

algebraic geometry as the \semi-algebraic sets in

Rk . This is a very well-behaved class of geometrical

�gures, and a lot is known about their topological

and geometrical properties [10, 4]. So, it seems very

natural to use constraint databases over the reals

to represent spatial data [22]. Every spatial datum

is then a semi-algebraic set, which is symbolically

stored as a de�ning formula over the reals.

More traditional approaches to spatial databases

[27, 23] represent spatial data as polyhedral subdi-

visions of the real space, or using a �nite number of

spatial abstract datatypes such as point, line seg-

ment, polyline, circle, arc segment, etc. This allows

for more e�cient implementations of speci�c oper-

ations on spatial data. However, elegant, exible,

closed, logical query languages are much harder to

get in the traditional approaches than in the con-

straint approach.

Indeed, consider the following spatial queries:

� Set S of points in the plane has dimension two:

9x09y09" > 0

8x8y(d((x; y); (x0; y0)) > "2 ! S(x; y));

where d((x; y); (x0; y0)) stands for (x � x0)
2 +

(y � y0)
2 (Euclidean distance).

� Give me the border of S:

f(x; y) j 8" > 0 9x19y19x29y2

d((x; y); (x1; y1)) < " ^ d((x; y); (x2; y2)) < "

^ S(x1; y1) ^ :S(x2; y2)g

� Do S1 and S2 overlap? Is simply the same as

asking whether their intersection has dimen-

sion two (see �rst query).

� Do S1 and S2 \touch"? Is imply the same as

asking whether all points on the intersection lie

on the borders (see second query).

These examples serve to illustrate that you can al-

ready express quite a lot with just the basic opera-

tors of �rst-order logic FO. There is no need to add

a special operator for interior, for border, for over-

lap, for touch, and so on, as is the case in more tra-

ditional approaches to spatial database query lan-

guages.

However, other interesting spatial database

queries are not expressible in FO. A case in point

is topological connectivity. This inability can be

rigorously proved, and the proof is a nice illustra-

tion of a link between in�nite constraint databases

and �nite ones. To give an idea of this proof, we

have to talk �rst about another phenomenon which

is interesting in its own right.

18 Arithmetical collapse

Let's go back to �nite databases for a second. Al-

though we now have structure on our universe U,

some queries are not interested in this structure,

and continue to view the elements in the database

as abstract atomic data elements. A simple exam-

ple is the query on a given �nite set \are there at

least �ve elements in this set?" Clearly, for the

outcome of this query it does not matter whether

the elements are, say, integers on which addition is

de�ned, or the elements are just abstract elements

without any interpreted predicates and functions.

We call such queries generic.

Now suppose we have an FO query which hap-

pens to be generic. This query might still use the

interpreted predicates and functions in its formula,

but that seems not very useful, as the outcome of

the query is indi�erent to these. This basic intuition

can be formally proven: generic FO queries can al-

ways be expressed by a classical relational calculus

formula that does not mention the structure of U,

but only the database relations [6, 21]. This is the

principle of arithmetical collapse.

To be correct we should add that there is one

small exception: if the universe is ordered, then we

sometimes still need to use the order, even though

the query is generic. But that's okay, it won't hurt

for what we are going to say next.

6

19 Why the topological con-

nectivity query is not in FO

Consider �nite sets S of, say real numbers (we are

back to spatial database queries so the universe is

the reals). It turns out to be possible to write an

FO query that, for any such input S, outputs

an in�nite region in the plane that is topologically

connected if and only if the cardinality of S is even

[15]. Now suppose topological connectivity were ex-

pressible in FO, by some query formula . Then the

composed query ; clearly is the parity query. The

parity query is generic, so by arithmetical collapse

and natural-active collapse we can rewrite ; to

an FO query that is a standard relational calculus

query: it does not use the structure on the reals: ad-

dition, multiplication. But this is a contradiction:

it is well known that such a standard relational cal-

culus query cannot express the parity query [1].

20 Other constraint database

research topics

Research topics that were also actively studied, but

which we did not touch upon in this tutorial, are

the following. See the book [20] for information.

� Aggregate operators, such as volume in a spa-

tial context.

� Linear constraint databases: we consider only

regions de�nable by formulas that do not use

multiplication, only linear equations and in-

equalities. Some nice theoretical results have

been obtained, for example on encoding such

databases into �nite databases, and it is an im-

portant practical case where a rather complete

implemented constraint database system exists

(the DEDALE system).

� The question of understanding exactly which

topological queries can be expressed in FO, and

how to extend FO towards those we cannot ex-

press (two recent papers in this direction not

covered by the book are [5, 14]).

� Adding recursion to constraint query lan-

guages. Here a major issue is termination of

the recursion, given that universes and rela-

tions are now in�nite. Two recent papers are

[13, 19].

Just a few open research directions are:

� Concrete algorithms and implementations.

The DEDALE system stands out in the linear

constraint context. We need good implemented

systems also for other universes.

� Play the constraint database game for other

universes than the typical numeric ones, for ex-

ample term algebras [12, 9].

� In practice we will need \mixed" constraint

databases, where the universe is many-sorted,

containing many di�erent types of atomic ele-

ments, all with their own interpreted functions

and predicates, and possibly some functions

and predicates mixing the di�erent types. This

has not yet been adequately formalized.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Founda-

tions of Databases. Addison-Wesley, 1995.

[2] S. Basu. Algorithms in Semi-Algebraic Geom-

etry. PhD thesis, New York University, 1996.

[3] M. Baudinet, J. Chomicki, and P. Wolper.

Constraint-generating dependencies. Journal

of Computer and System Sciences, 59(1):94{

115, 1999.

[4] R. Benedetti and J.-J. Risler. Real Algebraic

and Semi-Algebraic Sets. Hermann, 1990.

[5] M. Benedikt, M. Grohe, L. Libkin, and

L. Segou�n. Reachability and connectivity

queries in constraint databases. In Proceed-

ings 19th ACM Symposium on Principles of

Database Systems, 2000, pages 104{115.

[6] M. Benedikt and L. Libkin. Relational queries

over interpreted structures. Journal of the

ACM, 47, 2000.

[7] M. Benedikt and L. Libkin. Safe con-

straint queries. SIAM Journal on Computing,

29:1652{1682, 2000.

[8] F. Benhamon and A. Colmerauer, editors.

Constraint Logic Programming: Selected Re-

search. MIT Press, 1993.

[9] A. Blumensath and E. Gr�adel. Automatic

structures. In Proceedings 15th IEEE Sympo-

sium on Logic in Computer Science, 2000.

[10] J. Bochnak, M. Coste, and M.-F. Roy. Real

Algebraic Geometry. Springer-Verlag, 1998.

7

[11] C.C. Chang and H.J. Keisler. Model Theory.

North Holland, 3rd edition, 1990.

[12] E. Dantsin and A. Voronkov. Expressive power

and data complexity of query languages for

trees and lists. In Proceedings 19th ACM

Symposium on Principles of Database Systems,

2000, pages 157{165.

[13] F. Geerts and B. Kuijpers. Linear ap-

proximation of planar spatial databases using

transitive-closure logic. In Proceedings 19th

ACM Symposium on Principles of Database

Systems, 2000, pages 126{135.

[14] M. Grohe and L. Segou�n. On �rst-order topo-

logical queries. In Proceedings 15th IEEE Sym-

posium on Logic in Computer Science, 2000.

[15] S. Grumbach and J. Su. Queries with arith-

metical constraints. Theoretical Computer Sci-

ence, 173(1):151{181, 1997.

[16] W. Hodges. Model Theory. Cambridge Univer-

sity Press, 1993.

[17] O.H. Ibarra and J. Su. On the containment

and equivalence of database queries with linear

constraints. In Proceedings 16th ACM Sympo-

sium on Principles of Database Systems, pages

32{43, 1997.

[18] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz.

Constraint query languages. Journal of Com-

puter and System Sciences, 51(1):26{52, Au-

gust 1995.

[19] S. Kreutzer. Fixed-point query languages for

linear constraint databases. In 19th ACM

Symposium on Principles of Database Systems,

2000, pages 116{125.

[20] G. Kuper, L. Libkin, and J. Paredaens, editors.

Constraint Databases. Springer, 2000.

[21] M. Otto and J. Van den Bussche. First-

order queries on databases embedded in an in�-

nite structure. Information Processing Letters,

60:37{41, 1996.

[22] J. Paredaens, J. Van den Bussche, and

D. Van Gucht. Towards a theory of spatial

database queries. In Proceedings 13th ACM

Symposium on Principles of Database Systems,

pages 279{288. ACM Press, 1994.

[23] D. Thompson, R. Laurini. Fundamentals of

Spatial Information Systems. Number 37 in

APIC Series. Academic Press, 1992.

[24] J. Ullman. Principles of Database and

Knowledge-Base Systems, volume I. Computer

Science Press, 1988.

[25] J. Ullman. Principles of Database and

Knowledge-Base Systems, volume II. Com-

puter Science Press, 1989.

[26] L. van den Dries. Tame Topology and O-

Minimal Structures. Cambridge University

Press, 1998.

[27] Michael F. Worboys. GIS: A Computing Per-

spective. Taylor & Francis, 1995.

8

