
An Efficient Scheme for Providing High Availability

Anupam Bhide Ambuj Goyal Hui-I Hsiao

IBiki TJ Watson Research Center

Yorktown Heights} NY 10598

Abstract

Replication at the partition level is a promising approach

for increasing availability in a Shared Nothing architecture.

We propose an algorithm for maintaining replicas with little

overhead during normal failure-free processing. Our mecha-

nism updates the secondary replica in an asynchronous man-

ner: entire dirt y pages are sent to the secondary at some

time before they are discarded from primary’s buffer. A log
server node (hardened against failures) maintains the log for

each node. If a primary node fails, the secondary fetches the

log from the log server, applies it to its replica, and brings
itself to the primary’s last transaction-consistent state. We
study the performance of various policies for sending pages

to secondary and the corresponding trade-offs between re-
covery time and overhead during failure-free processing.

1 Introduction

One promising approach to scaling up the performance of

transaction processing architectures is to partition a database

over loosely coupled multiple processors typically connected
by a local area network and each having its own private disks

and its own private memory. This is the Shared Noth-
ing [13] approach, typified by commercial systems like Ter-

adata’s DBC/1012 [16] and Tandem’s NonStop SQL [15];
and research prototypes GAMMA [4] and BUBBA [3]. In

this scheme, a relation is divided into partitions which are
then distributed over the multiple processors so as to bal-

ance loads. One problem with this approach is that the
probability of all processors remaining up in an interval de-

creases exponentially in the number of processors. Since
many of the relations may be partitioned across all nodes,

the failure of a single processor might prevent a large part
of the workload from being executed. Thus, providing high
availability in this environment is an important problem.

In this paper, we present a new mechanism for manag-
ing replicated data in a Shared Nothing environment, For
simplicity of exposition, in this paper we assume that there
are at most two copies of a particular database partition

1If the probability that a processor fails in an interval is p, then
the probability that at least one processor in an n processor shared.
nothing system is down is given by 1- (1 – p)n.

Permission to copy without fee all or pert of this material is

granted provided that the copies are not mede or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice ia given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires e fee

and/or specific permission.

1992 ACM SIGMOD - 61921CA, USA
a 1992 ACM 0.8979 j.~22.4/9210005 /02~6... $J .50

236

Anant Jhingran

(in most cases the mean time to failure (MTTF) provided

by two copies will be large enough). Our scheme can be

easily extended to more than two copies, The two copies

are commonly termed primary (against which database re-

quests are directed), and secondary (which is used to take

over the role of the primary, should the primary go down),

our mechanism for keeping the secondary replica up-to-date
consists of asynchronously sending updated page images at

appropriate points in time from primary to the secondary.
We will study various policies which send pages at different
times from primary to secondary and the resulting trade-offs

between overhead and recovery time.

For concreteness of exposition, we assume that our algo-

rithm will use the ARIES [10] recovery scheme to bring
the database to the latest transaction-consistent state after

a processor/disk failure; however our algorithm should ex-

tend to any log-based recovery scheme. Furthermore, we

also assume that log records generated at each transaction

processing node are sent to a log server nodez for storage

and log records produced by the primary can be accessed by

the corresponding secondary. We assume that the log server

can be made highly available using either replication or two
servers sharing dual-ported disks. We ignore these issues

in this paper. The log represents the disk states of both

the primary and the secondary replicas in a unified man-

ner. If the primary goes down, the secondary accesses the
log server, obtains the log records and uses them to bring

itself to the latest transaction.- consistent state. This is the
databaae state which has all the updates of all committed
transactions and none of the updates of any of the transac-
tions that were in-flight when the primary crashed.

Our design has a number of goals:

1.

2.

3.

High availability should be provided with minimal sac-

rifice of performance in the failure-free case and with-
out excessive resource overheads.

Special-purpose hardware should be avoided wherever
possible because 1) they tend to be expensive, and 2)
increase the probability of operator errors.

Irrespective of the sequence and number of failure and
recovery events of the-primary and secondary nodes for

a given partition, there should be no data loss or incon-
sistency (no loss of updates of committed transactions
and complete backing out of updates of uncommitted

transactions).

2The log server can reside on one of the transaction processing
nodes, or it can be on a special node that provides only logging
service.

We can classify previous work on maintenance of the

secondary copy in the following manner:

1. Synchronous: In thk method, changes made to the
database state at the primary are immediately reflected
at the secondary copy, There are two distinct ap-
proaches in this form of replication:

(a)

(b)

Physical: In this, the bits on the primary’s disk
are copied, and there are no semantics associ-
ated with the bits. For example, Tandem Non-
Stop SQL [15] achievesthis by using dual-ported
mirrored disks to achieve high availabilityy, but re-
quires special purpose hardware that violates our
second requirement.
Various extensions to RAID [12] (e.g., RADD
[14] and Parity Striping [6]), in effect, provide a
secondary without doubling the disk space over-
head. However, RADD is effective mainly for
disk failures and disaster recovery, Someauxiliary
mechanism is require to handle the casewhere the
secondary processor (in cases where group size is

one) goes down for a short while, and then must
play catch-up with the primary processors. In

addition, for group sizes greater than one, RADD
(like RAID) suffers from excessive 1/0 overhead,

since every write involves a read, modify and a

write of a check block.

Logicak In this, the database state is replicated,

by running the transaction on the two copies,

and is exemplified by the Teradata DBC/1012

database machine [16]. However, this approach
violates our first design goal because resource con-

sumption (both CPU and 1/0 overhead) are sig-

nificantly worse than the single copy case.

Thus, for various reasons, synchronous updates are not
the right mechanism in our environment.

2. Asynchronous: The transactions complete at the

primary without the secondary reflecting the latest

state. Most of the proposals using this mechanism

employ spooling of the log to the secondary before

committing a transaction [9, 11]. The log is stored
at the secondary, is sorted and compressed and is then

applied to the secondary replica. Research in this area
is typically for disaster recovery. Consequently, their

design considerations are different from ours. For ex-
ample, communication is much more expensive in their

environment. Our method trades 1/0 overhead and
CPU overhead at secondary for network communica-

tion in comparison to the log spooling methods. Note
that network communication is expected to become

cheaper at a much faster rate than 1/0 and CPU. Also,
since disasters are rare and usually result in the per-

manent loss of a node, these schemes ignore issues such

as automatically switching operation back to the des-

ignated primary site.

This paper presents an asynchronous replica maintenance

algorithm and performance analysis to explore the trade-offs
between recovery time rmd run-time overhead. In order to

sWith a group size of one, RADD is in effect equivalent to a strat-
egy where a rlidr write on primary does not return before its COPY

(either through the entire page image, or through a set of “xor” bits)
is written out at the secondary.

analyze these trade-offs, we develop expressions for 1/0 over-

head and recovery time for log-based transaction systems

which apply to single-site database recovery as well as for

databases having multiple replicaa. Our model assumes that

dirty pages are written to disk by a daemon which wakes up

periodically, so as to bound recovery time. We aasume that

the main memory available for the database buffer is large

enough and that recovery bounds are tight enough so that

LRU mechanism is never used to write out a dirty page. A

detailed single-site recovery analysis based on strict LRU is
presented in [8].

The rest of the paper is organized as follows. In section 2,

we describe in detail our replication algorithm, including the
design of a unified log which keeps track the database states

of both the Primary and the Secondary, Also discussed are

the role of the node manager and both normal and failure-

processing. In section 3, we present the various policies that

can be used to implement our algorithm. The next section

presents the performance analysis of recovery processing as

a function of the 1/0 overhead we are willing to tolerate

during normal processing. Finally, the paper ends with some
conclusions in section 5.

2 The Asynchronous Replica Maintenance Scheme

The environment we consider is a Shared Nothing database
machine architecture with a common log server. Having a

common and highly available log server simplifies our design

considerably; however, another good reason for assuming a

common log server is that the cost of the log disks may be
amortized over a number of nodes. The log server must be

made reliable, perhaps by one of the techniques suggested
in the introduction, but we ignore this aspect in the current

paper.

We assume that there are at most two copies (also termed
replicas) of a particular database partition (though our scheme
can be easily extended to more than two copies). The two

copies are commonly termed primary (P) (against which
database requests are directed), and secondary (S) (which
is used to take over the role of the primary, should the pri-
mary go down). Note that each node, will in general play
the role of primary for one or more partitions and the role
of secondary for one or more different partitions. Our rd-
gorithm will be described for one such partition, and must
be repeated for each database partition, both during normal
operations, as well as during recovery.

Our mechanism for keeping the secondary replica up-to-
date consists of asynchronously sending updated page im-
ages at appropriate points in time from primary to the sec-

ondary. All log records are written to the log server by the

primary; however, the log represents the disk state of both

primary and secondary replicas. Thus, the secondary can

recover from the log if the primary fails.
To completely describe the algorithm, we need to discuss

the following:

1.

2.

3.

the changes to the ARIES log needed to keep track of
both replicas.

the actions taken by primary during failure-free oper-
ation to keep the secondary copy up-to-date.

system and node management actions, performed by

a node manager, which involve detection of failure, as-

signment of primary and secondary roles and swit thing

237

of these roles. The node manager must take consistent

actions in the face of lost messages, network partitions

and other errors.

4. how recovery is achieved in a number of failure scenar-
ios.

Before describing these functions in detail, we briefly

present the salient features of ARIES relevant to our al-

gorithm. The reader is referred to [10] for other details.

2.1 ARIES

ARIES maintains a dirty page table (DPT) for all pages

that have not yet been pushed to the disk. This DPT con-

t ains two fields for each page that is dirty and in-memory:
the page-id, and RecLSN (or recovery log sequence num-

ber, which is the address of the next log record to be written
when the page was first modified). In other words, when-

ever a non-dirty page is updated in memory, a row is added

to the DPT with the comesponding page-id and the next
LSN to be assigned. Thus, the RecLSN indicates a position

in the log from where we have to start examining the log

to discover the log record that describes the changes made

to this page. Whenever a page is written to the disk, the
corresponding entry in DPT is deleted. Furthermore, at a

checkpoint (CP), the current DPT is written to the CP log
record.

When the database system is recovering from a crash, it
goes through the log from the last checkpoint record (which
contains the DPT at the time of the checkpoint) to the end,

and reconstructs the DPT. In addition, it determines winner

and in-flight transactions. This scan is called analysis phase.

The ARIES algorithm then goes through the log in the

forward direction (starting at a position which is called the

Minimum RecLSN, which is the minimum RecLSN of the

entries in the reconstructed DPT, and indicates the earliest

change in the database log that was potentially not written

to the disk), examining all redoable actions. For each re-
doable action for a page that was potentially dirty at the
time of the crash and which passes certain criteria, ARIES

redoes the action.
Finally, in the third pass, it proceeds backward from the

end of log, undoing all in-flight transactions.

We can now describe the four aspects of our algorithm
mentioned above (namely, changes to ARIES log, normal
operations, node manager, and recovery). For the purpose
of the exposition, we will focus on a particular database

partition that has two replicas: RI and RZ. One of these

plays the role of the primary (P) and the other the role of

the secondary (S) for this partition.

2.2 Design of the Unified Log

ARIES records information about which pages are in volatile
storage (main memory) only in its checkpoint log records.
All other log records are independent of the main memory
stat e (or disk state). Since the disk states oft he two replicas
RI and R2 will in general be different, the ARIES checkpoint

must be modified to reflect this. All other log records will

aPPIY equally well to both RI and R2.
P maintains two DPTs – DPTRL and DPTR2, Whenever

a clean page is pinned in memory of P for updating, an
entry is added to both the DPTs with current RecLSN value.

When a page is to be forced to P‘s disk, it is simultaneously
spooled to S’s disk if it has not yet been spooled since the

last write (we later describe various policies wherein such

spooling might occur earlier than the write on P‘s disk).

Whenever the disk write completes at Ri (i = 1,2) and P
receives the acknowledgment oft he same, the corresponding
entry in DPTRi can be deleted.

After a disk write for a page is started at P and the page

is shipped to S, the page might need to be updated again

at P. This results in two entries for the same page in the

DPT of each replica for which the disk write is not yet com-
plete, This is more likely for S since there is a round-trip

message delay in addition to the disk write latency. As a

consequence, the acknowledgments from S (and local disk

writes) should not only reflect the PageID, but also the Re-

cLSN number of the received page, so that P can delete the

appropriate entry in DPTRi. Finally, the recovery algorithm
must use the entry with the smallest RecLSN for recovery
purposes.

If a current S is down, in effect, acknowledgements from S

for disk writes are never received. Thus, if one were prepared

to write increasingly larger DPTEk (if Rk is playing the role

of S), then no changes need to be made to the algorithm. Let
us define SDownCP to be the CP immediately preceding

the time when S went down. Then, an effective way to

bound the size of the DPT for the secondary is for P to

write a a pointer to SDownCP in place of the DPT for the

secondary in all subsequent CP ‘s. In effect, P behaves as

if it is the only replica, and hence writes only its DPT. If

S must recover after being down, it must start the analysis
phase from SDownCP4.

2.3 Failure-Free Operation

Database operations are executed only on the primary replica.

In order to keep replicas P and S reasonably synchronized

with respect to the database state, updated pages are sent

to S at some time before they are discarded from P’s buffer.
There are a number of poIicies possible for doing this. They

involve different trade-offs between recovery time and CPU,
disk and network overheads during failure-free processing

depending on how soon after update pages are sent to S. We

will study these policies and trade-offs in section 3. The only
criterion we need for correctness is that the Write-Ahead

Log protocol be used i.e. an updated page be sent to S only
after the log record describing the update is written to the

log. The set of updated pages is termed SDP, for Stream

of Dirty Pages. Furthermore, S acknowledges to P when it
writes dirty pages to its disk (it may buffer pages in its own
memory for faster recovery).

Meanwhile, all log records are written to a log server.
The log represents the disk state of both the primary and

the secondary in a unified fashion, enabling either replica
to recover to the latest transaction consistent state when

required.
The primary carries out the algorithm described in Table

1 to update the secondary replica.

2.4 The Node Manager

We need a mechanism to ensure that inconsistent actions do
not take place either because of network partitions, lost mes-
sages or other errors. For example, both the nodes which
have copies of a given partition should not decide to take

4If desired, a CP can be taken immediately when S goes down,
and this CP will become SDownCP.

238

for each dirty page in buffer

{
if (S is up)

{
Send page to S after latest log record

modifying the page is uritten out and

before the page is expelled from the buffer.

After receiving acknowledgement from S that

page is on disk delete entry for page from

DPT for S.

3
else

/* Do nothing, i.e. P behaves

is the only replica

}

.-

as if it
*/

At checkpoint time do:

if (S is up)

{
uri.te DPT of both P and S in checkpoint.

inforro S that a checkpoint has taken place.

I* For S to reset the “ReceivedList”

described later */

1
else

irri.te DPT of P and a pointer to the latest

SDownCP.

Tablel: Pseudo-Code for Normal Operations at Primary

over the primary role. We call this the node manager func-

tion. This mechanism is best implemented at the log server
node since it can enforce its view of the system state by

not allowing the “wrong” node to write log records. Anode
which cannot write log records cannot commit any transac-

tion and hence can do no harm. In our scheme, the node

manager keeps track of the at at e of each partition. If a pri-

mary fails, it asks the secondary to take over the role of
primary after recovering its database state. If a secondary

fails, it asks the primary to record SDownCP.

The complete design of the node manager is not discussed
here because of lack of space; see [1] for details. Briefly, the

node manager is informed by every node when it recovers

after a failure. Based on a state table that the node manager

keeps for every partition, it sends this node a message asking
it to recover. The message also specifies the role it will play

(primary or secondary) after it recovers.

2.5 Recovery

A node (say RI) is asked to recover in one of the following
two scenarios:

1. It comes back up after a failure: It first informs the
node manager which then decides the role assignment
for RI. Ifit happens to be the secondary, then the
node manager asks the corresponding primary to log
an SUp record. The node manager then asks RI to
recover, either till SUp, or till the end of the log.

Request last checkpoint from log server,

if (checkpoint has DPT for Ri)

{
Start ARIES analysis pass from this DPT.

Delete pages from this DPT rrhich

occur in “Received List”.

}
else

{
FO11OW pointer to SDoimCP.

Start ARIES analysis pass from this

point snd reconstruct (conservative)

DPT before failure.

}
Perform REDO end UNDO ARIES passes and

complete recovery.

Table 2: Pseudo-code for Recovery Process

2. It is asked to take over the role of the primary, in which

case, the node manager asks it to recover till the end

ofthe log.

The actions taken by RI during recovery are described

in Table 2, and should be mostly self-explanatory.

The “Received List” (termed RL) is a list of pages S re-
ceives from the primary that are potentially in the DPT for

S. The RL consists of the following: <recLSN, pageLSN,
page> indicating the recLSN and pageLSN of the page re-

ceived. For the purpose of recovery, the RL is null for P.

Let us also define maxLSN(page) to be the maximum of

pageLSN for the page in RL.
At checkpoint time, primary sends S’s DPT over to S.

S then deletes all entries from its RL for the pages that do

not appear in this DPT. Remember that S is up when it is

trying to recover the state of P, and hence its buffer state is
not lost; consequently RL entries can be deleted for recovery

purposes.
The following steps aretaken by the recovering node to

update DPT during the analysis phase:

1. For each <recLSN, page> entry in the DPT at the

checkpoint, delete the entry if maxLSN(page) >= re-

cLSN

2. For each log record <LSN, page> encountered subse-
quent to the checkpoint:

if (rnaxLSN(page) f LSN)
/*have not seen chengesfrora this log *I

if no entry for page i.n DPT
add an entry <LSN, page>

else
do nothing

3 Policies To Speed Up Secondary Recovery

We will now discuss policies for sending pages from primary
to secondary and the trade-offs involved between recovery

239

time and performance overhead. There are two techniques

that could be used to speed up recovery at a secondary after

a primary fails.

● Suppose that the buffer manager has a policy that it

writes updated pages to disk if they are older than a

certain threshold to bound recovery time. Then one

reasonable policy would be to send a page over to the

secondary when it is written to P’s disk. To further

speed up recovery at secondary, pages could be sent

over to the secondary before they are written to pri-
mary’s disk, specially if network bandwidth is cheaper
than disk bandwidth, However, the WAL protocol
must be followed and log records for this page must

be written before an updated page is sent to the sec-
ondary. One policy would be to send updated pages

to the secondary after the updating transaction com-

mits on the primary (thus ensuring that log records

are written).

● When a primary fails, and a secondary is recovering,

it must read pages in the DPT from disk to apply
log records to it during the redo and undo phases of

ARIES. The disk 1/0 would not have to be performed
if the secondary buffered hots and often updated pages

in main memory. The secondary can get hints from the
primary about which pages were good candidates for

such buffering. The primary could keep information

about how long each page has been in its buffer and

thus provide such hints.

Based on the above discussion, we will study the recovery

time and overheads for the following three policies.

1.

2.

3.

Simple: In this policy, a dirty page is sent to the

secondary whenever it is written to the disk at the

primary. The secondary attempts no buffering and
writes these pages out as they come in.

Secondary Buffering: This policy attempts to buffer
hot pages at the secondary to save 1/0. During recov-

ery, only cold pages need to be read and this reduces

recovery time.

Commit and Send: In this policy, an updated page

image is sent to the secondary as soon as the corre-

sponding transactions commit on the primary node
and alI log records associated with the page are forced

to the log disk. This may require additional log forces
at the primary node if a page is very hot. This policy
involves some network bandwidth overhead and some
additional log disk traffic, but reduces recovery time at

the secondary significantly. This policy ensures that
almost no 1/0s need to be done during recovery.

4 Performance Study

In this section, we analyze the various aspects of asynchronous
replication to quantify the run-time overhead vs recovery

time trade-offs for the three different policies described above.

Since in the asynchronous replication mechanism, recovery
is performed through the log, our performance results also

apply to single site database recovery using log based meth-
ods such as ARIES. In Sections 4.1 through 4.5 we derive

5Hot pages are those that are updated multiple times in the buffer.
Cold pages are the non-hot pages.

for disk-writes
An Period of daemon wake-up

for network-writes
To # of xacts between checkpoints - -

nap 1 Multi-programming level
Buffer size in pages on P

B, Buffer size in pages on S 5000 5000
tlogr=ad Time to read one log record 0.2 ms
t

0.2 ms

%. Time per data page 1/0 20 ms 20 ms
tl.gaprlgTime to apply one log record 1.67 ms 1.67 ms

Table 3: Parameters for the Performance Model

the expressions for the various recovery components and the

1/0 overhead. These results are then used in Section 4.6 to

compare the various policies under some typical parameter
set tings for two classes of transaction workloads,

4.1 The Model

The parameters used in the performance analysis are in Ta-
ble 3. The “TPCA Value” and the “MC W Value” are the

values of the parameters for two different workloads; these

will be explained further in section 4.6.6 Both the over-

head as well as the recovery time are strongly determined
by the buffer-write strategy. Our model assumes that dirty

pages are written to dwk by a daemon that wakes up pe-

riodically, so as to bound recovery time. In particular, a

policy such as that mentioned in [5] is assumed whereby
at a checkpoint each page that has been dirty for longer

than one checkpoint interval (i.e. was updated before the
last checkpoint and was not written out at the last check-

point) is written out. In order to implement this policy,

we assume that a daemon wakes up every Ad transactions

and writes the pages that have been dirty for more than Ad

transactions (note that we measure time in units of transac-

tions committed). For ease of analysis, we assume that the
daemon which writes the dirty pages takes a checkpoint as
soon as the pages are written to disk. In order to simplify
our analysis further, we also assume that the main memory
available for the database buffer is large enough and that re-

covery bounds are tight enough that dirty pages are written
out before the buffer replacement policy reclaims the buffer.

It is easy to see that if n pages are dirtied per transaction,
and B buffer pages are available, and if n * ~cf < 1?, then

this will be true. This inequality is easily satisfied especially

with the large main memories available today. It is easy to

see that under this assumption, T= = &.

Recall our “Simple” and “Commit-And-Send” policies

for secondary replica maintenance. These reflect two ex-
tremes for how frequently the secondary copy is updated.
In order to model a continuum of possibfities, we introduce

a parameter – An - which is the wake-up period of another

6The numbers for intermediate hot-cold ratios will be between
those of the MCW and TPCA curves and are not shown here due
to lack of space.

240

daemon that wakes up periodically and sends pages that

have been dirty for more than one wake-up interval to the

secondary across the net work. In effect, our three policies

can be characterized thus:

● Simple: An = Ad.

. Secondary Buffering: BS > 0, where Bs is the amount

of buffer available during normal operations at S.

● Commit and Send: An = 1.

Our database is modeled as one where nH/n accesses

(and writes) go to H/N fraction of the data, modeling typ-

ical hot-set behavior. Accesses within the hot- and cold-

sets are assumed to be uniformly distributed. It is easy

to extend this model to incorporate multiple sets of pages

with varying degrees of hotness. Also, rnpl is the multi-

programming level, and reflects the number of active trans-
actions at any given time. The remaining parameters of

our database model are some constants for the various com-

ponents of the recovery time, namely, log scan/read, data
1/0, and log application (which includes both redo as well

as undo phases).

With asynchronous replication, database recovery can be

performed either by the primary node or by the secondary
node. We will derive results for recovery both at the primary

and using our three policies at the secondary. Note that

results for the primary will also be valid for studying 1/0

overhead vs recovery time trade-offs in single site databases
for log based recovery algorithms.

4.2 Number of unique pages touched in nt transactions

In our analysis, the unit for parameters such as Tc, & and
An is the number of transactions executed in the given time

interval The first expression we derive is the number of

difierent hot and cold pages touched as a function of the

number of transactions, say d. We have,

f(lr,nr.r,?tt)= H(I - (1 - *)”’) (1)

The number of cold pages accessed is given by the above
equation, wit h H replaced by C. The number of log records

written as a function of the number of transactions is, of
course, given by n * nt.

In the next subsection we derive the various components
of the recovery time, and in the subsection after that we

formulate the 1/0 overhead.

4.3 Recovery Time

In this section, we analyze the worst-case recovery time at

the primary. Worst-case analysis provides a recovery time
guarantee to the user, in effect stating that if he/she is will-

ing to suffer a z Yo overhead, then the system can guarantee
a recovery time no more than y seconds.

The recovery time (K/7) of dat abase systems can be broke
into three components: log scan time (L1O), data page read-

ing time (D1O), and log application time (K’PU).

RT = LIO + DIO i- LCPU (2)

LIO can be expressed as

Llo = (tlo~m.ad) * (2 * n * Ad) (3)

the second term reflects the number of log records that need

to be examined during the redo phase (Ad prior to the check-

point, and Ad after the checkpoint).

Data 1/0 time is proportional to the number of data

pages read during recovery, and is given by

DIO = tio * [f(H, nH, 2&) + f(c, nc, 2Ad)] (4)

The term in [] reflects the total number of pages (hot and

cold) touched in 2A d transactions, since each oft hese pages

will be a part of DPTR and hence will be read during re-

covery.

Log application time is equal to the number of log read

multiplied by t[.g.pply,under the assumption that all log
records that are read also need to be applied. This gives an

upper bound on the log application time. Thus,

LC’PU = tt~g~pply * 2 * n * Ad (5)

With asynchronous replication, database recovery can be
performed either by the Primary node or by the secondary
node. The analysis so far was for recovery at the primary.
Database recovery time at the secondary, on the other hand,
will be different depending on the policies for keeping S up-
to-date. We will now analyze the different policies.

4.3.1 Basic Policy

The recovery time at the secondary for the basic policy is
likely to be very close to that at the primary, because:

● The DPTs recorded at checkpoint for the primary and

●

the secondary are not likel~ to differ b~ more- than

a couple of entries (% t?w~dt,ip * mpl * n/rpt where
tTm~dt7@ is the roundtrip delay for message and rpt is

the average response time of a transaction), reflecting

the number of pages that might be in flight and/or

whose acknowledgement has not yet been received by

P. For typical values of parameters, we expect this to

be one or two entries and hence insignificant.

If S subtracts from its DPT the pages that it has re-

ceived since the last checkpoint, it can indeed start
with a smaller D PT. However, in the analysis, we aa-

sume that dirty pages are sent to secondary only just
before a checkpoint, and hence this effect is not likely

to be significant.

We thus assume that the simple policy results in a re-

covery time at the secondary which is approximately equal
to that at the primary.

4.3.2 Secondary Buffering

It is easy to see that secondary buffering can only affect DIO
component of recovery (since some pages, especmlly hot,

need not be read in from the disk) - it has no effect on LIO

or LCPU. The (worst-case) number of pages whose latest
copy the secondary has not seen is the number of different
pages in 2An transactions. However, an older copy of some

of these pages may already exist in the buffer (especially for

the hot ones) and hence need not be read from the disk.

We make the following simplifying assumption: the buffer

replacement policy at S can discriminate between hot and

cold pages, and hence the buffer will first contain the hot

pages, and only if further space is available, will it contain

241

the cold pages. In that case, the number of 1/0’s required
during recovery at S is given by:

{

~(C, nO, Ad)* (1 - ~) ifBs > H

1/OS = f(c, nC, Ad)+ (6)

~(H,~H, L&)*(1 – ~) otherwise

Thus,

DIO = t;. * I/OS (7)

This follows from the assumption that if the buffer size is
enough to accommodate all the hot pages, then 1/0’s need

to be done only for the cold pages, and this is given by the
number of cold pages required multiplied by the probability

of not finding a cold page in the buffer. On the other hand,

if the buffer is not sufficient to store the hot pages, then

1/0’s will be required for a fraction of the hot pages, and
for all the cold pages.

4.3.3 Commit and Send

The commit and send policy reduces DIO time as well as the
log scan time and the log application time. The data 1/0

time can be reduced close to zero when Il.’;> f(C’, nc, Ad) +

f(H, nHl Ad). Assuming that the secondary node has enough
memory to keep all dirty pages at any given point in time, all
such pages except those that are in-flight when the primary

fails will be in memory. Therefore, in equation (2) DIO will

be mpl * nc. As a worst case assumption and a simplifi-

cation, we will assume that the number of log records that
need to be examined will be the same as in the case of the

primary analysis and hence LIO and LCPU are the same

as in equations 3 and 5.

4.4 Write 1/0 Overhead Analysis

In this section, we will derive results for the 1/0 overhead
due to page writes both on the primary and the secondary.
The more frequently the dirty page daemon wakes up and
schedules its writes, the higher the 1/0 overhead but smaller

the recovery time.

First we will analyze overhead at the primary. It is easy
to see that when a page is dirtied, it is either written at

the immediately succeeding daemon wake-up, or at the one

after that. Let us define the following terms, in order to
determine the amount of write 1/0 that is generated by this

policy:
Pa Probability that a given page is updated

in a time unit of Ad
P. Probabfity that a given page is written to

disk due to a daemon wake-up

A given page is written out by the dirty page daemon at
its i + lth wake-up if and only if:

● it was updated in the interval between the i — lth and

the ith wake-ups

● it was not written out at the ith wake-up

The two events above are independent events. Also, the
probability that a given page was not written out at the ith
wake-up is (1 — PW). Based on this, we have the following
equation:

Pw = F.(1 – Pw)

because the first term in the right hand side
probability that the same page was accessed in

(8)

reflects the
the interval

i – 1 to i, and the second term reflects the probability that

it was not written out at wakeup i. Solving this for Pw, we

get

(9)

If there is a hot- and a cold-set, then PW can be broken up

into P: (expressed in terms of P.H – the probability that a

hot page is accessed in an interval of length Ad), and P:,

(expressed in terms of P:). Now, P: = f(lf, n~, Ad)/H,

and a similar expression exists for cold pages. We can thus

write an exmession for G. the total write traffic to disk be-

tween two ~heckpoints as;

G(&) = [H* P; + C * P:]

and for W, the total write traffic per transaction

W(&) = G(&)/&

assuming that H, C, nIi and nc are constants.

(lo)

as:

(11)

Now-let us analyze 1/0 overhead at the secondary. In

the simple policy since An = Ad and there is no buffering at
the secondary, 1/0 overhead at the secondary is the same as

at the primary. Under the assumption that the secondary
has enough buffers (secondary buffering and “commit and
send” policies) to store pages dirtied in 2Ad transactions,

the normal write traffic to secondary’s disk is also given by

G(Ad), independent of An. (Remember that in all three
policies Aw <= Ad.) This follows from the fact that the

secondary, if it has this buffer space, can mimic the primary’s
disk write policy exactly, forcing a page to the disk only

when the primary does the same. Thus, all three secondary
policies have the same 1/0 overhead as on the primary and

is given by equation 11.

4.5 Network Overhead

The daemon that sends dirty pages to the secondary follows

exactly the same policy as the daemon which does the disk
writes. Thus, it is easy to see that the network (bandwidth)

overhead is simply given by W(Am), where W is expressed
in equation 11.

4.6 Performance Results

Based on the analysis in the previous sub-sections, we will
plot the behavior of the performance measures of interest

in the next two sections. We will use one workload based
on the TPCA benchmark [7]. However, the TPCA bench-

mark represents small transactions and is only one of the
various kinds of workloads found in practice. Also it has a

very small hot set; thus it is hard to study policies such as
secondary buffering. We will use another workload based
on a study by [17] to represent a medium complexity work-
load (MCW) with a bigger hot set. The parameters used

in TPCA workload and MC W are shown in Table 3. The
TPCA workload has actually been analyzed as three sets of

pages (ACCOUNT, TELLER and BRANCH) with different
degrees of hotness. Note that the total number of database
pages, and the hot and cold pages per database are given
per node.

Our goal is to understand recovery time vs 1/0 overhead
trade-offs. However, since the plot of recovery time vs 1/0
overhead is hard to understand directly, we will first plot
each of these against the independent variables Ad and An,

242

and then eliminate the independent variables. In the follow-
ing, we assume that Ad = An for the Secondary Buffering

policy.

4.6.1 Write 1/0 Overhead

Without replication, there would be no write 1/0s at the
secondary and thus these constitute the 1/0 overhead due to

replication. Figure 1 shows the write 1/0s at the secondary

as a function of the Ad interval (as given by equation 11).

As explained above, this is the same as the number of write

1/0s at the primary. The line for TPCA has a very sharp

knee because the TPCA hot set size is very smrdl; in our

analysis, we have 100,000 ACCOUNT pages, 10 TELLER
pages and 1 BRANCH page per node. Thus the size of the

hot page set is 11 against a cold page set of 100,000. Once
~(H, d, Ad) approaches H, increasing Ad further does not

reduce the write 1/0 overhead significantly. On the other

hand MCW has a hot set size of 1000 pages and thus the

number of write 1/0s tends to fall off much more smoothly.

4.6.2 Recovery Time

Expressions for recovery time on primary and on the sec-

ondary with all three policies have been derived in sec-
tion 4.3. Figure 2 shows the behavior of the TPCA work-

load against Ad for the three different policies. Note that
the lines for the “simple” policy and for “secondary buffer-

ing” policy overlap except for small values of Ad. Recall

that the secondary buffering policy enabled the hot set to

reside in the memory of the secondary and hence there was
no need for 1/0 during recovery if the primary failed. If the

hot set is small, this does not offer a significant advantage
since the number of 1/0s that need to be done for the cold

set greatly exceed that for the hot set. Thus, secondary

buffering does not offer much advantage for a workload such

as TPCA which has a very small hot set. Figure 3 shows
the same parameters for MCW. Since the hot set is large in

this case, secondary buffering shows a significant improve-
ment over the basic policy. Note that there is a substantial

recovery time improvement for the commit and send policy
for both workloads.

4.6.3 1/0 Overhead vs Recovery time

Figure 4 shows the recovery time as a function of 1/0 over-
head for the three secondary recovery policies for the TPCA

workload. Thk is simply the result of eliminating Ad be-
tween Figures 1 and 2. Figure 5 shows the same for MCW.

The commit and send policy improves performance markedly
for MCW, but the improvement is not as significant for

TPCA. For example, if one is willing to suffer 1.1 write 1/0s

per TPCA transaction there is hardly any difference in per-
formance for the three policies (Figure 4). Note that for
TPCA since the ACCOUNT relation is in the cold set, each

TPCA transaction must do a minimum of one 1/0. Thus it
is possible to reduce the two potential write 1/0s for the hot

BRANCH and TELLER updates to 0.1 1/0s per transac-
tion, even in the case of the basic policy without increasing

recovery time by more than 5 seconds.
For MCW, such an optimization is not possible for the

basic policy and hence there is scope for the “secondary
buffering” and the “commit and send” policies to improve
performance. Thus, the conclusion is that “simple” is good

enough for TPCA-like workloads, with small hot set sizes.

However, for MCW-like workloads, “commit and send” seems

to be best.

Figures 4 and 5 can also be re-interpreted to study trade-

offs between recovering at the primary and recovering at the

secondary. If the primary fails because of a software failure

(kernel or DBMS bug), the node manager must choose to

either ask secondary to assume primary role after recovery

or wait for the primary to be rebooted or the DBMS to be re-

started. For TPCA, the only difference between recovering
at the failed primary (‘(simple” curve) and at secondary is

the primary reboot or DBMS restart time (which can be

anything bet ween 20 seconds to 2 minutes). However, for

MCW, “commit and send” can reduce recovery time by a
significant fraction.

4.6.4 Network Overhead

The shape of the network overhead against An curve is
shown in Figure 6 for TPCA (the figure for MCW is not pre-

sented for lack of space; see [2] for details)’. Since the TPCA
curve falls very sharply with Simple and Buffering policies,
it is possible to minimize network overhead to a large extent

by using reasonably small values of An. Note that the “com-

mit and send” policy requires a lot more network bandwidth
than the other two; however, when the network bandwidth

is not the bottleneck, this might be a reasonable price to
pay for the improved recovery time. With emerging optical
technologies, this is more likely to be the case in the future.

5 Comparison with Other Schemes

In this section, we demonstrate that the run time 1/0 and

CPU penalties in our algorithm are lower than other high
availability schemes for TPCA transactions, but the network

overhead is higher.

The overheads for the different schemes for a single TPCA
transaction are shown in Table 4, assuming “simple” policy
for asynchronous algorithm. The 1/0 is assumed to be only

due to the ACCOUNT pages, since BRANCH and TELLER
pages are written very infrequently.

In our algorithm, the secondary can schedule a disk write
operation without reading the original page image from disk

because the entire page image is shipped across the network.
Thus, in our algorithm, an 1/0 overhead of 1 extra write is

incurred. In each of the other three schemes (log spool-
ing [11, 9], RADD [14] and the synchronous schemes which

run transactions on both the replicas [16]), the secondary
needs to perform a read before a write. This results in an

overhead of two 1/0’s per transaction, which is 100~o larger
than our scheme.

The numbers in the CPU overhead column are based
on the following instruction counts: a) 8 K (roundtrip) per

message, b) 5 K for starting an 1/0, c) 250 K per TPCA
transaction, and d) 8K for applying each log record. The
synchronous scheme pays the maximum penalty, because
the transaction has to be executed on both nodes, and also
involves commit processing which is assumed to be 2 mes-
sages per transaction.

The numbers in the network bandwidth column are based
on a 4K byte page, 200 bytes per commit message, and 200
bytes per log record.

7In reality, the Commit and Send curve is just a point, since it
assumes that An = 1, however for clarity of exposition! we draw a
horizontal line.

243

1/0 CPU Network
(K inst.) Bandwidth

Asynchronous (simple) 1 8 (log send) + 8 (AcCOUNT tO S) + 4 KB
5 (ACCOUNT 1/0 at s)

Synchronous (logical) 2 260 (xact at S) + 2*8 (commit processing) 0.6 KB
Log Spooling 2 3*8 (106 =PPIY) + 10 (ACCOUNT I/O at s)
RADD

0.6 KB
2 8 (ACCOUNT to S) + 10 (Parity 1/0 at S) 4 KB

Table 4: Overheads in Replication Schemes

6 Conclusion

In this paper, we presented the details of an asynchronous
replica management mechanism for handling software and

hardware failures in a Shared Nothing database machine en-
vironment. Our goal was to provide fault tolerance without

sacrificing performance in the failure free mode of opera-
tion. Our mechanism updates the secondary replica asyn-
chronously by sending dirty pages before they are discarded

from primary’s buffer. Log records for all nodes are stored

at a log server, which is hardened against failures. This log
is symmetrical with respect to the primary and secondary,

because it records the disk state of both replicas. If a pri-
mary node fails, the secondary uses the log to bring itself to
the latest transaction-consistent state.

We presented three policies which sent dirty pages to the
secondary with different frequencies. A performance model

was presented that helped us analyze the resulting recovery
time vs 1/0 and network overhead trade-offs for these poli-
cies. We showed that aggressive policies such as “commit

and send” pay off for workloads such as MCW, but not for
TPCA. We also showed that recovery at secondary can in
fact be faster than that at the primary. This is mainly be-
cause the secondary buffers are not lost when the primary

node goes down, resulting in reduced data 1/0.

Finally, we showed that our algorithm has lower 1/0 and
CPU overheads, compared to other schemes for high avail-

ability like log spooling, RADD and synchronous replication.

Acknowledgements

The authors would like to thank C. Mohan for pointing out

some flaws in our initial design; George Copeland for gen-
eral discussions; and the reviewers for their many insightful
comments.

References

[1]

[2]

[3]

[4]

Bhide, A., Goyall A., Hsiao, H., and Jhingran, A.,

“Asynchronous Replica Management for Shared Noth-
ing Architectures” IBM TJ Watson Tech Report RC
16403, Dec. 1990.

Bhide, A., Goyal, A., Hsiao, H., and Jhingran, A., “An
Efficient Scheme for Providing High Availability” IBM
TJ Watson Tech Report RC 17571, Jan, 1992.

Copeland, G., Alexander, W., Boughter, E., and T.
Keller, “ Data Placement in Bubba,” Proceedings of

the ACM-SIGMOD International Conference on Man-
agement of Dat a, Chicago, May 1988.

DeWitt, D., Ghandeharizadeh, S., Schneider, D.,
Bricker, A., Hsiao, H, and Rasmussen, R, “The Gamma

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Database Machine Project ,“ Proceedings of the ACM-

SIGMOD International Conference on Management of
Data, Chicago, May 1988.

Gray, J., “DISC,” A talk given by Jim Gray at Uni-

versity of Wisconsin, Madison, February 1989.

Gray, J., HOW, B., and Walker, M., “Parity Striping of
Disc Arrays: Low-Cost Reliable Storage with Accept-
able Throughput ,“ Proceedings of 16th VLDB Confer-

ence, Australia 1990,

Gray, J., Editor, “Benchmark Handbook,” Morgan

Kaufmann Publishing 1991.

Jhingran, A. and Khedkar, P., “Analysis of RecoverY
in a Database System Using a Write-Ahead Log Proto-

col,” Proc. ACM SIGMOD, June 1992.

King, R., Garcia-Molina, H., Halim, N., and Polyzois,

C., “Management of A Remote Backup Copy for Disas-

ter Recovery,” University of Princeton CS-TR-198-88

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and

Schwarz, P., “ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Roll-
backs Using Write-Ahead Logging”, To appear in ACM

TODS, March 1992.

Mohan, C.j Treiber, K., and Obermarck, R., “Algo-
rithms for the Management of Remote Backup Data
Bases for Disaster Recovery,” IBM Research Report,
July 1990.

Patterson, D., Gibson, G., and Katz, R., “A Case for
Redundant Arrays of Inexpensive Disks (RAID),” Pro-
ceedings of the ACM-SIGMOD International Confer-

ence on Management of Data, Chicago, May 1988.

Stonebraker, M., “The Case for Shared Nothing,”
Database Engineering, Vol. 9, No. 1, 1986.

Stonebraker, M. and Schloss, G., “Distributed RAID -
A New Multiple Copy Algorithm,” Proceedings of the
6th International Conference on Data Engineering, Los
Angeles, February 1990.

Tandem Database Group, “NonStop SQL, A Dis-

tributed, High-Performance, High-Reliability Imple-
ment ation of SQL ,“ Workshop on High Performance
Transaction Systems, Asilomar, CA, September 1987.

Texadata, “DBC/1012 Database Computer System
Manual Release 2.0,” Document No. C1O-OOO1-O2, Ter-
adata Corp., NOV 1985.

Yu, P.S et al., “Coupling Multi-Systems Through Data

Sharing,” Proc. of the IEEE 75(5), May 1987.

244

Figure l:LIO Overhead ftx’ TPCA and MCW

Wt3te 210* per transmoon

4,03— I I I I

3,s4 —

3.CO—

250 -

2.02–

IL
O.w 1,03 3,03 4.m

-,n _ Figure ARecovery Time for TPCA
3 —1 I I I I I

I* –

3 –

Ie+o -

3 –

m
wol –

3 –
./ Cardtasmd

,/’

leaf - ,/

/

1 I I I I
WO1 3 ww3 IMW3

*h d

Figure 3:Recovery Time for MCW
r&mVeqrihlU.ad4

I I I I I I 1
4mm —

3WC0 —

mm -

m.ol —

,..
,..

mm —
,,.

W,OJ —

Kwo —

som–
.

......-.--------””””””””.
O.w –

. cmmit a u

I I I I
aw 1,0) mm 3,03 4,00

*d, 10’

Figure &Recovery Time vs. I/O for TPCA

‘=r
13$.04—

160.04–

140.011—

120M –

-
100.8+I– S=mdw ~

80.04–

6000–

40.04–

20.W– “...
...

... ...- —000—
I I I I I

1.00 1.10 1.20 1.30 1.40

WnlaV@perIrnw8dion

Fif$rre 5:Recovery The v6. I/O for MCW

‘rkluit18a.xa
I I I q

i

4W.

w

30)

no

‘:,L;
‘i -e
\

201W -;

‘!
\

m $!
‘i
$,

m ‘,,
Smm40r, hum

‘.
‘.

mm
. ..

. .Cdtb -..
~%#mId -.. .

--------.003

Zlll ‘2s0 3,00 330 402

Wdclloipamlm!.al

Figure 6Nctwork Overhead for TPCA
Nswo,k Ovefhad m KBhmmct,on

I I I

I Cmmit A mild

llCO

t

law

t

9@l

SW

7,0$
I

,
2,C0 3,C0 400

aMaJlxua

245

