
Event Specification in an Active Object-Oriented Database

N. H, Gehani
H. V. Jagadish

O. Shmueli

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT
The concept of a trigger is centrrd to any active

database. Upon the occurrence of a trigger even~ the

trigger is “fired”, i.e, the trigger action is executed.
We describe a model and a language for specifying

basic and composite trigger events in the context of an

object-oriented database. The specified events can be
detected efficiently using finite automata.

We integrate our model with O++, the database
programming language for the Ode object database
being developed at AT&T Bell Labs. We propose a

new Event-Action model, which folds into the event

specification the condition part of the well-known

Event-Condition-Action model and avoids the multiple

coupling modes between the event, condition, and

action trigger components,

1. INTRODUCTION

Of late, there has been a surge of interest in active
databases [2, 6,6,15,18, 20]. Several trigger and

constraint specification mechanisms have been
proposed and the use of such mechanisms for various
applications has been considered. By and large, the

fundamental model underlying this work is the Event-
Condition-Action (E-C-A) model first enunciated in

[16].

The question of what constitutes an event has not been
fully addressed in the literature so far, in our opinion.
There are however some considerations of this issue,

specifically in [7] and [5]. In this paper, we focus on

the different types of events that can occur in an

object-oriented database and provide facilities for

specifying composite events, constructed from (simpler)
basic events.

We describe the integration of composite event

specification in the context of O++, the database

programming language for the Ode object database [1].

We propose a new Event-Action (E-A) model, which is
simpler than the E-C-A model. Not only have we

eliminated the need for a separate “condition” part in
the model — the condition is part of en event
specification in our model — we have also eliminated

the need to have special types of couplings as proposed

Permission to copy without fee all or part of this material is

grantad provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice ie given

that copying ie by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM SIGMOD - 6/92/CA, USA

@ 1992 ACM 0-89791-522-4/92/0005/0081 . ..$1.50

in the E-C-A model. In fact, our event specification
facility can model not just the E-C-A cx-nrpliigs

discussed in the literature, but wbitrary additional types
of couplings as well. We construct a format model and
a language for the specification (end detection) of
composite events, The language is equivalen~ in terms

of expressive power, to regular expressions over strings
of logical events. The language differs from regular

expressions in that it focuses on sequences and (not

necesswily consecutive) sub-sequences, rather then on
strings and sub-strings. On this basis we are able to

compile arbitrary composite event specifications into
finite automata, thereby rendering event detection

particularly efficient. In many cases, one automaton per

class is sufficient and objects need only record their

states withii this automaton.

The paper is organized as follows. l%s~ in Section 2,

we give a summary of Ode. Then in Section 3 we

describe events: basic end composite events, and how
they can be used in O++ triggers. Our model for event

specification is presented in Section 4. In Section 5 we
discuss how to implement events. Section 6 addresses
basic events and their relationship to transactions while
Seetion 7 contains a discussion of the relationship

between the triggered actions and the triggering
transactions. Related work is discussed in Section 8.

Finally, future work end conclusions are outtined in
Section 9.

2. ODE SUMMARY

The work in this paper builds on the trigger facilities in

Ode, an object-oriented system being developed at

AT&T Bell Labs [1, 8]. The O++ object facility is
based on the C++ object facility and is called the CIUSS.

O++ extends C-H- by providing facilities to create
persistent objects. O++ visualizes memory as consisting
of two parts: volatile and persistent. Vokztile objects

are allocated in volatile memory and are the same as

those created in ordinary programs. Persistent objects
are allocated in persistent memory and they continue to

exist after the program creating them has terminated.
Each persistent object is identified by a unique
identifier, called the object identity [14]. The object
identity is referred to as a pointer to a persistent object.

Transactions in O++ have tie form

trans {-..}

Transactions are aborted using the tabort statement.

O++ provides facilities for associating constraints and
triggers with an object. Triggers are specified in the
trigger section of a class definitiorx

81

class name {
. . .

trigger:
trigger-list

. . .

}:

trigger-list is a list of triggers each of which is specified
as’

trigger-name (parameters) :

[perpetual] event ==> trigger-action

The trigger-action is any arbitrary O-+F statement block
to be executed when the trigger is fired. What an event

is we describe below.

Triggers do not fire unless they are active. A trigger is

activated by invoking its name, along with parameter
values, just as an ordinmy member function is invoked.

An ordinary trigger is automatically deactivated the

moment it fires. On the other hand, a perpetual

trigger, once activated, remains active forever unless
explicitly deactivated.

3. EVENTS

An “event” is a happening of interest. Events happen

instantaneously at specific points in time. In object-

oriented databases, events are related to actions that

happen to objects and the state of the object.

Events have a “scope.” In an object-oriented system,

most events are local to a particular object. In some

cases it may be appropriate to define events over other
scopes, such as the database. An example of an event
that applies to the database is the creation of object
type, i.e., schema modification.

3.1 BASIC EVENTS

Each event specification system must start with an
alphabet of basic events that the system supports.
While this set of basic eventa muld be arbitrary in

general, there are some basic events that we consider to

be important in the context of an object-oriented

database system such as Ode. We list these events

below:

1. Object State Events:

Immediately after an object is created.

Immediately before an object is deleted.
Immediately before or after an object is
updated/read/accessed through a public
member function2.

1. The squars brackers [and] axs usad SLIC1OSSan opdonat irearx (

and) ma wad to enclme an item that may ha rapmted zem aor

more times.

Note that O++ originality had a special construct for a titned E@er.

In the tight of the work de-scribed in this paper, it witl be. clear that

timed triggam can b simulated using composite events.

2. We chose not to consider arbkrary object accesses without the use

of membar functions as events. Such access is not in the spirit of

object-oriented programming, which requires the use of methods to

pmsarve encapsulation. Also, itnplsmrmdng each such accras as an

avant might cause each pointer dereference to have scme swat

overhead associated with it. Thii ovedw-ad, however smatt, would

mast likely not be acceptable at the granularity of an individual

pointer deteference.

2.

3.

4.

The

Method Execution Events

Immediately before or after the specified member

function is applied to an object. (Items la and lb
become special cases if constructors and

destructors have been specified explicitly.)

Time Event.x Time events are specified in Ott as

at time-specification
ever y time-period
aft e r time-period

Time can be specified in the format

time (YR=year, ~o~=month, DAY=day, HR=hour,

t4=rninute, SEC=seconds, MS=miheconds)

with any of these items possibly being omitted.

Time events are really global, but are considered
events of interest and posted only to the
“relevant” objects.

Transaction Eventx

a. Immediately after a transaction begins.
b. Immediately before a transaction attempts

to commit.
c. Immediately after a transaction commits.
d. Immediately before a transaction aborts.

e. Immediately after a transaction aborts.

L&e time events, transaction events are also

really global. However, they are considered local

events of interest to exactly the set of objects
accessed by the transaction. We will typically

not know a priori the set of objects that will be

accessed by a transaction. So the “after

transaction begin” event

after tbegin

is “posted” to an object only immediately before
the object is first accessed by the transaction.
Logically, there is no difficulty, since there is no
way to control the times at which the “same”

after tbegin

event is posted at two different objects.

following ke~words. in conjunction with the
qualifiers be;ore- and after, ;e used to specify

some basic events in 0++

. crest e (object creation),

. de 1 et e (object deletion),

. update (object update),
● read (object read),
● access (object access),
. tbegin (transaction begin),

● t comp let e (execution of the transaction code is
complete but the transaction has not as yet

attempted to commit),
● t commit (transaction commit), and
. t abort (transaction abort).

An example illustrating the use of the above keywords
and event qualifiers is

after read

which specifies an event that occurs immediately after

the execution of a public member function that accesses
an object for reading only. Similarly,

82

before tcomplete

specifies an event that occurs just before a transaction
attempts to commit after having secessed the objec~
Note that the specification of the event

before tconunit

is not allowed beeause we cannot be sure that a
transaction is going to commit until it actually does so.

An event can be scheduled to occur after aspeeified
period (from the current time, when the trigger is

armed) has elapsed as follows:

after time (HR=2, M=30)

Member function names with parameter declarations
can be used to specify events specification as illustrated
below:

after withdraw (Item i, int q)

Formal psmrnetar declarations help distinguish between

different member functions with the same name but

with different signatures, i.e., between overloaded

functions with the same name and belonging to the

ssme class. These parameters cart also be used for

defining predcates (called “masks”) that can be
associated with the basic events (we d:scuss this
below). If withdraw is not overloaded and the

parameters are not of interes~ then we can simply write

after withdraw

3.2 LOGICAL EVENTS

Every basic event is a logical event. In additio~ a

basic event qualified with a mask is a logical event. A
mask is a predicate that is used to hide or “mask” the

occurrence of an event. For example, the event
specification

after withdraw (Item, int q) && q>1000

describes a logical event representing a “large”
withdrawal (of more than 1000 units) of an item. The

mask here is

q>looo

As demonstrated in the example abov% predicates

associated with a logical event may use the parameters
of the basic event being masked. In addition, of course,

they may access the state of any object in the database,

and this state information is evaluated as of the time at
which the bssic event occurred. Therefore, when

multiple logical events are used to express a composite

event (see next section), the predicates associated with
idvidual logical events will be evaluated at different
times, corresponding to the occurrences of their

respective basic events.

3.3 COMPOSITE EVENTS

Logical events can be combmed to create composite
events using logictd operators and special event
specification operators. All events occur

instantaneously at specific points in time. Tlds is
obvious in case of basic and logical events. In .ssss of a
composite even~ the event is said to occur at the point

of occurrence of the last logicaI event that was needed
to make it happen.

An optional mask predicate can be applied to a

composite event to obtain a logical-composite event.

This is our general notion of an event. A composite
event has no parameters even if its consti~ent basic
events do. Any mask predicate applied to a composite
even~ unlike the mask predicates of logical events, can
only be evaluated in terms of the “current” state of the

database. The following BNF summarirss our event
composition mechartiwnx

logical-composite-event = composite-event ~&& mask]

composite-event = logical-event

~ (cmnposite-event)

~composite-event & composite-event

~composite-event \ composite-event

\ ! composite-event

~relative (composite-event-list)

I relative+ (composite-event)

~relative const-integer-expresswn (composite-event)

~prior (composite-event-list)

[prior const-integer-expression (composite-event)

~composite-event; composite-event

[sequence (composite-event-list)

/ sequence const-integer-expresswn (composite-event)

j choose const-integer-expresswn {composite-event)

~every const-integer-expression (composite-event)

~fa (composite-event, composite-event, composite-event)

~f aAbs (composite-event, composite-event, composite-event)

composite-event-list=composite-event { , composite-event j

logical-event=basic-event [&& mask ~

When we simply say event, we always mean a logical

composite event, musk is a Boolean-valued expression,
const-integer-expression is an expression that can be

evaluated at compile time, The symbol I denotes union,

the symbol & denotes intersection, and && denotes
logical conjunction of O++ masks. basic-event is an

event listed in Section 3.1. A method name, say J can

be used as a shorthand to ¬e the composite event

(before ~ I after j)

For example, the expression

!deposit

is a shorthand for

! (before deposit I after deposit)

The keywords relative, prior, sequence,

choose, ever y, f a, and f aAbs refer to event
composition operators, which are discussed later.

A particularly important composite event is when an
object reaches a specified state, described as

(after update I after create) &&
Boolean-expression-speci fying-object-state

Since we expect thk form of event to be used often, we
SI1OWit to be specified simply as

Boolean-expression-specl fiing-object-state

Indeed, thk is the only sort of event allowed in Ode
prior to the work described in thii paper. Here is an

example of an event that occurs when the balance
(say of a bank customer’s account) falls below 500
dollars:

83

balance < 500.00

3.4 EVENTHISTORY&EVENT
COMPOSITION OPERATORS

An evenf history (or simply a hstory) is associated with
every objec~ it is an ordered set of logical events that
were posted to the object3. Each logical event

“carries ‘‘ its position in the ordered set. We can use
set operations, e.g., union, on histories with the
understanding that logical events with distinct history

positions are distinct elements. Thus the resulting sets

are also ordered.

One or more logical events determine a composite

event. A composite event is associated in thii history

with the lust logical event required to make it happen.

‘l%k is a point in the history when we can recognire

that thk composite event has occurred. We say that this
is the point in hktory at which a composite event
occurs. There is also a unique “first” logical even~

called start, that participates in the determination of
a composite event; this event is placed at the beginning
of the history just prior to the first user specified logical

event that is “posted.”

An important event composition operator is sequencing

for specifyhg the order in which constituent events
occur. For example, a simple sequencing operator that
we would like to provide is one that specifies a

composite event in which one component event occurs

after another. With logical events (as opposed to
composite events) this is straightforward. For example,
one can use the notation

El . * E2

to specify a composite event that consists of the logical

event E 1 followed, later on at some point, by the
logical event E2.

However it is not easy to use thii notation when
specifyhg composite events that sre composed of

composite events themselves. For example, suppose

that the composite events E and F are defined as

E= E1. *E2

and

F= F1. *F2

where El, E2, Fl, and F2 are logical events,

Now suppose that we specify a composite event G that
consists of the event sequence “E followed by F” as

G= E.*F

What do we mean? Clearlv. G has occurred at the F2
point if the sequence of log~c”al events

El E2 F1 F2

has occurred. But what if the sequence
events that occurs is

F1 El E2 F2

of logical

3. We assume for now that legical events are disjoint, i.e., cannot hap-

pen at the same time, so that a sequence is wetl-defined. We show

in .%&m 5 how to get around this restriction.

E occurs coincident with E2 and F occurs coincident
with F2, these being the hast logical events required to

determine fhe respective composite events. So E occurs
before F. We could argue that G has once again

occurred at point F2. But note that Fl, part of the

composite event F, occurs before E.

We provide two distinct sequencing operators to resolve

this issue. One operator is called prior and the other
is called relative. The two operators have identical
semantics when applied to logical events. When

applied to composite events, prior (E, F) holds if E

occurs before F (that is, if the last logical event of E
occurs before the last logical event of F). The order in

which the other events occur is irnrrtatenal, On the

other hand, relative (E, F) requires that the last

logical event of E occur prior to the fist logictd event of

F, Thus the event prior (E, F) occurs at F2 when

the event history is

F1 El E2 F2

but the event relative (E, F) does not occur.

Conceptually, a composite event is recognized in the

context of a history. The history has a‘ ‘starting point.”
The relative operator shifts this starting point to a

new place. The event of interest must occur in this
truncated history. If the event of interest is composite,
then all its constituent logical events must occur in the

truncated history.

Our sequencing opxators can accept an arbitrary
number of arguments, instead of just two. In such
cases, the specified operator is applied recursively to the

arguments, using a form of “currying”. For instance
“prior (E, F, G) “ is a shorthand for

“prior (prior (E, F) , G) “. For completeness, we
define “prior (E) “, “relative (E) “, etc., to
mean simply “E”.

The composite event sequence(E1, En)
specifies that the compOnent event E k occurs

immediately (at the next logical event) following the

component event E ~. ~ event (2 S k S n). For
example,

sequence (after tbegi.n, before access,
after access, before tcomplete)

specifies a transaction attempting to commit after

accessing an objec~ and causing no other events to be
posted to the object.

Semicolons can be used instead of the sequence

operator to specify a sequence of events. For example,
the above composite event can be specified alternatively
as

after tbegin; before access;

after access; before tcomplete

The modifier + can be applied to any of the above
operators to indicate repeated application. For instance,
“relative+ (E) “ means the infinite dfijunction

relative (E) I relative (E, E) I
relative(Er E, E) I . . -

The events prior+ (E) and sequence+ (E) are
both equivalent to the event E. We will explain this for

the operator prior. E k the same as pri,or (E); E

must have occurred at the point at which prior (E,

84

E) holb, and so on, the additional disjuncts being
specializations of E. consequently, modifier + is not

provided for the operators prior and sequence!

We can specify lhnited repetition, instead of tttditnited

repetition, by using an integer constant (literal) as the

fist argument of the above operators. For example,

relative 5 (after deposit)

specifies the composite event that consists of the fifth
and any subsequent” after deposit” events.

Operator choose is used for specifying which
occurrence of an event is to be selected. For exampl%

the event specified by

choose 5 (after tcommit)

is posted by the commit of the fifth transaction.

The every operator is used for specifying events that
occur periodically. For example, the event specified by

every 5 (after tcommit)

is posted by the commit of the 5A transaction, the 10ti
transaction, the 15ti transactio~ and so on.

We will now introduce two operators we find usefuk
fa and faAbs. @erator fa (E, F, G) is defined as

the first occurrence of event F (at some logical event p)
relative to an event E, with no intervening event G
relative to E taking place prior to the occurrence of the

logical event p. For example, event

fa (after tbegin,

prior (after update, after tcommit) ,

(after tcommit I after tabort))

specifies the commit of a transaction that updated an

object, since there are no intervening aborts or commits

after the tbegin.

Operator faAbs (E, F, G) is deiined as the first

occurrence of event F (at some logical event p) relative
to an event E, with no intervening event G rehuive to

the whole history timg place prior to logical event p.
The difference between f a and f aAbs k that G is
defined relative to E in the first, and relative to the

beginning of history in the latter.

3.5 EXAMPLES

Consider an object of typs stockRoo~ which tracks

multiple items. Type stock room is defined as

4. k garrtrd evart E may nd nccur at ttre pnint relative (E, E).

For instsnee, lei E be the ewent

F s !prior(F, F)

Giventhe Sequawe. of e.varls

FF

event E neeurs at the tirst F but not at the seeond. However,

relative (E, E) nceursatdresecmrd F but nntthefkst.

.,.
class stockRoom {

...

Item items [max] ;

int n;

public:
stockRoom () ;

...

void deposit (Item i, int q) ;
void withdraw (Item i, lnt q) ;

int authorized (UserId) ;
void log () ;

void order (Item i) ;
void pzintLog () ;
int reorder (Item i) ;

void report () ;

void summary () ;
UserId usero ;

void updateAverages () ;

);

To illustrate event specification, we use this type

definition as a basis. Here is the modiied version of

class stock room with rnggers specified (member
functions are not repeated).

...
#define day~egin at time (HR-9)

#define dayEnd at time (HR-17)

#define 5thLrgW choose 5\
(after withdraw (i, q) &&q>100)

class stockRoom {
...

Item items [max] ;

int n;

public:

stockRoom () ;
.. .

trigger:

T1 () : perpetual before withdraw &&
! authorized (user ()) ==>tabort

T20 :after withdraw (i, q)

&& i. balance< reorder(i)==>
order (i)

T30 : perpetual dayEnd->summaryo;

T40 : perpetual relative (dayBegin,
prior (choose 5(after tcommit)

after tcommit) &

!prior (dayBegin, after tcommit
) -> report () ;

T50 : perpetual every 5 (after access
->updateAverages () ;

T60 : perpetual after withdraw (i, q)t
q > 100 ===> logo;

T70 :perpetual fa(dayBegin, 5thLrgk
dayBegin) ==> summaryo;

T80: perpetual after deposit;
before withdraw;after withdr?

==> printLogo

NotetheuseoftheC++ #define statement tospecify
convenient abbreviations. Thetriggers spe.cified are

1.

2,

85

Only authorized users can withdraw an item.
Otherwise, the transaction is to be aborted.
Iftheitemqurtntity inthestockroom fallsbslow

a certain tunoun~ say the economic order quantity

3.
4.

5.

6.

7.

8.

for the item, then an order is to be placed to buy

more of the item. Thktriggerm ustbsexplicitly

reactivated after it has fired.
At the end of the day, a summary is to be printed.
Every transaction after the 5th transaction within

the same day is to be explicitly reported.
After every 5 operations, the averages me to be
updated.

Ail large withdrawals (quantity > 100) are to be

recorded.

After the 5th large withdrawal of tut item in the

same day, print a summary.
Priit the log when a deposit is immediately

followed by a withdrawal.

All the triggers, except the second are perpetual
triggers; so that they are not deactivated after they fire.

Triggers must be activated explicitly. Once the trigger
event is satisfied, the trigger “fires”, that is, the trigger
action is scheduled for execution. The occurrence of a
single logical event may cause multiple triggers to fire.
The order in which these actions are executed is not
speciiied.

The initial activation can be specified in the
constructors of class stockRoom which are

automatically invoked when an object of the associated

type is created. For example, here is the body of the

class stockItem constructor

stockRoom: : stockRoom ()

{
...
//activate the triggers
Tlo; T20; T30; T40; T50;

T60; T70; T80;

As another example (from process control), we will

specify the composite event consisting of a pressure

drop (pressure falls below the specified low limit)

followed by a valve open which is the composite event

consisting of the completion of the method

mot or.st art followed by the completion of the
method mot orSt op:

#define pDrop (pressure< low_limit)
#define valveOpen relative (\

after motorStart, after motorStop)

class vessel {
...
float low_limit;

public:
.. .
float pressure:

motorStart () ;

motorStop () ;
trigger:

T(): relative (pDrop, valveOpen)
==> check pressure;

};

4. MODEL

For any given event specification, there are likely to be

multiple points in an event history at which the
specified event occurs. When dealing with logical

events, this is not an issue since such an event occurs at

and depmds upon a single pint in the history. Whh

composite event speciticatiom there could in general be

multiple prior occurrences of events upon which it may
depend. For instance, returning to the first example in
the event history sub-section, while the event

relative (E, F)

does not occur at F2 for the event history sequence

F1 El E2 F2

it is still possible for this event to occur if the event E

had also occurred at some earlier point in the history.

h facL if there are multiple prior occurrences of E in
the history, there are multiple compesite events
relative (E, F) that occur at F2, each whh hs

own first logicrd event. However, the system only takes

cognizance ;f the occurrence of this event once, just as

a d~jtmctive Boolean predicate is considered no more
true if multiple d=jurtcts are true than if just one is true.

While we have introduced a rich set of event
composition operators into 0++ for ease of expressi~
not all of them are necessary in terms of expressive
power. For example, the curried operators are not

necessary.

We present now a formal definition of a “core” event

sWcification language for specifying the event. Other

OH event specification facilities can be derived from

the operators present here. This claim can be proved

either by simple re-writing, or by relying on an explicit

finite automata construction and the equivalence
between event expressions and regular expressions [10].

Recall that an event history H is an ordered set of
logical events (points). Composite events are specified
as event expressions which are evaluated in the context
of a history. An event expression E evaluated in the

context of a history H, denoted as E[H], specifies a
subset (sub-sequence) of H. An event expressions is

one of

1.

2.

3.

4.

5.

6.

86

~; denotes the empty set of logical events.

a, where a is a logical even~ denotes the set of all

points in H, that are the a logicrd event.

relative (Fl, Fz), where F1 and F2 are

event expressions and relative k defined as
follows

Let G = {H’ I H’ is a suffix of H got by deleting
some F ~ in H and all logical events prior to it)

Then relative (Fl, F2) is equal to

U F2[H’], i.e., the union of the sets of points
H). G
spe.cifi~ by the event expression F2 in the
context of the histories in G

F ~ && Fz is the intersection of the sets of event
points specified by F1 and by FZ

!F ~ is the complemen~ whh respect to the Set Of

all points in H, of the set of points specified by
F1.

relative+ (F) specifies the set of points

(p I there exists a sequence of hwtory points, in
ascending order, hl, h2, ..., h~ =p, k21 such that

hl kitt FIH]~dhi+l, lgi<kkht

F evaluated in the context of

the history obtained from H by deleting all

logical events Up to ~d including hi.

Take the history associated with some object in the
database at a particular point in time. The empty event
set “labels” no points. A logical event a “labels” all

points in the h~tory where a occurred. Operators
(items 3-6) are used to manipulate such sets of “labeled

points”.

Consider an evolving history at a particular @nt in

time and an event expression E. Evaluate the
expression E according to the semantics assigned to

operators above. Eventually, a final set of points in the

history is labeled. If the rightmost h~tory symbol is
labeled then the specified event has just occurred.

An event specification can also be thought of as
prescribing a set of sequences of logical events (i.e. a
set of strings over the alphabet of logical events). The

event has just occurred (at some object) iff the current
history (considered tM a sequence) is in this set of
sequences. Identifying interesting sequences of
symbols from some alphabet is exactly what grammars

are used for. So the natural question is how does the
expressive power of our operators fit into the

expressiveness hierarchy of string grammars? We

selected the operators carefully so that the expressive
power is exactly the same as that of regular grammars,

A proof is provided in [10].

5. IMPLEMENTATION

Since composite events can alternatively be expressed
as regular expressions, their occurrence can be detected

using finite automata. An automaton can be defined for
each even~ which reaches an accepting state exactly
whenever the event occurs. The input to the automaton

is the sequence of logical events constituting the event

hwtory for the object with which the automaton is

associated.

Since the set of possible logical events constitutes the

alphabet of input symbols to the automaton, we require

that the logical events used in a particular trigger

definition all be disjoint so that no two logical events
occur simultaneously (this is because a history is a
sequence, and simultaneous logical events make it

difficult to decide the order of sequence events). We
ensure that the masks for the basic events are disjoint.
If the masks me not disjoin~ their Boolean
combinations must be disjoin~ and we define new
logical events using these Boolean combinations. For
instance, suppose a trigger has the event

sequence (before log && a > 0,

before log && b > O)

Suppose we do not know that a > 0 and b > 0 are
dkjoint. The composite event csn be stated in the
following logically equivalent form

sequence (before log && a>O && b>O I
before log && a>O && ! (b>O) ,

before log && a>O && b>O I

before log && ! (a>O) && b>O)

Each disjunct in this restatement is a dwjoirtt logical

event. While it is true that the sort of rewriting we

require could cause a combinatorial explosiom in
practice we do not expect to see enough such overlap

for this explosion to be a worry. Moreover, it is

straightforward to perform such an expansion in the
compiler.

In an object-oriented system, all objects in a class must
define the same set of events and therefore can use
identical automata. For each trigger defirthiou the

tmtsition table of the trigger automaton is kept once

(for the class), and for each objec~ for which the trigger
haa been activated, the state of the trigger automaton
may be stored with the object. Ordy a single (integer)
variable is required for storing the state. Thus the extra

storage required for storing the trigger state is small —

one word per active trigger per objects

Events are monitored as follows. Whenever a basic
event (with any associated parameters) is posted to an

object, we check the active triggers to determine
whether or not any logical events have occurred. If so,

for each active trigger for which a logical event has

occurred, we move the automaton to the next state. We
determine all the trigger events that have occurred, and
then we fire the triggers. If the posting of a logical

event leads to the firing of multiple triggetx, then the

order in which the triggers are fired is implementation
dependent.

The action associated with the trigger is executed as
part of the same transaction as the one that detected the

even~ and is executed immediately. Two basic events,

“after tabort” and “after tcommit”,

require special handling. By definition, the transaction
responsible for these events has completed just prior to

these events occtming. Consequently, the events must
be posted by a special “system” transaction, and if a

trigger fires, the action part is executed as part of this

“system’” transaction.

6. DEALING WITH TRANSACTIONS

An important property of transactions is atomicity, i.e.,

either the transaction commits and all its effects are

reflected in the database or it aborted and none of its
effects are in the database. Traditionally, anything a

~ansaction could do was modeled by its effects on

shared data. The question is then, are logical events
that correspond to the activity of an abated transaction

to be viewed as part of the event history?

One can tind justifications for answering this question
both positively and negatively. The “true’” history
contains operations on behalf of aborted transactions
which may be useful in dynamically modifying system

parameters: for example, “if the ratio of aborts to

commits exceeds q then reduce the number of
concurrent transactions allowed”. On the other hand a

case may be made for viewing the history as comprised

of actions on behalf of only committed transactions.

5. The above dawxiptim awmws one anmnstnn definition per trig-

ger. In many cases such automats may he cnmbmed he one,

resulting in a more efficient monitoring, we regard this hem as

merely one of many possible optimizstinns.

87

For example, at the object level one would like to see
the trail of “real” actions and not ones that were

“undone”.

It seems that one should be able to state composite

events from either of these two viewpoints and that both
options should be available. To implement the
committed version, one can consider an automata
intplementation of event monitoring in which the
automaton state is considered part of the object data
structure and hence will be restored correctly upon
abort. To implement the complete hmtory (iiclttding

the effects of aborted transactions) we use art automaton
whose state is not part of the object and hence not

restored upm abort.

Assuming object level locklng, we have the following:

Claim: Any event expression E made with respect to

operations of only committed transactions, with an
object scope, can be converted into an event expression
with respect to the whole history, including the

operations of aborted transactions.

Proofi Consider such an expression E defind with
respect to logical events only on behalf of committed
transactions. Let A be a finite automaton for detecting

E events. Convert A into A’ that will view the whole
hwtory as follows. Each state of A’ is a pair (a, b)

where both a and b are states of A. Intuitively, a is the

state A is really in and b is the state A was in before

seeing the most recent “after tbegin” basic

event. The automaton A‘ in state (q, p), upon seeing the
“aft er commit” basic even~ moves to state (r, r),
where r is the state A would have moved to had it been
in state q. Upon encountering the basic event “after

tabort”, A’ in state (q, p) moves to state (p, p). The

transitions out of a state (q, p) on all other logical
events are to states (r, p) where r is the state A would

have moved to had it been in state q. Since A’ can be
converted into an equivalent regular expression and that
expression into an equivalent event expression the

proof is complete. ❑

In fac~ the inclusion of transaction events as basic
events greatly adds to the expressive pwer of our event
expressions, as we demonstrate in the next section.
One point that requires clarification here is event
before tcomplete. This event occurs when a

transaction “thinks” it has completed execution
successfully, and is ready to commit. The occurrence

of this event could cause some triggers to fire, requiring

some additional work on the part of the transaction.

When all thk work is done, another before
t complete event occurs. TMs proccas goes on until
no triggers fire in response to a before tcomplete
event. At this poin~ the transaction may actually
perform its commit. Thus the before tcomplete
event can be posted to an object multiple times witim a
transaction. Also, its occurrence is no guarantee that

the transaction will commit.

7. RELATIONSHIP BETWEEN
TRIGGERED ACTIONS 8Z TRIGGERING
TRANSACTIONS

The most quoted model for describing trigger operation

is the E-C-A model [6, 16]. There are four common
types of couplings possible between each of E (first

part) - C! (second part) and C (lirst part) - A (second

part). These are

1.

2.

3.

4.

immediukx second part is executed immediately
after the tirst part (in the same transaction).

&ferred second part is executed just prior to
commit of the transaction executing the first part.

separate depettdeti second part is exedttted as a
separate trttnsactio~ with commit dependency,c
after the canrnitment of the transaction executing
the fist part.

semarate irtdependeti second Part is executed as

a ~eparate tr~actiom with no-dependency, after

the triggering (first part) transaction has
committed or aborted.

Thtts there are 16 (4 x 4) possible combinations of
couplings, each of which the user has to be able to
express and which the system has to implement. Even
worse, the types of couplings considered in the model

may not constitute an exhaustive list. For instance, the
original E-C-A work only dkcussed three types of

couplings, with the last two types folded into a single
type decoupled. The need to specify the presence or
absence of commit dependency is evident only in more

recent work.

Given our powerful event specification facilities, it is

not necessary to define such a list of cmtpliigs. Any

coupling desired can be implemented by selecting an
appropriate event specification, incorporating the

required transaction events. Furthermore, the condhion
evaluation can naturally be folded into the event
spscificatiou resulting in an E-A model with only one
kind of coupling.

Let E be a (composite) event expression C be a
condition (predicate) to be evaluated when e occurs,

and A be the action to be executed if dte condition

evahtates to true (the trigger fires). Here are different
coupling possibilities expressed as 0++ trigger events:’

1.

2.

3.

4.

5.

Itnmdlate-hnmediate:

E&&C ==> A

Inunediate-Deferred

fa (EhGC, before tcomplete,

after tbegin) ===> A

Imrnediate-Dependen~

fa (Erit+C, after tcommit,

after tbegin) ==> A

Immediate-Independent

fa (E&&C, after tcommit I after tabort
after tbegin) w==> A

Deferred-Immediate or Deferred-Deferred

6. If tnmsactiontt is commit depmdan on r,, theafi is not atlowedto
commit until t, has. By extemion, if t, eventuallyk.rts, se must
[2sinceit canneva hcpeto obtainthepsnnissionto camnit.

7. The termsusedfor the varieuscouplingmodeswere defined at the

beginning of this section.

88

6.

7.

8.

9.

fa(E,before tcomplete,after tbegin)

&&C ==> A

Deferred-Depandenc

fa(fa(E, before tcompleter

after tbegi.n) && C,
after tcommi.t,after tbegin)==>A

Defetmd-htdependent:

fa(fa(E, before tcomplete,

after tbegin) && C,

after tcommit I after tabort,

after tbegin) ==> A

Depmdent-hnrndlatc

fa(E, after tcommit, after tbegin)

&& c ..> A

Irtdependent-hnmediate:

fa(E, after tcommit I after tabort,

after tbegin) && C ==> A

Once the (side-effect-free) condition evaluation isina

separate transaction, there does not appear to be much

point indlfferentiating between execution ofthe action
immediately after condition evaluatio~ at the end of the

transaction, or even in a new transaction. As suck

these alternatives have not been addressed above. From
the spirit of the expressions written above, it should be

clear to the reader that expression of such semantics is

possible, if desired.

8. RELATEDWORK

Behavior specification using regular expressions and

finite state machines is by no means a new idea. In the
context of active databases they appear in [7, 19].
Other well-known examples are path expressions and
their derivatives [3,4,12], which areused to specify
process synchronization in concurrent progrants. Path
expressions are associated with objects. An object

method can be executed only ifit “satisfies” the path

expressions associated with the object, Otherwise,

execution of the operation (the process) is delayed until

the path expressions can be satisfied.

Another well known example of the use of behavior
specification using finite automata are statecharts [11].

Statecharts are a mechanism for specifying the input

and output of a system interacting with the
environment, such a system is called reuctive.
Statecharts specify a finite state (Mealy) machine in an
“economical” graphical way, by taking advantage of
hierarchical relationships in terms of operations among
sets of states, and avoiding combinatorial explosion in
the number of states by independently specifying

“orthogonal” components (cross-product operands).

In additio~ the system can generate events (basic

symbols in statecharts terminology) which can cause it
to change states. Other mechanisms provided include a

history, correlating states in orthogonal components,
default and other entry points. Statecharts thus specifi

how a deterministic system should behave and how it
should react to the environmental inputs.

SQL also includes triggers, these are applied to specific
tables (relations), they trigger on update/iisert/delete to

the table, a search condition (mask) may also be
specified (it is an SQL search condhion), and the

actions are also update/iiart/deleta statements [17].

Using the concept of “delta”, which are tmcotnrnitted

updates to relations, Hull and Jambs [13] are capable of
capturing the semantics of trigger applications based on

changes in relations.

Composite events ware proposed for the first time in
[7], but few specifics were provided. The only detailed

work dealing with composite events is [5], Here a

syntax and semantics for composite event specification
is proposed, along widt implementation mechanisms.
However, the set of event operators selected seems

arbitrary, tutd is not integrated with arty existing
database programming language.

9. CONCLUSION& FUTURE WORK

In this paper, we have described how to specify
composite tligger events. The event specification is
based on a set notation identical in expressive power to
a notation based on regular expressiorw. These

expressions can be translated into finite state automata
in an efficient way.

An important motivation for designing a system baaed

on a formal model is that the model clarifies the
underlying concepts and eventually leads to a simpler

design. In our case, trying to formalize the composite

event specification has led us to the simpler E-A model.
Our model folds the condition part of the well-known

E-C-A model into event specification. In additiona, the

model avoids the multiple coupling modes between the
even4 condition, and action trigger components. The

E-A model is easier to explain and has simpler
semantics than the E-C-A model.

Finally, we explained how triggered actions are
scheduled for execution and argued that the lack of
attachment mode for condition checking is not a serious
deficiency.

A list of subjects for further research includes:

. Understanding the utility of event expressions and

triggers to specify and construct reactive systems.
● Further enhancements, both in terms of ease of use

and in tertns of expressive power, to event

expressions.

. Techniques for event expression compilation and

implementation of event monitoring.

● Incorporation of transaction and object identity into
logical events. If we monitor events within a single
object scope, the issue of object identity raeordmg is
mute. This is not the case at the system level where
a large number of objects need be tracked.

. The incorporation of arguments into composite
event specification. Some events carry vahtes with

them which may be of use later on. The issue is

how to efficiently collect and record these vahtes

and how to use them at future eventa.
● Explicit manipulation of event histories to specify

events. The idea is to define “history expressions”

and to integrate them with event expressions.
Progress on these subjects is reported in [9].

ACKNOWLEDGMENT

We are grateful to Shaul Dar and Bruce Hillyer for their

comments. We thank the referees for their comments
and suggestions.

89

REFERENCES [17]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Agrawaland N. H. Gehani, “Ode(ObjectD atabase
and Environment): Tbe Language and the Data Model”,

[18]

Proc. ACIU-SIGMOD 1989 Int’1 Corf Mamgement of
Data, Portland, Oregon, May-June 1989,36-45.

C. Beeri and T. Mile, “A Model for Active Object
[19]

Oriented Database”, Proc. of the 17th [nt’1 Conf on
Very Large Databases, Barcelona, Spain, Sept. 1991,
337-349. [20]

R. H. Crunpbefl and A. N. Habermartn, “’llte
Specification of Process Syncbroniraticn by Padr
Expressions”, in Lecture Notes in Crnnputer Science,
vol. 16, Springer-Verlag, 1974.

R. H. Campbell and A, N. Habermann, “Path
Expressions in Pascal”, Proceedings of the Fourth
In~rnational Conference on Sojiware Engineering,
1979,212-219.

S. Chakravarthy and D. Mishra,’ ‘An Event Specification
Language (Snoop) for Active Databases and its
Detecticm”, University of Florida CIS Tech. Rep.-9l -23,
September 1991.

U. Dayal, B. Blaustein, A. Buchmarm, U. Chakravartfry,
M. Hsu, R. Ladin, D. McCarthy, A. Rosenthal, S. Sarirt,
M. J. Carey, M. Livny and R. Jauhari, “The HiPAC
Project: Combining Active Databases and Timing
constraints”, ACM-SIGMOD Record 17, 1 (March
1988), 51-70.

U, Dayal, M. Hsu and R, Ladin, “A Transaction Model
for Lang-Rtnming Activities”, Proc. of the 17th Int’1
Conf. on Very Large Da/abases, Barcelona, Spain, Sept.
1991,113-122.

N. H. Gehani and H. V. Jagadish, “Ode as an Active
Database Constraints and Triggers”, Proc. 17th Int’1
Conf. Very Large Data Bases, Barcelona, Spain, 1991,
327-336.

N. H. Gehani, H. V. Jagadish and O. Sbmueli,
Compostie Event Speci@ation in Active Databases:
Model & Implementation, AT&T Belf Laboratories,
1992.

N. H. Gchani, H. V. Jagadish and O. Sbmuefi, “Event
Specification in an Active Object-Oriented Database”,
AT&T Bell Labs Technical Memorandum, 1992.

D. Had, ‘ ‘Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming 8, (1988),
231-274.

M. R. Headington and A. E. Oldehocft, “Open Predicate
Path Expressions and their Jrnplementation in Highly
Parallel Computing Environments”, Proceedings of the
International Conference on ParatIeI Processing, 1985,
239-246.

R. Hull and D. Jacobs, “Language Constructs for
Programming Active Databases”, Proc. of the 17th Int’ 1
Con$ on Very Large Databases, Barcelona, Spain, Sept.
1991.

S. N. Kboshatian and G. P. Cotxdand, “Object
Identity”, Proc. 00PSLA ’86, Portland, Oregon, Sept.
1986,406-416.

G. M. I_ohman, B. Lindsay, H. Pirahesh and K. B.
Sehiefer, “Extensions to StarbursG Objects, Types,
Functions, and Rules”, Comrrr. ACM 34, 10 (October
1991), 94-109.

D. R. McCarthy and U. Dayal, ‘ “J?re Architecture of An
Active Database Management System”, Proc. ACM-
SIGMOD 1989 [nt’1 Co@. Management of Data,
Pordsnd, Oregon, May-June 1989,215-224.

J. Melton, (cd.), “(ISO-ANSI Working Draft) Database
Language SQL2 and SQL3*’, ANSI X3H2-90-001, Dec.
19t19.

A. Silbcrschatz, M. Stonebraker and J. Uflrnan,
“Database Systems: Achievements and opportunities”,
Comrrt. ACM 34,10 (October 1991), 110-120.

A. Skarra, “Concurrency Control for Cooperating
Transactions in an Object Oriented Database”,
SIGPLAN Notices Notices 24,4 (April. 1989),.

M. Stonebraker and G. Kenmitz, “The POSTGRES
Next-Generation Database Management System”,
Comm. ACM 34,10 (October 1991), 78-93.

90

