
Formal syntax and semantics of
a reconstructed relational database system

Dan Jonsson
Dept. of Sociology, GOteborg University,
Brogatan 4,S-413 01 GOteborg, Sweden

1. I n t r o d u c t i o n

In formal logic, the definition and analysis of logical
systems frequently proceeds as outlined below:

(1) A non-empty set of (formal) languages is specified.
Each such language may be identified with a non-
empty set of well-formed formulas (wffs). A
language/, may be specified by listing (i) a set of
logical symbols (e.g., ---1, A, V), (ii) a set
("vocabulary'9 V of non-logical symbo/s, and (iii) a
set of formation rules showing how to form wffs
from primitive (logical and non-logical) symbols
and/or other wffs. Formal languages are often
analyzed within some context of fixed sets of
logical symbols and formation rules, so that
attention is confined to some set of languages each
of which corresponds to a particular vocabulary of
non-logical symbols.

(2) Given a formal language/, over a vocabulary V, a
distinguished subset Syn of / . is specified. For
example, Syn may be defined recursively as the
smallest set of wfffs containing (a) a finite set of
stated ax/oms and (b) all wffs that may be deduced
from wffs in Syn through the use of certain stated
derivation rules.

(3) A non-empty set I of (formal) interpretations of (all
wffs in) L is specified. Each wff in I. may be
characterized as being either true or not true under
any particular interpretation in/.

(4) A subset Int of I is specified. A distinguished
subset Sern of/. is then specified with reference to
the formal interpretations in Int. For example, Sere
may be defined as the set of wffs which are true
under a/l interpretations in lot

(5) The distinguished subsets 8yn and Sern are
compared. (One frequently wants to show that Syn
= Sern.)

In this article, systems of database states will be
analyzed in the spirit of steps (1) - (5) above. The
analysis is based on the notion that although database
states are not formulas in the strict sense - i.e., finite
sequences of symbols - they may nevertheless be treated
as are well-formed formulas in formal logic. As a
consequence, the formal syntax and semantics of
systems of database states may be analyzed in much the
same way as the formal syntax and semantics of systems
of well-formed formulas.

The database system defined and discussed here is a
reconstructed relational system. This article also
introduces a more formal way of looking at Icaros-type
semantic models as presented in [4]. Specifically, the
database schemas to be defined below, and their
graphical representations in particular, correspond to
Iearos-type models.

2. Databases

In this section, database schemas and database states
consistent with database schemas will be defined. In the
definitions below, let S* (S +) denote the set of all (non-
empty) subsets of S. As usual, f(S) = {./~0 It ~ S }.
Finally, ~f:X =~ Y' should be read .~:X ~ Y and
.~X) = Y:

Definition 1. A database schema is a tuple V = (K, I, Z~
Zn, A, R, ~ ~i, ~a, P) satisfying the four conditions listed
below.

(1) K, I, Za,, Zn, A, and R are non-empty, pairwise
disjoint sets, whose elements are referred to as
values (or constants), intensions, object slots,
predicate slots, attributes (or aspects), and relations
(or relation nodes), respectively.

Let Z denote Zo, u Z~.

(2) x; ~i, ~a, and p are functions such that r : I =~ K,
:I ~ Z , ~a :A ~ Z, andp:A ~ R .

84 SIGMOD RECORD, Vol. 21, No. 1, March 1992

An intension i is said to connect k and z (symbolized
k^i^z) iff x(/) = k and ~i(O = z, and an attribute a is said to
connect z and r (symbolized z^a^r) iff p(a) = r and

= z .

(3) No slot is connected to some value by two distinct
intensions. (Values connected to object slots serve
as identifiers, and values connected to predicate
slots serve as characterizers; cf [4].)

(4) Every relation is connected to at least one object
slot and at least one predicate slot. (Attributes
connecting relations and object slots are called
identification attributes, while attributes connecting
relat ions and predicate slots are cal led
characterization attributes.) 0

Definition 2. Alternatively, a database schema may be
defined as a tuple (K, Zto, Zn, A, R, Dora, ~a, P)
satisfying the three conditions listed below.

(1) K, Zto, Zn, A, and R are non-empty, palrwise
disjoint sets.

(2) D o m , ~a a n d p are functions such that
Dora : Z ~ K +, k.Jza Z Dora(z) = K, ~a : A ~ Z, and
p : A ~ R. (Sets of the form Dom(z) for some z E Z
are called doma/ns).

(3) Every relation is connected to at least one object slot
and at least one predicate slot 0

Proposition 1. Definitions 1 and 2 are equivalent. That
is, for each V = (K, I, Zto, Zn, A, R, to, ~i, ~a, P)
satisfying (1) - (4) in Definition 1 one can define a
function Dora such that V" = (K, Z~, Zn, A, R, Dora, ~a,
p) satisfies (1) - (3) in Definition 2, and for each V'
satisfying (1) - (3) in Definition 2 one can similarly
define I, ~ and (i so that (1) - (4) in Definition 1 are
satisfied.

Proof sketch. Given V, define Dom : Z ~ K + by Dora(z)
= {k I k^i^z for some i ~ I]. Given V; define I = {(k, z) I
z E Z and k e Dora(z)}, K((k, z)) = k, and ~i (k, z)) = z. ¢

Note that according to Definition 1, a database schema
may be regarded as a graph with nodes
R u Zoo u Zn u K, edges A u I, source function
p u ~i (say), and target function ~ u r(say). Definition
1 is more appealing from a formal point of view, but
Definition 2 is closer to current database theory, so it is
the one that will be used below.

Example 1. A reconstructed relational database schema

K= String k.J Cardinal (predefined sets);
Za~ = {Person}, Zn = {Years};
A = {Any person, Husband, Wife,

Age, Duration of marriage};
R = {M, r2};
D o . P e r s o n) = String, Dora{years) = Cardinal;
Ca(AnY person) = Person, Ca(Husband) = Person,

tg, aw' e) = Person, Ca(Age) = Years,
Ca(Duration of marriage) = Years;

p(Any person) = {r l}, p(Husband) = {r2}, p(Wife) = {r2},
p(Age) = {r l}, p(Duration of marriage) = {r2};

A convenient and compact graphical represepmtlon of the
schema in Example 1 is shown below. In this
representation, relations are shown as rectangles, object
slots as circles, predicate slots as ellipses, and attributes
as edges connecting rectangles with circles or ellipses.
Rectangles, circles, ellipses, and edges are labeled with
names of the eoresponding relations, object slots,
predicate slots, and attributes, respectively, while
domains associated with object slots or predicate slots
are shown within parentheses in the corresponding
circles or ellipses.

Example 2. An lCAROS-type graphical model for the
database schema defined above

k \Wife / Duration
\ / of marriage

,u, noN o I
As a third option, the schema can be described by means
of pseudo-DDL statements.

S I G M O D RECORD, Vol. 21, No. 1, March 1992 85

Example 3. Pseudo-DDL statements.for the database
schema defined above

ObjectSIot Person is String;
PredicateSIot Years is Cardinal;
Relation rl is Any person, Age;

Attribute Any person is Person;
Attribute Age is Years;

Relation r2 is Husband, Wife, Duration of marriage;
Attribute Husband is Person;
Attribute Wife is Person;
Attnbute Duration of marriage is Years;

Definition 3. Given a database schema V = (K, Z ~ Zn,
A, R, Dom, ~a, P), let Allocto : R -o A + he the function
given by Allocto(r) = {a I z^a^r for some z e Zm}.
Similarly, Allocu : R ~ A + is the function given by
Allocn(r) = {a I z^a^r for some z e Zu}. Let furthermore
Fco be the function defined on R given by Fro(r) =
{tYro I Yto : Alloc ~r) .---> K, where ?'~a) E Dom(~a(a)) for
every a E Alloc ~r) } , and let Fn be the function defined
on R given by Fn(r) = { ~'u I 'Yu : Allocn(r) ~ K, where
~'n(a) E Dorn(~ (a)) for every a E Allocn(r) }.

A tuple consistent with r for some r e R is a pair 0'to, ~u)
F d r) x rn(r). A database state consistent with V is a

function S defined on R such that S(r) is a finite subset of
F d r) x Fn(r) for every r ~ R. The set of all database
states consistent with V constitutes the state space
spanned by V. 0

Note that the concepts of database schema, database
state, and state space spanned by a particular database
schema are analogous to the formal logic notions of
vocabulary of non-logical symbols, well-formed
formula, and language over a particular vocabulary,
respectively.

Database states may be represented in the usual tabular
form. (Note, however, that in the present ease slots as
well as attributes are shown in the heading of each
relation table.)

Example 4. A database state consistent with the database
schema defined above

rl

Any person Age
Person Years

Peter 36
Mary 36

r2

Husband Wife Duration of marriage
Person Person Years

Peter Mary 3

A database state presupposes a database schema, and it
is sometimes essential to consider database states in
conjunction with corresponding database schemas.

Definit ion 4. A database (instance) is a pair
(V, S), where V is a database schema and S is a database
state consistent with V. 0

To relate the present reconstruction of relational
databases to previous notions, note that each of the
terms domain and attribute is somewhat ambiguous in
conventional relational database theory. First, "domain"
may refer to a data type (e.g., "string") as well as a
"semantic type" (e.g., "supplier name") [1]. Second,
"attribute" may refer to an attribute name as well as an
attribute occurence. (The latter distinction is necessary
in conventional database theory, since columns - i.e.,
attribute ocurrences - in different relations may have the
same name - i.e., attribute name. In queries, update
operations etc, attribute occurences are usually identified
by relation name / attribute name combinations.)

Also note that semantic types and attribute names are
overlapping notions: they both serve to express semantic
connections between (attribute ocurrences in) different
relations, and either notion may be used for this
purpose. (That is, semantic interconnections can be
expressed by leUing relations share either attribute names
or domains regarded as semantic types.) In the present
approach, object and predicate slots are shared between
relations and express semantic interconnections.

Table 1. Conventional notions and corresponding
notions in the present approach

Conveqtional notion Present notion

Attribute (occurence) Attribute
Relation_name.attribute_name

(Semantical) domain Slot
Attribute (name)

(Data) domain Domain

86 SIGMOD RECORD, Vol. 21, No. 1, March 1992

Note that in the present approach the notions of attribute
name and attribute occurence coincide. (Expressed in an
equivalent way, attribute names are globally unique.)
Note, also, that whereas the notion of intention is
redundant in the sense that every intention is identified
by a unique slot-value pair, the situation is different for
attributes, as shown by Examples 1--4 above.

Finally, the distinction between identification attributes
and characterization attributes in the present approach is
analogous to the distinction between key and non-key
attributes (respectively) in the conventional approach.
There is an important difference, though, in that keys are
independent of interpretations of databases - i.e., they
are formal or syntactic in nature- whereas identification
and characterization attributes have specific semantic
significances, as will become apparent below.

In view of what has just been said, it is possible to
approximate the database schema in Example 3 using a
Data Definition Language supporting keys and domains.

Example 5. An approximate rendering of the database
schema in Example 3

Domain Person is String;
Domain Years is Cardinal;
Relation rl is Any person, Age;

Key is Any person;
Attribute Any person is Person;
Attribute Age is Years;

Relation r2 is Husband, Wife, Duration of Marriage;
Key is Husband, Wife;
Attribute Husband is Person;
Attribute Wife is Person;
Attribute Duration of Marriage is Years;

3. Functional normal form

Definition 5. Given a database instance (V, S>, a relation

r E R is said to be in.functional normalforra (FNF) iff for

anY (~YI~ ~'In), (~'2o~ 72n) E S(r) it holds that 71w= 72oj
implies 71~r = 'Y2n- <V, ~ is said to be in FNF iff every

rE R is in FNF. 0

In other words, (V, S) is in FNF iff for each relation the
set of all identification attributes constitutes a key -
though not necessarily a minimal key, or a unique key.

Functional normal form is conceptually simple, then, but
that does not mean that it is simplistic or naive. While it

is beyond the scope of this article to compare ~ to
traditional normal forms, I shall indicate the main thrust
of the argument. FNF is based on the notion that a
distinction should be made between "data-structuring"
vs. "incidental" [3] or "constitutive" vs. "qualifying"
dependencies [4], the former type of dependency being
more relevant for database design than the latter. In the
present approach, specifically, only functional depen-
dencies according to which a characterization attribute is
functionally dependent on the full set of identification
attributes are regarded as data-structuring, and only such
dependencies are taken into account when deciding
whether or not a database state is in FNF. (Note that the
designation of certain functional dependencies as data-
structuring presupposes and is relative to the designation
of certain slots as identification slots. The implications
of this 'relativity principle' cannot be pursued here,
however.)

Incidentally, if an FNF relation is subject to no other
constraints (apart from domain constraints) than those
implied by its being in FNF, then the identification
attributes constitute a candidate key 0.e., a nfmimal key)
and the relation is in Fagin's [2] domain-key normal
form (DKNF). Also, a relation in DKNF is in FNF
provided that the set of identification attributes coincides
with the set of key attributes. Loosely speaking, FNF is
equivalent to DKNF as far as data-structuring functional
dependencies as defined above are concerned.

4. Interpretations

Definition 6. Given a database schema V, a tuple
(0 , Fw, Fn) satisfying conditions (1) - (3) below
constitutes an interpretation of any database instance of
the form (V, S~.

(1) 0 is a non-empty set of "objects".

(2) Fw is a function defined on R such that F~r) is a
function defined on Alloc~o(r) such that
FdrXa) : Dora(Ca(a)) .-~ O.

Let Q be the function defined on R given by Q(r) =
{ ¢ I ¢ : Alloc~r) .---~ O }. (The elements of Q(r) are "object
constellations" associated with r.)

(3) Fn is a function defined on R such that Fn(r) is a
function defined on A l l o c x (r) such that
Fn(r)(a) : Oorrg~a(a)) -.-~ Q(r)*. 0

SIGMOD RECORD, Vol. 21, No. 1, March 1992 87

Definition 7. (i) Given F ~ let Frobe the function defined
on R such that F ~ r) : F~r) ~ Q(r) is the function defined
by the condition ~ = Fdr)(7'~ iff ~a) = Fdr)(a)(7'da)) for
every a • Alloc~r). (ii) Given Fn, let Fnbethe function
defined on R such that Fn(r) : Fn(r) ~ Q(r)* is the
function defined by the condition gp • Fn(r)(Tn) iff
~a) • Fn(r)(a)(Tn(a)) for every a • AUocn(r). (That is,
Fn(r)(Yn) = f'~aEAllocn(r) Fn(r)(a)(Tn(a)).) 0

One will normally assume that F~(r)(Fro(r))
Fn(r)(Fn(r)) for every r • R. This means that every object
constellation that can be characterized by available
characterizers can also be identified by available
identifiers. As a consequence, tuples will not contain
'null values' associated with identification attributes.
(Cf. 'entity integrity' as defined in [I].)

On the other hand, one could also assume that
Fn(r)(Fn(r)) ~ Fro(r)(Fro(r)) for every r • R (or
equivalently, Fn(r)(a)(Dom(~(a))) ~ F~(r)(Fdr)) for
every r • R and every a • Allocn(r)). This would mean
that every object constellation that can be identified by
available identifiers can also be characterized by
available characterizers. As a consequence, tuples will
not contain 'null values' associated with characterization
attributes.

Definition 8. Let I = (0, F ~ FrO be an interpretation of
(V, S). S is said to be true in I iffFdr)(Tro) • Fn(r)(7~
for every (7~ 7n) • S(r) for every r • R. 0

5. Discriminating interpretations
To be able to characterize database instances from a
semantical point of view, notions of discriminating
interpretations will be defined.

Definition 9. Fro is said to be discriminating iff kl ~ k2
implies F~r)(a)(kl) ~ Fdr)(a)(k2) for every r e R and
every a • Allocro(r). Similarly, Fn is said to be
discriminating iff kl ~ k2 implies Fn(r)(a)(kl) n
Fn(r)(a)(k2) = O for every r • R and every a e Allocn(r).

An interpretation (0 , Fro, Fn) is said to be m-dis-
criminating, a-discriminating, and discriminating iff,
respectively, Fro, Fn, and each of Fro and Fn are
discriminating. 0

Intuitively, an c0-discriminating interpretation is one
where distinct identifiers refer to distinct objects. In a n_
discriminating interpretation, distinct characterizcrs refer
to disjoint sets of object constellations. If in addition

F n(r)(a)(Dom(~a(a))) = F ro(r)(rro(r)), then the
characterizers in Dom(~a(a)) provide an exhaustive
classification into non-overlapping categories of all
object constellations in F~r)(F~r)) .

6. Syntax vs. semantics
Speaking in the terms used in the Introduction, we have
now shown how to define V, we have defined L, given
V, and we have defined Syn, I, and Int, given L We
shall finally define Sore 1 and Sore2 and show that
Sy,n = S a m I = Sore2. (Note that in this ease, Sere I
and Sore2 are defined as sets of wffs which are true in
at least one interpretation in Int rather than all such
interpretations.)

Proposition 2. If D = (V, S) is in FNF, then there is some
discriminating interpretation I of D such that S is true in L

Proof sketch. Let D = (V, S) be any database instance,
and set I = ~K, F ~ FQ, where (i) F~r)(a)(k) = k for every
r • R, a • Allocro(r) and k • Dora(Ca(a)), and (ii)
Fn(r)(a)(k) = {Tro I (Ta 7r~ • S(r) and 7n(a) = k} for every
r • R, a • AUocn(r) and k • Dora(Ca(a)). The following
claims are easily verified: (a) I is an interpretation of D;
(b) Fro is discriminating; (c) if (V, S) is in FNF then F~ is
discriminating; (d) F ~ r) (7 ~ = 7ro for every r • R and
7ro• F~r); (e) Fn(r)(yn) = {7ro I (7~ 7n) • S(r)} for every
r • R and 7n • Fn(r). Now, if (7ro, 7n) • S(r) then
7ro • {Tro I (7~ Tr~ • S(r) l. That is, F~(r)(Tro) • Fn(r)(7~
for every r • R and every (7~ 7n) • S(r). Hence, S is true
inL0

Proposition 3. If there is some n-d iscr imina t ing
interpretation I = (0, For Fn) of D = (V, S) such that S is
true in I, then D is in FNF.

Proof. Assume that S is not in FNF, so that there is

some a 0 • AUocn(r) for some r • R such that (7~ 71n),

(r a 72n) • S(r) and 71n(ao) • r2n(ao). Assuming that S is
true in L F~r)(Tro) • Fn(r)(71Q and Fro(r)(Tro) •
Fn(r)(~n), so Fn(r)(71 n) n Fn(r)(y2n) * 0 . By Definition

7, Fn(r)(nn) c en(r)(ao)(nn(ao)) and Fn(r)(r2 n) =
Fn(r)(ao)(72n(ao)). Hence, Fn(r)(ao)(71n(ao)) n
Fn(r)(ao)(72n(ao)) , ~ although 71n(ao) , ~2n(ao), so Fn is
not discriminating. Therefore, if S is not in FNF then it

is not the case that S is true in some n-discriminating
interpretation of (V, S). This proves Proposition 3. 0

88 SIGMOD RECORD, Vol. 21, No. 1, March 1992

P r o p o s i t i o n 4. T h e following three conditions are
equivalent: (a) D is in FNF; (b) D possesses a true
discriminating interpretation; (c) D possesses a true n-
discriminating interpretation.

P r o o f . (a) implies (b) according to Proposition 2, (tO
obviously implies (c), and (c) implies (a) according to
Proposition 3; hence, all three conditions are equivalent.
0

7. Conclusions and research directions
The idea of regarding a database state as a wff in a
formal language whose syntax and semantics is to be
specified leads naturally to a reconstruction of relational
database theory when combined with two other ideas:

(i) For reasons sketched above, the attribute-domain
dichotomy in standard relational database theory
should be replaced by an attribute-slot-domain
trichotomy.

(ii) In standard relational database theory, a tuple

t = Vl ... Vm in relation r is seen as representing the

formula r(v l ... Vra) in predicate logic. From the

present point of view, however, t represents an n-

predicate formula vii ... v in(v in+r. . Vim) in a

generalized predicate logic. (Note that vil ... vin

are values associated with predicate slots, while

v in+r . . Vim are values associated with object slots.)

From these points of departure, the analysis leads to the
conclusion that there is a close connection between (a)
database schemas, (b) semantical / conceptual models,
and (c) formal logical systems related to predicate
calculus. To be specific, we have seen that there is a
close analogy between database schemas in a
reconstructed relational system and vocabularies of non-
logical symbols in certain logical systems, and it has also
been shown that Icaros-type semantical models [4]
provide direct graphical representations of these database
schemas.

Note that the database schemas defined in this article
correspond to vocabularies that contain only constant
symbols and that database states (or instances) may be
regarded as conjunctions of ground atomic formulas.
Negation, disjunction, variables, and quantifiers should
also be possible to accomodate within a similar frame-
work, however.

A desirable property of a database state is that it is true
under some interpretation. This property, as we have
seen above, is related to a normal form based on
functional dependencies. Another desirable feature is
that distinct database states have distinct meanings as
defined in terms of formal interpretations. It is
conjectured that this feature is related to normal forms
based on multivalued and join dependencies.

It was noted in connection with Definition 1 that
database schemas may be regarded as graphs, in fact
acyclic graphs. Interestingly, it seems possible to
accomodate nested relations and complex objects in the
present approach by allowing cycles involving
attributes, and also to accomodate function symbols by
allowing cycles involving intentions. Also, I have
shown previously [4] that notions of object type and
inheritance can be defined in terms of Icaros-type
models.

References
[1] Date, CJ. An Introduction to Database Systems,
Vol. 1, 5th Ed., Addison-Wesley 1990.

[2] Fagin, F. A Normal Form for Relational Databases
That is Based on Domains and Keys. ACM TODS, VoL 6,
No. 3, Sept 1981.

[3] Fagin, F., A.O. Mendelzon & J.D. Ullman. A
Simplified Universal Relation Assumption. ACM TODS,
Vol. 7, No. 3, Sept 1982.

[4] Jonsson, D. Semantic Modeling Through Identification
and Characterization of Objects. SIGMOD RECORD,
VoL 19, No. 1, March 1990.

SIGMOD RECORD, Vol. 21, No. 1, March 1992 89

