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1. I n t r o d u c t i o n  

In formal logic, the definition and analysis of logical 
systems frequently proceeds as outlined below: 

(1) A non-empty set of (formal) languages is specified. 
Each such language may be identified with a non- 
empty set of well-formed formulas (wffs). A 
language/, may be specified by listing (i) a set of 
logical symbols (e.g., ---1, A, V), (ii) a set 
("vocabulary'9 V of non-logical symbo/s, and (iii) a 
set of formation rules showing how to form wffs 
from primitive (logical and non-logical) symbols 
and/or other wffs. Formal languages are often 
analyzed within some context of fixed sets of 
logical symbols and formation rules, so that 
attention is confined to some set of languages each 
of which corresponds to a particular vocabulary of 
non-logical symbols. 

(2) Given a formal language/, over a vocabulary V, a 
distinguished subset Syn of / .  is specified. For 
example, Syn may be defined recursively as the 
smallest set of wfffs containing (a) a finite set of 
stated ax/oms and (b) all wffs that may be deduced 
from wffs in Syn through the use of certain stated 
derivation rules. 

(3) A non-empty set I of (formal) interpretations of (all 
wffs in) L is specified. Each wff in I. may be 
characterized as being either true or not true under 
any particular interpretation in/. 

(4) A subset Int of I is specified. A distinguished 
subset Sern of/.  is then specified with reference to 
the formal interpretations in Int. For example, Sere 
may be defined as the set of wffs which are true 
under a/l interpretations in lot 

(5) The distinguished subsets 8yn and Sern are 
compared. (One frequently wants to show that Syn 
= Sern.) 

In this article, systems of database states will be 
analyzed in the spirit of steps (1) - (5) above. The 
analysis is based on the notion that although database 
states are not formulas in the strict sense - i.e., finite 
sequences of symbols - they may nevertheless be treated 
as are well-formed formulas in formal logic. As a 
consequence, the formal syntax and semantics of 
systems of database states may be analyzed in much the 
same way as the formal syntax and semantics of systems 
of well-formed formulas. 

The database system defined and discussed here is a 
reconstructed relational system. This article also 
introduces a more formal way of looking at Icaros-type 
semantic models as presented in [4]. Specifically, the 
database schemas to be defined below, and their 
graphical representations in particular, correspond to 
Iearos-type models. 

2. Databases  

In this section, database schemas and database states 
consistent with database schemas will be defined. In the 
definitions below, let S* (S +) denote the set of all (non- 
empty) subsets of S. As usual, f(S) = {./~0 It  ~ S }. 
Finally, ~f:X =~ Y' should be read .~:X ~ Y and 
.~X) = Y: 

Definition 1. A database schema is a tuple V = (K, I, Z~  
Zn, A, R, ~ ~i, ~a, P) satisfying the four conditions listed 
below. 

(1) K, I, Za,, Zn, A, and R are non-empty, pairwise 
disjoint sets, whose elements are referred to as 
values (or constants), intensions, object slots, 
predicate slots, attributes (or aspects), and relations 
(or relation nodes), respectively. 

Let Z denote Zo, u Z~. 

(2) x; ~i, ~a, and p are functions such that r :  I =~ K, 
:I ~ Z ,  ~a :A ~ Z, andp:A ~ R .  
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An intension i is said to connect k and z (symbolized 
k^i^z) iff x(/) = k and ~i(O = z, and an attribute a is said to 
connect z and r (symbolized z^a^r) iff p(a) = r and 

= z .  

(3) No slot is connected to some value by two distinct 
intensions. (Values connected to object slots serve 
as identifiers, and values connected to predicate 
slots serve as characterizers; cf [4].) 

(4) Every relation is connected to at least one object 
slot and at least one predicate slot. (Attributes 
connecting relations and object slots are called 
identification attributes, while attributes connecting 
relat ions and predicate  slots are cal led 
characterization attributes.) 0 

Definition 2. Alternatively, a database schema may be 
defined as a tuple (K, Zto, Zn, A, R, Dora, ~a, P) 
satisfying the three conditions listed below. 

(1) K, Zto, Zn, A, and R are non-empty, palrwise 
disjoint sets. 

(2) D o m ,  ~a a n d  p are functions such that 
Dora : Z ~ K +, k.Jza Z Dora(z) = K, ~a : A ~ Z, and 
p : A ~ R. (Sets of the form Dom(z) for some z E Z 
are called doma/ns). 

(3) Every relation is connected to at least one object slot 
and at least one predicate slot 0 

Proposition 1. Definitions 1 and 2 are equivalent. That 
is, for each V = (K, I, Zto, Zn, A, R, to, ~i, ~a, P) 
satisfying (1) - (4) in Definition 1 one can define a 
function Dora such that V" = (K, Z~, Zn, A, R, Dora, ~a, 
p) satisfies (1) - (3) in Definition 2, and for each V' 
satisfying (1) - (3) in Definition 2 one can similarly 
define I, ~ and (i so that (1) - (4) in Definition 1 are 
satisfied. 

Proof sketch. Given V, define Dom : Z ~ K + by Dora(z) 
= {k I k^i^z for some i ~ I].  Given V; define I = {(k, z) I 
z E Z and k e Dora(z)}, K((k, z)) = k, and ~i (k, z)) = z. ¢ 

Note that according to Definition 1, a database schema 
may  be regarded  as a graph with  nodes  
R u Zoo u Zn u K, edges A u I, source function 
p u ~i (say), and target function ~ u r(say). Definition 
1 is more appealing from a formal point of  view, but 
Definition 2 is closer to current database theory, so it is 
the one that will be used below. 

Example 1. A reconstructed relational database schema 

K= String k.J Cardinal (predefined sets); 
Za~ = {Person}, Zn = {Years}; 
A = {Any person, Husband, Wife, 

Age, Duration of marriage}; 
R = {M, r2}; 
D o . P e r s o n )  = String, Dora{years) = Cardinal; 
Ca(AnY person) = Person, Ca(Husband) = Person, 

tg, aw' e) = Person, Ca(Age) = Years, 
Ca(Duration of marriage) = Years; 

p(Any person) = {r l},  p(Husband) = {r2}, p(Wife) = {r2}, 
p(Age) = {r l},  p(Duration of marriage) = {r2}; 

A convenient and compact graphical represepmtlon of the 
schema in Example 1 is shown below. In this 
representation, relations are shown as rectangles, object 
slots as circles, predicate slots as ellipses, and attributes 
as edges connecting rectangles with circles or ellipses. 
Rectangles, circles, ellipses, and edges are labeled with 
names of  the eoresponding relations, object slots, 
predicate slots, and attributes, respectively, while 
domains associated with object slots or predicate slots 
are shown within parentheses in the corresponding 
circles or ellipses. 

Example 2. An lCAROS-type graphical model for the 
database schema defined above 

k \Wife / Duration 
\ / of marriage 

,u,  noN o I 
As a third option, the schema can be described by means 
of pseudo-DDL statements. 
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Example 3. Pseudo-DDL statements.for the database 
schema defined above 

ObjectSIot Person is String; 
PredicateSIot Years is Cardinal; 
Relation rl is Any person, Age; 

Attribute Any person is Person; 
Attribute Age is Years; 

Relation r2 is Husband, Wife, Duration of marriage; 
Attribute Husband is Person; 
Attribute Wife is Person; 
Attnbute Duration of marriage is Years; 

Definition 3. Given a database schema V = (K, Z ~  Zn, 
A, R, Dom, ~a, P), let Allocto : R -o A + he the function 
given by Allocto(r) = {a I z^a^r for some z e Zm}. 
Similarly, Allocu : R ~ A + is the function given by 
Allocn(r) = {a I z^a^r for some z e Zu}. Let furthermore 
Fco be the function defined on R given by Fro(r) = 
{tYro I Yto : Alloc ~r)  .---> K, where ?'~a) E Dom( ~a(a) ) for 
every a E Alloc ~r )  } , and let Fn be the function defined 
on R given by Fn(r) = { ~'u I 'Yu : Allocn(r) ~ K, where 
~'n(a) E Dorn( ~ (  a)) for every a E Allocn( r) }. 

A tuple consistent with r for some r e R is a pair 0'to, ~u) 
F d r )  x rn(r). A database state consistent with V is a 

function S defined on R such that S(r) is a finite subset of 
F d r )  x Fn(r) for every r ~ R. The set of all database 
states consistent with V constitutes the state space 
spanned by V. 0 

Note that the concepts of database schema, database 
state, and state space spanned by a particular database 
schema are analogous to the formal logic notions of 
vocabulary of non-logical symbols, well-formed 
formula, and language over a particular vocabulary, 
respectively. 

Database states may be represented in the usual tabular 
form. (Note, however, that in the present ease slots as 
well as attributes are shown in the heading of each 
relation table.) 

Example 4. A database state consistent with the database 
schema defined above 

rl 

Any person Age 
Person Years 

Peter 36 
Mary 36 

r2 

Husband Wife Duration of marriage 
Person Person Years 

Peter Mary 3 

A database state presupposes a database schema, and it 
is sometimes essential to consider database states in 
conjunction with corresponding database schemas. 

Definit ion 4. A database  ( instance)  is a pair 
(V, S), where V is a database schema and S is a database 
state consistent with V. 0 

To relate the present reconstruction of relational 
databases to previous notions, note that each of the 
terms domain and attribute is somewhat ambiguous in 
conventional relational database theory. First, "domain" 
may refer to a data type (e.g., "string") as well as a 
"semantic type" (e.g., "supplier name") [1]. Second, 
"attribute" may refer to an attribute name as well as an 
attribute occurence. (The latter distinction is necessary 
in conventional database theory, since columns - i.e., 
attribute ocurrences - in different relations may have the 
same name - i.e., attribute name. In queries, update 
operations etc, attribute occurences are usually identified 
by relation name / attribute name combinations.) 

Also note that semantic types and attribute names are 
overlapping notions: they both serve to express semantic 
connections between (attribute ocurrences in) different 
relations, and either notion may be used for this 
purpose. (That is, semantic interconnections can be 
expressed by leUing relations share either attribute names 
or domains regarded as semantic types.) In the present 
approach, object and predicate slots are shared between 
relations and express semantic interconnections. 

Table 1. Conventional notions and corresponding 
notions in the present approach 

Conveqtional notion Present notion 

Attribute (occurence) Attribute 
Relation_name.attribute_name 

(Semantical) domain Slot 
Attribute (name) 

(Data) domain Domain 
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Note that in the present approach the notions of attribute 
name and attribute occurence coincide. (Expressed in an 
equivalent way, attribute names are globally unique.) 
Note, also, that whereas the notion of intention is 
redundant in the sense that every intention is identified 
by a unique slot-value pair, the situation is different for 
attributes, as shown by Examples 1--4 above. 

Finally, the distinction between identification attributes 
and characterization attributes in the present approach is 
analogous to the distinction between key and non-key 
attributes (respectively) in the conventional approach. 
There is an important difference, though, in that keys are 
independent of interpretations of databases - i.e., they 
are formal or syntactic in nature- whereas identification 
and characterization attributes have specific semantic 
significances, as will become apparent below. 

In view of what has just been said, it is possible to 
approximate the database schema in Example 3 using a 
Data Definition Language supporting keys and domains. 

Example 5. An approximate rendering of the database 
schema in Example 3 

Domain Person is String; 
Domain Years is Cardinal; 
Relation rl is Any person, Age; 

Key is Any person; 
Attribute Any person is Person; 
Attribute Age is Years; 

Relation r2 is Husband, Wife, Duration of Marriage; 
Key is Husband, Wife; 
Attribute Husband is Person; 
Attribute Wife is Person; 
Attribute Duration of Marriage is Years; 

3. Functional normal form 

Definition 5. Given a database instance (V, S>, a relation 

r E R is said to be in.functional normalforra (FNF) iff for 

anY (~YI~ ~'In), (~'2o~ 72n) E S(r) it holds that 71w= 72oj 
implies 71~r = 'Y2n- <V, ~ is said to be in FNF iff every 

rE  R is in FNF. 0 

In other words, (V, S) is in FNF iff for each relation the 
set of all identification attributes constitutes a key - 
though not necessarily a minimal key, or a unique key. 

Functional normal form is conceptually simple, then, but 
that does not mean that it is simplistic or naive. While it 

is beyond the scope of this article to compare ~ to 
traditional normal forms, I shall indicate the main thrust 
of the argument. FNF is based on the notion that a 
distinction should be made between "data-structuring" 
vs. "incidental" [3] or "constitutive" vs. "qualifying" 
dependencies [4], the former type of dependency being 
more relevant for database design than the latter. In the 
present approach, specifically, only functional depen- 
dencies according to which a characterization attribute is 
functionally dependent on the full set of identification 
attributes are regarded as data-structuring, and only such 
dependencies are taken into account when deciding 
whether or not a database state is in FNF. (Note that the 
designation of certain functional dependencies as data- 
structuring presupposes and is relative to the designation 
of certain slots as identification slots. The implications 
of this 'relativity principle' cannot be pursued here, 
however.) 

Incidentally, if an FNF relation is subject to no other 
constraints (apart from domain constraints) than those 
implied by its being in FNF, then the identification 
attributes constitute a candidate key 0.e., a nfmimal key) 
and the relation is in Fagin's [2] domain-key normal 
form (DKNF). Also, a relation in DKNF is in FNF 
provided that the set of identification attributes coincides 
with the set of key attributes. Loosely speaking, FNF is 
equivalent to DKNF as far as data-structuring functional 
dependencies as defined above are concerned. 

4. Interpretations 

Definition 6. Given a database schema V, a tuple 
(0 ,  Fw, Fn) satisfying conditions (1) - (3) below 
constitutes an interpretation of any database instance of 
the form (V, S~. 

(1) 0 is a non-empty set of "objects". 

(2) Fw is a function defined on R such that F~r)  is a 
function defined on Alloc~o(r) such that 
FdrXa) : Dora(Ca(a)) .-~ O. 

Let Q be the function defined on R given by Q(r) = 
{ ¢ I ¢ : Alloc~r) .---~ O }. (The elements of Q(r) are "object 
constellations" associated with r.) 

(3) Fn is a function defined on R such that Fn(r) is a 
function defined on A l l o c x ( r )  such that 
Fn(r)(a) : Oorrg~a(a)) -.-~ Q(r)*. 0 
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Definition 7. (i) Given F ~  let Frobe the function defined 
on R such that F ~  r) : F~r )  ~ Q(r) is the function defined 
by the condition ~ = Fdr)(7'~ iff ~a)  = Fdr)(a)(7'da)) for 
every a • Alloc~r). (ii) Given Fn, let Fnbethe function 
defined on R such that Fn(r) : Fn(r) ~ Q(r)* is the 
function defined by the condition gp • Fn(r)(Tn) iff 
~a)  • Fn(r)(a)(Tn(a)) for every a • AUocn(r). (That is, 
Fn(r)(Yn) = f'~aEAllocn(r) Fn(r)(a)(Tn(a)).) 0 

One will normally assume that F~(r)(Fro(r)) 
Fn(r)(Fn(r)) for every r • R. This means that every object 
constellation that can be characterized by available 
characterizers can also be identified by available 
identifiers. As a consequence, tuples will not contain 
'null values' associated with identification attributes. 
(Cf. 'entity integrity' as defined in [I].) 

On the other hand, one could also assume that 
Fn(r)(Fn(r))  ~ Fro(r)(Fro(r)) for every r • R (or 
equivalently, Fn(r)(a)(Dom(~(a))) ~ F~(r)(Fdr)) for 
every r • R and every a • Allocn(r)). This would mean 
that every object constellation that can be identified by 
available identifiers can also be characterized by 
available characterizers. As a consequence, tuples will 
not contain 'null values' associated with characterization 
attributes. 

Definition 8. Let I = (0, F ~  FrO be an interpretation of 
(V, S). S is said to be true in I iffFdr)(Tro) • Fn(r)(7~ 
for every (7~ 7n) • S(r) for every r • R. 0 

5. Discriminating interpretations 
To be able to characterize database instances from a 
semantical point of view, notions of discriminating 
interpretations will be defined. 

Definition 9. Fro is said to be discriminating iff kl ~ k2 
implies F~r)(a)(kl) ~ Fdr)(a)(k2) for every r e R and 
every a • Allocro(r). Similarly, Fn is said to be 
discriminating iff kl ~ k2 implies Fn(r)(a)(kl) n 
Fn(r)(a)(k2) = O for every r • R and every a e Allocn(r). 

An interpretation (0 ,  Fro, Fn) is said to be m-dis- 
criminating, a-discriminating, and discriminating iff, 
respectively, Fro, Fn, and each of Fro and Fn are 
discriminating. 0 

Intuitively, an c0-discriminating interpretation is one 
where distinct identifiers refer to distinct objects. In a n_ 
discriminating interpretation, distinct characterizcrs refer 
to disjoint sets of object constellations. If in addition 

F n(r)(a)(Dom(~a(a)))  = F ro(r)( rro(r)), then the 
characterizers in Dom(~a(a)) provide an exhaustive 
classification into non-overlapping categories of all 
object constellations in F~r)(F~r)) .  

6. Syntax vs. semantics 
Speaking in the terms used in the Introduction, we have 
now shown how to define V, we have defined L, given 
V, and we have defined Syn, I, and Int, given L We 
shall finally define Sore 1 and Sore2 and show that 
Sy,n = S a m  I = Sore2. (Note that in this ease, Sere  I 
and Sore2 are defined as sets of wffs which are true in 
at least one interpretation in Int rather than all such 
interpretations.) 

Proposition 2. If D = (V, S) is in FNF, then there is some 
discriminating interpretation I of D such that S is true in L 

Proof sketch. Let D = (V, S) be any database instance, 
and set I = ~K, F ~  FQ, where (i) F~r)(a)(k) = k for every 
r • R, a • Allocro(r) and k • Dora(Ca(a)), and (ii) 
Fn(r)(a)(k) = {Tro I (Ta 7r~ • S(r) and 7n(a) = k} for every 
r • R, a • AUocn(r) and k • Dora(Ca(a)). The following 
claims are easily verified: (a) I is an interpretation of D; 
(b) Fro is discriminating; (c) if (V, S) is in FNF then F~ is 
discriminating; (d) F ~ r ) ( 7 ~  = 7ro for every r • R and 
7ro• F~r); (e) Fn(r)(yn) = {7ro I (7~ 7n) • S(r)} for every 
r • R and 7n • Fn(r). Now, if (7ro, 7n) • S(r) then 
7ro • {Tro I (7~ Tr~ • S(r) l. That is, F~(r)(Tro) • Fn(r)(7~ 
for every r • R and every (7~ 7n) • S(r). Hence, S is true 
inL0 

Proposition 3. If there is some n-d iscr imina t ing  
interpretation I = (0, For Fn) of D = (V, S) such that S is 
true in I, then D is in FNF. 

Proof. Assume that S is not in FNF, so that there is 

some a 0 • AUocn(r) for some r • R such that (7~ 71n), 

( r a  72n) • S(r) and 71n(ao) • r2n(ao). Assuming that S is 
true in L F~r)(Tro) • Fn(r)(71Q and Fro(r)(Tro) • 
Fn(r)(~n), so Fn(r)(71 n) n Fn(r)(y2n) * 0 .  By Definition 

7, Fn(r)(nn) c en(r)(ao)(nn(ao)) and Fn(r)(r2 n) = 
Fn(r)(ao)(72n(ao)). Hence, Fn(r)(ao)(71n(ao)) n 
Fn(r)(ao)(72n(ao)) , ~ although 71n(ao) , ~2n(ao), so Fn is 
not discriminating. Therefore, if S is not in FNF then it 

is not the case that S is true in some n-discriminating 
interpretation of (V, S). This proves Proposition 3. 0 
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P r o p o s i t i o n  4. T h e  following three conditions are 
equivalent: (a) D is in FNF; (b) D possesses a true 
discriminating interpretation; (c) D possesses a true n- 
discriminating interpretation. 

P r o o f .  (a) implies (b) according to Proposition 2, (tO 
obviously implies (c), and (c) implies (a) according to 
Proposition 3; hence, all three conditions are equivalent. 
0 

7. Conclusions and research directions 
The idea of regarding a database state as a wff in a 
formal language whose syntax and semantics is to be 
specified leads naturally to a reconstruction of relational 
database theory when combined with two other ideas: 

(i) For reasons sketched above, the attribute-domain 
dichotomy in standard relational database theory 
should be replaced by an attribute-slot-domain 
trichotomy. 

(ii) In standard relational database theory, a tuple 

t = Vl ... Vm in relation r is seen as representing the 

formula r(v l  ... Vra) in predicate logic. From the 

present point of view, however, t represents an n- 

predicate formula vii ... v in(v in+r. .  Vim) in a 

generalized predicate logic. (Note that vil ... vin 

are values associated with predicate slots, while 

v in+r . .  Vim are values associated with object slots.) 

From these points of departure, the analysis leads to the 
conclusion that there is a close connection between (a) 
database schemas, (b) semantical / conceptual models, 
and (c) formal logical systems related to predicate 
calculus. To be specific, we have seen that there is a 
close analogy between database schemas in a 
reconstructed relational system and vocabularies of non- 
logical symbols in certain logical systems, and it has also 
been shown that Icaros-type semantical models [4] 
provide direct graphical representations of these database 
schemas. 

Note that the database schemas defined in this article 
correspond to vocabularies that contain only constant 
symbols and that database states (or instances) may be 
regarded as conjunctions of ground atomic formulas. 
Negation, disjunction, variables, and quantifiers should 
also be possible to accomodate within a similar frame- 
work, however. 

A desirable property of a database state is that it is true 
under some interpretation. This property, as we have 
seen above, is related to a normal form based on 
functional dependencies. Another desirable feature is 
that distinct database states have distinct meanings as 
defined in terms of formal interpretations. It is 
conjectured that this feature is related to normal forms 
based on multivalued and join dependencies. 

It was noted in connection with Definition 1 that 
database schemas may be regarded as graphs, in fact 
acyclic graphs. Interestingly, it seems possible to 
accomodate nested relations and complex objects in the 
present approach by allowing cycles involving 
attributes, and also to accomodate function symbols by 
allowing cycles involving intentions. Also, I have 
shown previously [4] that notions of object type and 
inheritance can be defined in terms of Icaros-type 
models. 
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