
Bui ld ing R e u s a b l e D a t a R e p r e s e n t a t i o n s w i t h F a c e K i t

R o g e r King
Michael Novak

Department of Computer Science
University of Colorado

Boulder, Colorado 80309

Abstract

FaceKit is a toolkit for designing interfaces
to object-oriented databases. It provides users
with a set of tools for building custom interfaces
with minimal programming. This is accomplished
by combining techniques from the realm of User
Interface Management Systems (UIMS) with a
built-in knowledge about the specific kinds of
techniques used by object-oriented databases. One
of the main features of FaceKit is the ability to
rapidly create reusable graphical constructs for
representing schema or data objects. These con-
structs are stored within the database as methods,
often dependent on attribute data. Building up a
library of these data representations facilitztes reu-
sability within a variety of databases.

Keywords: graphical interfaces, object-oriented
databases, user interface management systems.

1. I n t r o d u c t i o n

FaceKit is a window based, interactive
graphical system for designing graphics-based
interfaces for object-oriented databases. Since we
do not support a formal design phase, some peo-
ple might call FaceKit a tool for building inter-
faces. Although more of a UIMS than a simple
database interface, FaceKit is intended for design-
ing a particular set of interfaces - those dealing
with object-oriented databases. FaceKit knows
about schemas, type-subtype hierarchies,
methods, and database tools such as data
definition languages (DDL). Therefore,
knowledge about the types of interfaces being
designed and the objects that they manipulate is
built into FaceKit. This knowledge allows for
default representations of database objects and for
representations defined or modified by the user.
Both default and user-defined representations

inherit properties in the same way as the database
objects they represent. This allows the user to
easily change a class of object representations and
also leave the defaults in effect where desired.

The main goals of FaceKit are:

- Incorporation of database specific
knowledge into a UIMS type tool.

- Encapsulation of interface constructs
into the database.

- A unified data model for the interface,
and the database.

- Building of a database application and
its corresponding interface as an
integrated unit.

- Faster and easier design of database
interfaces with minimal programming.

- An extensible framework of reusable
graphical representations of database
constructs.

- Examination of families of interfaces
designed for a set of related applications.

In this paper, we will explain how FaceK.it is
used to create a variety of graphical representa-
tions of database objects (specifically data
objects), and how this affects designing database
interfaces in general. Since the incorporation of
database specific knowledge into FaceKit allows
the interface being built to "share" the database
data model and to use the tools provided by the
database, it becomes possible to rapidly build a
large set of representations for a data object. This
also allows for pieces of an interface to be used

This wock was supported in part by ONR under ¢x:mi.rJet
numbers NO0014-86-K-0054 and N0014-88-K-0559 and in ~ by
USWEST under contract number OCG0683B.

SIGMOD RECORD, Vol. 21, No. 1, March 1992 11

for building other interfaces, since everything is
accessible through the database. By easily creat-
ing a "library" of object representations, an inter-
face designer can create a set of interfaces, each
with "tailored" functionality. This helps to avoid
having to decal with large all purpose interfaces
that are typically unwieldy and perform no single
function particularly well. For a more complete
description of FaceKit, please see [KIN89].

1.1. Motivation

In the last few years there has been much
interest in graphical database interfaces such as
ISIS [GGK85], Ski [KiM84], and SNAP [BrH86],
which allow schema manipulation in an interac-
tive graphical environment, as well as office forms
systems like FORMANAGER [YHS84], Freeform
[KIN87], and SPECDOQ [KGM84]. There has
also been a whole body of work on general pur-
pose interface creation in the UIMS field. The
main emphasis in much of this research has been
on dialogue control (the bridge between the inter-
face and the application) [Gre86]. Although there
have been systems with dialogue models based on
transition networks, grammars, and events, these
system share a common perspective. UIMS's such
as ADM [SRI-I85], Grins [ODR85], GROW
[Bar86], Menulay [BLS83], MIKE [Ols86], and
Trillium [Hen86] all view an interface as a dialo-
gue between the user and the application. Work
has also been done on the gathering of input and
presentation of output, including Peridot [Mye87]
and Squeak [Car87]. Some other systems have
focused on the relationship between the interface
and application data model. Filters [Ege88] and
Coral [SzM88] each provide a method of specify-
ing relationships between application and inter-
face objects, while GWUIMS [SHB86] and Hig-
gem [HuK88] beth allow for sharing of data
between the application and the interface.
Recently, there has also been some work done on
providing a fighter coupling between the applica-
tion and the interface [WBB90] in order to give
the interface more feedback about application
data.

There are two main reasons why we feel that
general purpose UIMS's do not address our needs.
First, although we have seen systems that can
communicate with application data in some
manner, a general purpose UIMS has no
knowledge of database schemas. Second, unlike
most interfaces, creating a new database interface

often involves creating a new application.

In order to support the desired type of inter-
face, we wish to allow the user to interactively
design both an interface and its corresponding
application simultaneously. By integrating some
database and UIMS technology [Gre87,Ols87],
FaceKit treats the interface being designed as an
integrated unit with the database, rather than as a
dialogue between a distinct user interface and an
application. The finished interface will use the
database data model and have access to the data-
base schema and to database tools such as query
languages and methods. All these tools are also
available while using FaceKit to build the inter-
face. This gives the FaceKit user more ways of
rapidly constructing an interface. Instead of writ-
ing code to generate an interface technique, the
user may invoke a method in the database, or use
a query language to define the technique. Data-
base objects, methods, etc. may also be incor-
porated directly into the interface, since interface
objects have the same structure as database
objects and are also stored in the database. This
allows for "realistic" default interfaces and faster
specification of representations.

1.2. Architecture

FaceKit is built on top of an object-oriented
DBMS named Cactis [HuK87,HuK89]. Cactis
views an application environment as a collection
of constructed objects. An object may have attr/-
butes and relationships, both of which are typed.
A connector allows a relationship to be applied to
a certain object. Connectors may also have wires
that pass in.formation. For example, figure 1
shows a partial data definition file with object
types country and site. Both have some simple
type and complex type (nametype and border)
attributes and at least one connector. The connec-
tor of type country_site allows for the creation of
a relationship between objects of type country
and type site. Attributes may also be functionally
derived. For example, the attribute sites_in (of
country), uses the connector sites (sites.w0 is a
wire) to iteratively find all instances of type site
connected to an instance of country. The attribute
compute r sa t (of site) finds all instances of type
computer connected to an instance of type site.

FaceKit uses the data model and the data-
base management tools provided by Cactis for
data and schema manipulation. Communication

12 SIGMOD RECORD, Vol. 21, No. 1, March 1992

instance type country
relationships

plug sites
attributes

inst
name

border
new sire in
mapj:Irep
sites_in

end;

: country_site;

: int32;
: nametype;
: bordtype;
: int32 := add site(inst);
: int32 := draw map(insLn~me,border);
: int32 := iteram map : int32

init 0
for each wO in sites do

map := lznp + sites.wO
end;

instance type site
relationships

socket entry : country_site;
plug to_site : si t .si te;
socket from_site : sit .site;
plug computers : sit~comp;

attributes
inst : int32;
siu~name : nametype;
country_of : int32 important := entry.w0;
loc : pairtype;
eomputers_drep: int32 := draw_all_eomps(inst.site name);
map_site_drep : int32 := draw_site(site_name,loc);
connccLdmp : int32 := eormeeLsitefmst,loc);
computers_at : int32 := iterate map : int32

init 0
for each wO in computers do

Imp := t r a p . computers.wO
end;

end;

Figure 1

with these Caetis tools and coordination of inter-
face tasks is done by the representational and
operational components. The primary responsi-
bility of the representational component is manag-
ing the visual representations of database objects
and I/O while the operational component is
responsible for processing user queries and send-
ing the results to the representational component
so that the correct screen updates will be per-
formed.

Since this paper concentrates on representa-
tions of data objects, we are only going to discuss

the representational component. For the purpose
of this discussion, database object, or object, may
refer to a constructed object, relationship, or attri-
bum. The representational component builds,
maintains and invokes the methods used to pro-
duce the visual representations of objects. Not
only does this make the storage of interface
descriptions convenient, but it also allows opera-
tions to be functionally dependent on anything
present in the database. This allows an interface to
change its behavior as the database is modified
without making representations created earlier

SIGMOD RECORD, Vol. 21, No. 1, March 1992 13

Define Ooer~¢ton$
Select In ter face
Compile In te r face
E~cute In te r face

Exit

object
a t t r i b u t e

re le t l onsh t
method

i Schema | Current Object:

i Vnmark Current Object
ieeizo Current Object
Reshape Current Object
pelete Current Ou~ect

I "~* C.rr,nt object
I ==a =~v Obpct
L Save Representation
[Repalnt Screen

Object Type: country

Figure 2

obsolete.

2. Designing FaeeKit Data Representations

The FaceKit approach to designing inter-
faces is somewhat different from the common
UIMS approach. Traditionally, UIMSs have
allowed the user to specify screen layout, then
bind each possible user action to a specific appli-
cation subroutine. Often, interface routines for
the application program to call are also provided.
Our approach allows the user to define what we
view as two somewhat different aspects of the
interface: appearance and functionality. It is the
appearance part in which we are interested here,
specifically the appearance of data objects.

When defining appearance we are really
defining two kinds of visuals, interface constructs
and database objects. By interface constructs we
mean items such as menus, scrollbars, etc., as well
as concerns like screen brightness, icon sizes, etc.
Defining the appearance of database objects
involves specifying representations for a class of
objects. A representation may be identical for
each data object in a class or it may be data
dependent. In fact, it could even be dependent on
external data. For example, we may use the sys-
tem clock to determine the brightness of a picture
that represents the data object sun.

By defining the appearance of database
objects separately, we need not worry about them
when defining functionality. The type of the query
result determines the screen appearance. Any type

that has no user-defined representation will use a
built-in default representation. For example, if a
query results in an instance of type country, the
interface uses a previously defined represe,mtion
of country.

2.1. Using FaceKit Data Representations

To illustrate how representations are defined
and used, we examine an example that describes
CSNET sites. Figure 2 shows a representation
definition window. Currently, the user is defining
data representations, however, the same interface
is used to define schema representations. The
object instance being viewed is of type country
(instances can be listed by selecting List
Instances from the menu). The two representa-
tions for an instance of type country, available at
this time, are the default and map drep. The
default invokes a method that provides a listing of
each attribute, along with its type and value. This
method is inherited from the "universal" class that
all classes are a subset of. Map_drep is a user-
defined representation that is stored as an attribute
of the type country. The user in figure 2 selects
map drep. The result of this selection is shown
in figure 3.

This representation is a drawing of a particu-
lar country and some of the CSNET sites in that
country. It is created by associating a method
named d r a w ~ n a p with the attribute called
map drep. The method is invoked by referencing
the attribute map_drep. The data that this

14 SIGMOD RECORD, Vol. 21, No. 1, March 1992

Define Operations
3elect Interface

Compile Interface

~xecute interface

Exit

attribute

relatlonshi

method
exit

Schema |Current Object: I~ Object Type: country

gSIIIE! flap
(II111;¢4 Sl;at, eg)

k • ~ ucdev i s. Ildu • c l . CO | o rado , edu , ~

"r-Z21_ .

Figure 3

method needs in order to draw this representation
is also stored in other attributes of the type coun-
try. This encapsulation allows FaceKit to easily
keep track of the various representations available
for a data type. Since FaceKit keeps track of the
representations available for various object types,
a library of data representations can quickly be
built. Not only does this make it easy to build an
interface, it also allows for reuse of the data
representations when building multiple interfaces.

The availability of default representations,
combined with the reusability of user created
representations, makes FaceKit more interactive
than many systems. Although code has to be writ-
ten to initially create data representations, they
can then be "plugged into" an interface interac-
tively. Also, representations may be built up from
other representations that already exist, rather than
having to be built from scratch.

2..2. Storing Data Representations

FaceKit data representations are stored as
reusable methods dependent on some set of object
attributes rather than as simple bitmaps. There-
fore, although a representation of an object could
be as simple as an attribute that is merely a bit-
map, this is not the way that most data representa-
tions would be done. For example, the way that
the map shown in figure 3 is stored and drawn can

be seen by exagaining the section of a data
definition file shown in figure 1. The method for
drawing the map is connected to the attribute
map_drep and dependent on the attributes inst,
name, and border. Border is the attribute that
contains the actual locations for drawing a border
for the given country. These attributes never need
to be explicitly passed to the method because they
are defined in the schema and thus encapsulated in
an object type. Therefore, each method already
knows what its arguments are.

The sites in the map are drawn by following
the sites in attribute to the appropriate set of site
objects. Each site is drawn by the representation
method attached to the site attribute
map_site_drep. This "layered" representation
approach allows other representation methods to
also use map_site_drep if desired. Also, a site
could be included within many different maps and
no new representations need be developed for it.
Note that there could be many different represen-
tations available for a site. It would then be up to
the person developing a map drawing method to
choose which one they wanted to use.

Another important aspect of the storage
method used is the transparent integration of new
and old data representations. All the data
representations created previously are also avail-
able to a user and look no different than newly

SIGMOD RECORD, Vol. 21, No. 1, March 1992 15

created ones. These previously created represen-
tations may be used just like new ones for build-
ing new interfaces. This is a key faaor in provid-
ing representation reusability.

3. Conclusions

The main objective of FaceKit is to explore
ways of rapidly and easily providing new inter-
faces to object-oriented databases. One of the
necessities for accomplishing this, was to provide
tools for creating and maintaining data representa-
tions. This capability has proven to be an interest-
ing research area of its own. We have found that
not only is the ability to create a library of
representations important to FaceKit, it is also a
good way to view database representatiom in gen-
eral.

By taking this approach, a designer will
have some building blocks for creating database
interfaces. Also, since the representations are all
stored within the database and transparent to the
user, they are easy to maintain. Since the struc-
ture of the representation data is compatible with
other database data, maintaining consistency as
the database changes is kept as simple as possible.
This compatibility also makes it possible to use a
query language to manipulate data representations
in the same manner as any other database objects.

References
[Bar86] P. S. Barth, "'An Object-Oriented

Approach to Graphical Interfaces", ACM
Transactions on Graphics 5, 2 (Ap~
1986), 142-172.

[BrH86] D. Bryce and R. Hull, "'SNAP:. A
Graphics-based Schema Manager",/EEE
Conference On Data Engineering, 1986,
151-164.

[BLS83] W. Buxton, M. R. Lamb, D. She~aaan and
K. C. Smith, "Towards a Comprehen.~'ve
User Interface Management System",
Computer Graphics 17, 3 (July 1983), 35-
42.

[Car87] L. Cardelli, "Building User Interfaces by
Direct Manipulation", Digital Systems
Research Center Tech. Report, October
1987.

[Ege88] R .K . Ege, "'Defining Constraint-Based
User Interfaces", Data Engineering l I , 2
(June 1988), 54..63.

[GGK85] K . J . Goldman, 8. A. Goldman, P. C.
Kanellalds and S. B. Zdonik, "ISIS:

[Gre86]

[Gre87]

[Hen86]

~uK87]

[HuK88]

[HuK89]

[KiM84]

[KIN87]

[Kl~q89]

[KGM84]

[Mye87]

[ODR85]

Interface for a Semantic Information
System", $ 1 G M O D Conference
Proceedings, May 1985, 328-342.

M. Green, "A Survey of Three Dialogue
Models", ACM Transactions on Graphics
5, 3 (July 1986), 244-275.

M. Green, "'Directions for User Interface
Management Systems Researeh",
Computer Grapidcs 21, 2 (April 1987),
113-116.

D. A. Henderson, "The Trillium User
Interface Design Environment", CHI 86
Proceedings, April 1986, 221-227.

S. Hudson and R. King, "Object-Oriented
Database Support for Software
Environments", SIGMOD Conference
Proceedings, May 1987.
S. Hudson and R. King, "Semantic
Feedback in the Higgens UIMS", IEFEE
Transactions on Software Engineering 14,
8 (August 1988).

S. Hudson and R. King, "Cactis: A Self-
Adaptive, Concurrent Implementation of
an Object-Oriented Dm~hase Management
System", ACM Transactions on Database
Systems 14, 3 (Sept. 1989), 291-321.

R. King and S. Melville, "'Ski: A
Semantic-Knowledgeable Interface",
VLDB Conference Proceedings,
Singapore, August 1984.
R. King and M. Novak, "Freeform: A
User-Adaptable Form Management
System", VLDB Conference Proceedings,
Brighton, England, 1987.

R. King and M. Novak, "FaceKit: A
Database Interface Design Toolkit",
VLDB Conference Proceedings,
Amsterdam, The Netherlands, August,
1989, 115-123.
H. Kitagawa, M. Gotoh, S. Misaka and M.
Azmna, "Forms Document Management
System SPECDOQ - Its Archkecture and
Implementation", SIGOA Conference
Proceedings, June 1984, 132-142.

B. A. Myers, "Creating Dynamic
Interaction Techniques by
Demonstration", CHI + GI , 1987, 271-
278.
D. R. Olsen, E. P. Dempsey and R. Rogge,
"Input/Output Linkage in a User Interface
System", Computer GrapMcs 19, 3 (July
1985), 191-197.

16 SIGMOD RECORD, Vol. 21, No. 1, March 1992

[0~s86]

[0~7]

[SPd-~85]

[SHB86]

[SzM88]

[WBB90]

[YI-IS84]

D. R. Olsen, "MIKE: The Menu
Interaction Kontrol Environment", ACM
Transactions on Graphics 5, 4 (October
1986), 318-344.

D. R. Olsen, "Larger Issues in User
Interface Management", Computer
Graphics (ACM SIGGRAPH Workshop on
Software Tools for User Interface
Management 21, 2 (April 1987), 134-137.

A. J. Schulert, G. T. Rogea's and J. A.
Hamilton, "ADM - A Dialog Manager",
CHI 85, April 1985, 177-183.

J. L. Sibert, W. D. Hurley and T. W.
Bleser, "An Object-Oriented User
Interface Management System",
Computer Graphics 20, 4 (August 1986),
259-268.

P. A. Szekely and B. A. Myers, "A User
Interface Toolkit Based on Graphical
Objects and Constraints", OOPSLA
Proceedings, 1988, 36-45.

C. Wiecha, W. Bennett, S. Boies, J. Gould
and S. Greene, "ITS: A Tool for Rapidly
Developing Interactive Applications",
ACM Transactions on Information Systems
8, 3 (July 1990), 204-236.

S. B. Yao, A. R. Hevner, Z. Shi and S.
Luo, "FORMANAGER: An Office Forms
Management System", A CM Transactions
on Office Information Systems 2, 3 (July
1984), 235-262.

S IGMOD RECORD, Vol. 21, No. 1, March 1992 17

