
Tapes Hold Data, Too:

Challenges of Tuples on Tertiary Store

Michael J. Carey*

1 Introduction

Enormous quantities of data are being accumulated by both

the commercial and scientific communities. In the hope that

analyzing past activities will help them improve their busi-
ness (e.g., profile sales by customer groups and products
for the last 24 months), many commercial enterprises keep
a record of every customer transaction they have ever per-
formed, typically in some DBMS. Yet, the total volume of

Laura M. Haast Miron Livny”

data generated by such an enterprise ia in most cases larger

than disks can (afordably) accommodate. Thus, the com-

mercial communlt y is increasingly driven to store data off-
line on less expensive media. Tertiary stores offer virtually
unlimited capacity, at a lower price and with a smaller foot-

print than dwk. Since today most DBMSS only operate on

disk resident data, data on tertiary store can no longer be

queried without loading it back onto disk.

Tertiary devices are routinely used by the scientific com-

munit y to store vast amounts of measured and derived data.

Typically, the data ia stored es files and is not under the

control of a DBMS. Many scientific applications, such as

the global change studies that the Earth Observing System

(EOS) and Project Sequoia [15] will enable, require advanced

data analysis capabtities, and would like to use a DBMS for

relating and tracking the data. Unfortunately, aaide from

met ad at a management, today’s DBMSS have little to offer

these applications. They can neither handle the volume of

data required by the applications, nor can they access the

media on which the data is (and due to price and volume,

will continue to be) stored.

Tertiary devices have long been important to the commer-

cial and scientific communities, but from a DBMS prospec-

tive, tapes and optical disks are second class citizens com-

pared to magnetic disks and main memory. In light of the

increasing need for DBMS controlled tertiary storage sya-

“Computer Science Dept., University of Wisconsin, Madison,
WI 537oo

tIBM A~~en ~se~~ Center, K55/801, San Jose, CA

95120

Permission to copy without fee ell or pert of this material is
granted providad that the copias are not made or distributed for
direct commercial adventage, the ACM copyright notica and the
title of the publication and its date appear, and notice ia given
that copying is by parmiasion of tha Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permiaaion.
SIGMOD 15193 iWashington, DC, USA
e 1993 ACM 0-88791 -592.5/93/()()()5/041 3.00$1.50

terns [12], our challenge to the database community is to

accept tertiary devices as first class storage devices. Only

then will we be able to extend the benefits of DBMSS to cover

the commercial and scientific data that is found on tertiary

stores. The goal is to provide both the DBMS applications

that are overflowing their d~ke and the scientific applica-

tions that are longing for DBMS control of their data with

location transparent access to data, with system-controlled

placement and migration of data, and with declarative as-

sociative access to data. End users and am.dication writers--
should not need to know where or how their data is stored for

correct function of their queries, but should have a mecha-

nism to communicate with the system in order to understand

or influence the system’s performance. The DBMS should

spare the DBA most of the pain involved today in adminis-

tering a large hierarchy of devices. It should automatically

cache and migrate data, and should provide tools for the

DBA to understand and influence its actions.

Thw goal will not be easy to achieve. Tertiary devices

cannot be treated as just another dnk system. They do not

behave like disks. Their performance characteristics vary

widely. The data they store is not constantly on-line in the

drive that can read it. Not all tertiary devices are even ran-

dom access! To meet our goal we must create a framework

that will let us analyze and compare different tertiary stor-

age systems. We must understand the roles that different

types of devices can play in the system, and how to use

their resources effectively for different kinds of data procesa-

in~, under different sorts of workloads. In addition to the

frhework, we need new mechanisms to deal with these de-

vices. For example, we must adjust our query processing

techniques, developed baaed on properties of disks, to the

vagaries of tertiary store. Finally, we must develop policies

for controlling the system that will promote good perfor-

mance. As an example, we must decide when and where to

allow caching of data.

This paper ia organized as follows. In the next section,

we present a framework for discussing database controlled

tertiary storage systems. Most work on handling tertiary

stores to date has been in the context of archival Maae Stor-

age systems [1, z]. The only Work of which we =e aw=e in
which the DBMS controls a tertiary device is that of Stone

braker [14] for the Sequoia project. We dwuss these systems

in more detail in section 3. In section 4 we take a more de

tailed look at the challenges we see, while in section 5 we

d~uee our plans for research in th~ area.

41 3

2 A Framework

In this section we propose a framework for discussing

database controlled tertiary storage systems. The frame-

work consists of a hardware component, a software compo-

nent and a cost component. The range of 1/0 devices con-

trolled by the system is captured by the hardware compo-

nent. The policies and mechanisms employed by the DBMS

to manage the data and to control these devices is captured

by the software component. The cost component captures

the parameters needed to characterize system performance.

The framework should be rich enough to compare existing

and proposed solutions; we consider the following a “rough

stab”, and we invite the database community to help us re-

fine and elaborate it further.

We adopt a very general view of the hardware for a

database controlled tertiary store. The DBMS runs on one

or more processors, to which are at t ached several storage

devices, including, but not lirnhed to, disks and main mem-

ory. These storage devices are typically viewed as a pyramid,

with small amounts of expensive store (e.g., main memory)

at the top, and incremingly larger amounts of cheaper store

at successive levels underneath. We will refer to those d+

vices falling below disk in the pyramid as tertiary devices.

Note that data stored on a tertiary device need not travel

through all higher levels of the pyramid before eventually

reaching main memory. This is different from the classi-

cal pyramid in which, for example, several layers of caching

store (extended memory, solid state disk) separate disk from

memory, and a data item not found in memory is looked for

in the next layer down, and then the layer below that, and

so on. In our framework, how data travels and where it is

looked for are policy decisions.

Different classes of tertiary devices maybe attached to the

same DBMS. An optical disk library and a magnetic tape

library represent two such classes and might both serve the

same system. Within a class the framework distinguishes

between different device types. For example, tape drives

may differ in their technology and in the characteristics of

the tapes that they serve. There are several different tape

technologies, includlng helical scan and conventional linear

recording, and within a technology, tapes may come in sev-

eral different widths with different density characteristics

(e.g., 4mm DAT vs. 8mm video vs. 19mm D-2). They may

also vary widely in capacity, data rate, and search speed.

Conventional 1/2” tapes hold 200MB of data, and the drives

are capable of a 3 MB/see transfer rate, with a slightly higher

search speed. By contrast, an 8mm tape can hold 5 giga-

bytes, searches at up to 37.5 MB/see, but transfers data at

only 500 KB/sec. As in the case of device classes, a sin-
gle DBMS may control a heterogeneous collection of device

types.

The software component of the framework consists of a

storage architecture and a set of data handling capabilities.

We define a system’s storage architecture sa the answers to

a series of questions defining the basic mechanisms and poli-

cies of the system. There are two basic mechanisms: mi-

grating data (placing data in a new, “permanent” location)

and caching data (making a temporary copy of data). The

policies that determine how these mechanisms are used can

be classified as data storage, data movement, and device

management policies.

Data storoge policies specify where data can be stored,

that is, which devices can be “home” for data items, and

where data can be cached. For example, some systems might

allow data to be stored at any level in the hierarchy, whale

others might store data only on tertiary store, allowing se-

lected items to be cached upward. The placement policy is

another data storage policy that decides where a given data

item will be stored, if multiple devices can store data. Data

placement could be by size, by age, by last reference, by

predicate (as in [14]), and so on.

There are several types of data movement. In addition to

migration and caching, some systems may also want to dis-

tinguish archiving, which makes a copy for backup purposes.

For each type of movement, there are policies that describe

when that type of movement is triggered, what path (if any)

the data follows, and how the data to be moved is selected.

Migration might be triggered by the system, for example,

when a device gets too crowded, or it might be done peri-

odically, to maintain a certain occupancy, or it may require

an explicit user command, or occur automatically when a

cached item is updated, and so on. Data may always migrate

along a particular path (e.g., from tape to disk to memory),

or it may be allowed to skip levels (e.g., go straight from

tape to memory), or travel unconstrained (from tape to op

tical disk, perhaps). If the system decides to migrate data

because, for example, a device is too full, it could select the

data to migrate based on its reference history, its size, or

some other factor.

Finally, there must be device management policies to spec-

ify how space is managed on each device. For example, how

much of the device is used for caching versus data storage?

Is it a fixed percentage, or does it vary? If a device is used to

cache data from multiple devices, how is space in the cache

allocated among these different devices?

We must also be able to describe a system’s data handling

capabilities, or how the system fulfills traditional DBMS re-

sponsibfities, Again, we can point to the available mecha-

nisms, and a closely related set of policies. CMef among the

mechanisms of any system are the execution strategies avail-

able for the various operations. Other choices of mechanism

would be the set of costs that are modeled, and whether op

timization occurs at compile or run time. Important policy

dectilons include: can the system operate directly on data

on tertiary store, or must it first be brought to disk? and:

what decisions can the optimizer make?

Due to the range of devices and their diverse characteris-

tics, the cost component of the framework should be more

detailed than those typically used in modeling database al-

gorithms today. For example, it haa been %rgued [7] that

disk-based join algo~ithms can be compared simply by the

number of 1/0 requests that they make. In this more diverse

world, though, the number of 1/0 requests may be most im-

portant for one device, while minimizing the number of bytes

transferred may be paramount for another. Thus the vari-

ous different costs involved in retrieving data from a device

should all be modeled separately. These coats include start

time (latency), data transfe: rate, search rate, exchange time

(the time to return one media unit to storage, and fetch the

next to the drive), load time (the time to move the media

414

unit into the drive), capacity/unit, and data block size for
each device.

This was just a brief summary of the framework that we
propose, and that underlies the remainder of th~ paper. Ex-
isting frameworks are not adequate for the task of designing
a database controlled tertiary store. The IEEE Reference
Model for Mass Storage Systems [3, 10] deals with some
storage architecture concerns, but its focus is more on the
software structure of msas storage systems, and less on how
they accomplish the various functions or what policies they
enforce. It does not cover any data handling capabilities.
The database literature provides lists of expected data han-
dling abilities, but rarely deals explicitly with storage archi-
tecture policies. Thus we feel that this new framework is

necessary, and should be elaborated and refined as a basis

for discussion of these new systems.

3 Existing Systems

Most work on handling tertiary storage devices has been

done in the context of file-oriented Mass Storage Sys-

tems [1, 2]. These systems have typically been developed

for use in scientific supercomputing contexts. They are for

the most part dwtributed systems consisting of a large main-

frame server, a supercomputer (compute engine), and mul-

tiple clients. All of these generally have their own disks.

The server is additionally attached to the tertiary storage

device, which is most frequently a tape library. Mass Stor-

age Systems generally have a well-defined storage architec-

ture. Data files are typically stored on tape, and cached on

disk at the server and/or client(s). Caching may be trig-

gered by explicit user request, or, in more sophisticated sys-

tems, automatically on reference (or on the nth reference

in some time frame). When space is needed on disk, the

copies to be freed are typically chosen by a function based

on size and frequency of reference. Some systems initially

store files on disk, then later migrate them to tertiary (or

make an archival copy that later becomes the permanent

store). Interesting systems include LSS [6, 8] from Lawrence

Livermore Labs, NASA’s MSS-11 [17], Los Alamos National

Laboratory’s CFS [5], the National Center for Atmospheric

Research’s MSS [16], and Epoch’s InfiniteStorage Architec-

ture [9]. These systems generally have only primitive data

handling capabilities. The unit of movement is the file, and

the only operations are store and retrieve file. Data must be

brought to disk before it can be used.

Stonebraker [14] was the first to propose extending

database technology to a hierarchy of storage devices.

POSTGRES [13] has been extended to allow data to be

stored in an optical disk library [11]. POSTGRES’ stor-

age architecture allows data to be stored on any device.

The storage location is set during data definition, based on
a user-supplied predicate or by user-identified field. The
user must explicitly partition the t ablest then reference them
through views. POSTGRES provides two unrelated types of

caching. The ELEVATE command allows the user to make

an explicit copy of some portion of a relation. In addition,

the components that manage individual devices (called de-

vice managers) may have their own internal cache. For ex-

ample, the POSTGRES device manager for the optical disk

library automatically caches referenced data on disk. Either

type of cache may be freed by the system when space is

needed; explicit copies may also be freed by the RETURN

command. Migration is always user-driven, though once the

command is issued, movement may be done asynchronously

over time. POSTGRES is a full-fledged DBMS, providing

typical DBMS data handling. Again, it seems that data

must be brought to d~k to be used; the optimizer is unaware

of caching, however, and cannot control the movement of

data to dwk. The optimizer does model device-specific costs

(i.e., the cost of getting the data off of the tertiary device).

There is no mention of new query execution strategies or ac-

cess methods. In summary, POSTGRES has done ground-

breaking work in a new and important direction. However,

it falls short of the vision outlined in section 1, aa it re-

quires manual placement and migration of data by the user

or DBA. Better performance might also be achievable with

optimizer control of data movement and knowledge of data

caching.

4 Challenges

The overall challenge is to determine a set of policies and

mechanisms (e.g., those defined by the framework) that will

result in a DBMS controlled tertiary store with the prop

erties outlined in section 1. Individual DBMS challenges

can be grouped into three rough categories that we elab-

orate on further in this section: understanding the basics,

namely, tertiary technology and the applications that would

use the DBMS controlled tertiary store, determining how

best to process queries, and determining policies for domge

management. Another challenge that is clearly important is

.@ern conjiguratiorx how does the DBA determine what set

of devices is needed, what capacity they should have, how

many drives are needed, and so on? However, since this is

not a DBMS challenge per se, we will not elaborate on it

further.

4.1 Understanding the Basics

To make any design dectilons, we must understand the tech-

nology that we are using. What are the right set of parame-

ters to characterize such a broad range of devices? What

are the parameter values for various real devices that exem-

plify the different technologies? It is important to get these

values by measurement, and not just rely on manufactur-

ers’ specifications, as devices may behave very differently on

real tasks than they do in the laboratory. It is also impor-

tant to observe these devices under the sort of operations

likely to be generated by a DBMS, which may be quite dif-

ferent than those produced by a tile system. For example,

whereas a file system’s typical operation sequence might be

load tape, read a file, replace tape, a DBMS joining two large

relations might need to load two tapes, read some blocks

from one, then some from another, then read from the first,

and so on. How will start/stop times affect performance for

this sequence? What will be the effect of exchange times?

What search speeds will actually be observed on DBMS-like

searches? This type of work is fundamental to progress to-

wards our goal. In additio~, our observations may allow us

415

to influence the next generation of tertiary storage devices.

Equally important, we must understand the applications

that will exploit our new system. What types of operations

will they do? What types of analyses? Understanding these

will help us interpret the results of the technology work, by

teaxhing us which characteristics of the devices are impor-

tant. Are lots of cartridge replacements likely to be needed?

Platter fllps? Searches? We also need to understand why a

given application has such a huge data volume. This could

be due to a huge number of moderately sized (i.e., individu-

ally d~k-managable) data sets, for example, the results from

many scientific experiments. On the other hand, the large

volume might come from a moderate number of huge data

sets, each with moderately sized records. This is typically

the case when commercial enterprises store several years of

customer data for data mining purposes. Finally, it might

result from a moderate number of moderate data sets, each

tions fit on disk, requiring the system to do clever movement

of data. Minimization of seeks, or maximization of sequen-

tial access, will be very important, clearly; sorting (vs. hash-

ing) may prove beneficial for key/pointer pair algorithms.

The query optimizer will need to incorporate the new ac-

cess methods and join algorithms we develop. To do this,

it will need new cost formulzw that incorporate device spe-

cific costs. In thu environment it will sJso be important

for the optimizer to be aware of, and perhaps to some ex-

tent control, caching. It must at least be aware of what is

cached and where. One major opportunity is to do multi-

ple query optimization, to get as much out of one scan over

a given tape or optical disk as possible [12]. A more ad-

vanced challenge is how to allocate resources to competing

tertiary queries if these must be run simultaneously. These

resources include disk space, memory, space and drives on

tertiary store, bandwidth, and so on. Unfortunately, simi-

of which has huge data items, for example, medical image lar problems of balancing multiple queries and transactions

data or earth sciences images gathered from EOS-like de- even in today’s simpler two-level hierarchies are still poorly

vices. The reason for the application’s large data size will understood [4].

likely influence, if not outright dictate, the techniques that

are needed for data handling for tertiary-sized DBMSS.
4.3 Storage Architecture Policies

4.2 Query Processing

There are three key challenges in determining how best

to process queries: Index Structures, Join Algorithms and

Query Optimization.

Disk-based indices are designed based on the random-

access characteristics and cost functions of disks. These are

quite different from those of many tertiary storage devices.

Various storage and index structures have been designed for

WORM optical dwks, but these disks are still very different

than tape, for example. Thus, existing structures and algo-

rithms may prove helpful as starting points, but are probably

not solutions by themselves. Among the issues we need to

address are questions of location (where should the index re-

side?), scale (when indexing a veritable sea of data, how blg

will the index be?), and structures for “barely random” ac-

cess devices such as tape robots. Should (can) indexes reside

on d~k, or will they be on tertiary store, or split somehow

between the two? What index structures will interact well

with tape robots and their ilk? What granularity will be

good for index nodes, and how should the search (and up-

The major challenge here is to determine an appropriate set

of storage architecture policies, including those for data stor-

age and those for data movement. Data storage challenges
include data placement (where to put the data in the hier-

archy) and data tmcking (how to avoid losing data in the

hierarchy). Data movement challenges involve data migrw

tion, caching and prefetchlng.

In an ideal world, data placement would be trivial for the

user/DBA. We would simply hand the data to the DBMS,

ignoring the existence of the hierarchy, and the system would

decide how to partition the relations, and whereto store each

partition. In practice, this is likely to prove extremely hard.

It is not clear what criteria the system should use, or how

it should gather and use the necessary workload and access

statistics. We could instead limit ourselves to a conceptually

simple storage architecture in which all data is stored on a

single tertiary device, wit h other devices viewed simply as

caches. This would simplify the placement problem, but

may lead to inefficient query processing.

Alternatively, we might require the data definer (user, ap

plication programmer or DBA) to provide input on where

date, if any) algorithms work? data should reside. The challenge then becomes deciding

Given that tertiary devices have very different perfor- what view the data definer should have of the data place

mance tradeoffs and characteristics, the existing wb~~t of ment problem that wiU make it manageable. What will the

class” algorithms for join processing (e.g., hash join, sort- granularity of placement be? How specific must the data de-

merge join) may perform extremely poorly. For example, finer be about where the data should be stored? (e.g., must

hash joins involve random 1/0s to flush bucket tails as they (s)he specify the particular tape, or only which library?)

fill while partitioning the relations (or else when buckets are

read back during the join phase). These random 1/0s will

kill performance if the source relations’ size and location

necessitate the use of tape for the intermediate results. A

similar argument will eliminate sort-merge joins because of

the random 1/0 needed to merge the sorted subruns. As a

result, new algorithms are needed. A variety of cases should

be considered, including joins where indices but not relations

Once we have the data stored, we must keep track of it.

This is also likely to be a challenging task. We must de-

cide what metadata needs to be kept; for example, what

statistics are needed in order to make migration and caching

dec~lons? We must decide on the appropriate granularity

for tracking data location (this is intimately connected to

the granularity used for data placement). Finally, we must

decide where the metadata should be stored. Will it fit on

fit on disk, joins where no indices exist, but key/pointer pairs disk, or will it have to be at least partially stored on tertiary

would fit on disk, and joins where one, but not both, rela- store? How should the metadata be organized so that both

416

the system and its users and administrators can locate data?

If the DBMS is responsible for data placement to some

degree, then it may decide to migrate data from place to

place (e.g., from tertiary to secondary store or vice versa).

Clearly, there must be some policies on how, why and when

data should be migrated. What policies will be most effec-

tive? What statistics must be kept to enforce them? What

is the granularity of dat a that will be migrated?

No matter who is responsible for data placement, data

caching will be crucial for effective tertiary storage man-

agement. Key questions include: How should the memory

and disk caches be sized? For example, how much of the

disk should be set aside for caching versus storage of disk-

resident data? How should the hierarchy be structured: as

a tree, or as a graph? For example, should tertiary data

always go through dwk on the way to memory, or should

memory hold tertiary as well as disk pages? What should

the unit(s) of caching be? What policies should be used in

deciding what to cache and what to replace when the cache

fills?

Prefetching is possible when we have some advance knowl-

edge of what data will be needed when. It is most use-

ful when the data is not likely to have been recently refer-

enced. For example, consider a medical records application,

where a patient has a doctor’s appointment scheduled in ad-

vance. Prefetching could be extremely useful in such cases.

If prefetching is used, it could be based on explicit hint calls

from the application. For example, the application might

run a program each evening to issue hints about tomorrow’s

appointments. Or, it could be based on rules defined by the

application, for example, a rule that tells the system how

to automatically use the appointments relation to prefetch

data. Finally, a fully automatic solution would be to have

the system somehow detect access patterns and correlations,

and then do appropriate prefetching. This would be ex-

tremely hard, however, and is unlikely to be as effective as

simpler mechanisms. It should be noted that prefetching

also provides opportunities for doing batch processing and

multiple query optimization.

5 Our Research Plans

We have sketched many challenges we see on the way to

reaching the goal of a database controlled tertiary store. We

feel there are three basic steps to a complete solution for thu

problem. First, we must understand the tertiary devices

we are using, and the applications that will use a DBMS

controlled tertiary store. Second, we must determine how

to maximize the performance of indlvidurd operations. To

do this we must dwcover the best access methods, execution

strategies, etc. for each device type. We will rdso need to

determine how best to exploit the different devices we have

in the execution of each operation. For example, assuming

the data is all stored on one tertiary device, how should we

use other devices such as d~k? How can we handle multiple

levels of cache? Third, we need to look at global system level

issues, such as data storage and data movement through the

system, and balancing resources across multiple operations.

We are currently working on various aspects of the join

problem in order to gain an understandkg of the key param-

eters, and to get a better feel for the technology. We hope

that we will learn which techniques to use under which cir-

cumst auces to successfully cope with large volumes of dat a.

Once we have an understanding of the basics, we plan to

tackle some of the system level issues, for example, the open

problems related to caching, migration, multiple queries, and

so on.

We expect this effort to be challenging and rewarding, and

we invite the community at large to join us in t hm research.

We also invite potential customers to let the database re-

search community know their needs, so that we can make

reasonable assumptions about data types, data sizes, work-

loads, and so on. This would help to eliminate the (undesir-

able) challenge of simult aneously trying to predict the needs

of the future whale attempting to meet those future needs.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Digest of Papers, Ninth IEEE Symp. on Mass Stomge

Systems, Ott. 1988, Monterey.

Digest of Papers, Tenth IEEE Symp. on Mas8 Stomge

Systems, May 1990, Monterey.

Special section on the “Mass Storage Reference Model

- Special Topics”. In [1].

K. Brown et al., “Resource Allocation and Schedul-

ing for Mixed Database Workloads”. Tech. Rep. 1095,

Univ. of Wisconsin, Madison, July 1992.

B. Collins, M. Devaney, and D. Kitts, “Profiles in Msss

Storage: A Tale of Two Systems”. In [1].

J. Foglesong et al.,” The Livermore Distributed Storage

System: Implementation and Experiences”. In [2].

R. Hagmann, ‘An Observation on Database Buffering

Performance Metrics”. Proc. 12th VLDB, Aug, 1986,

Kyoto, pp. 289-293.

C. Hogan et al., “The Livermore Distributed Storage

System: Requirements and Overview”. In [2].

G.G. Kenley, ‘An Architecture for a Transparent Net-

worked Mass Storage System”. In [2].

S. Miller, “IEEE Reference Model for Mass Storage Sys-

tems”. Advances in Computers, Vol 27, 1988.

M.A. Olson, ‘Extending the POSTGRES Database

System to Manage Tertiary Storage”. Master’s thesis,

Univ. of California, Berkeley, July 1992.

A. Silberschatz et al., eds, ‘Database Systems:

Achievements and Opportunities”. Comm. of the A CM,

34:10, Oct. 1991.

M. Stonebraker and L. Rowe, “The Design of POST-

GRES”. Proc. SIGMOD, May 1986, Washington, D.C.

M. Stonebraker, “Managing Persistent Objects in a

Multi-Level Store”. Pmt. SIGMOD, May 1991, Den-

ver, pp 2-11.

M. Stonebraker and J. Dozier, “Sequoia 2000: Large

capacity object servers to support global change re-

search”. Technical Report Seqouia 2000 91/1, Univ. of
California, Berkeley, March 1992.

E. Thanhardt and G. Harano, “File Migration in the

NCAR Mass Storage System”. In [1].

D. Tweten, “Hiding Mass Storage Under UNIX: NASA’s

MSS-11 Archkcture”. In [2].

417

