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Abstract 

In this paper, a new probe-based distributed deadlock 
detection algorithm is proposed. It is an enhanced 
version of the algorithm originally proposed by 
Chandy's et al. [5,6]. The new algorithm has proven 
to be error free and suffers very little performance 
degradation from the additional deadlock detection 
overhead. The algorithm has been compared with the 
modified probe-based and timeout methods. It is 
found that under high data contention, it has the best 
performance. Results also indicate that the rate of 
probe initiation is significantly reduced in the new 
algorithm. 

1 Introduction 

The objective of concurrency control is to allow 
concurrent execution of transactions without 
violating the consistency of the database [10]. 
Various concurrency control protocols have been 
proposed [ 1,2,4,13]. Among them two phase locking 
[1] is the one most commonly adopted in the design 
of commercial products. In two phase locking, the 
conflicts resulting from sharing of data objects are 
resolved by setting locks on the data objects. One of 
the major problem of two phase locking is that the 
possibility of deadlock resulting from cyclic-wait for 
locks among different transactions. Deadlock is 
undesirable because the transactions involved in 
deadlock cycle are blocked permanently. The 
resulting system performance is thus dramatically 
degraded. 

In distributed database systems, deadlock 
detection become very complex as a result of 
uncertainties in the global system state. Although 
many deadlock detection algorithms in distributed 

database systems have been proposed [5, 6, 7, 14], 
most of them are impractical because of high system 
overheads. Two main approaches have been adopted 
in distributed deadlock detection. The first one is to 
construct a global system state [14] and the second is 
to try to pass a special message through blocked 
transactions in order to detect a deadlock cycle [5, 6, 
7]. One method of the latter approach is the so called 
probe-based distributed deadlock detection as 
proposed by Chandy, Misra and Haas [5,6]. The 
main feature of this method is that no global system 
state is needed. 

Chandy's deadlock detection algorithm is based 
on passing probes through different sites. Only 
processes residing in site boundaries (process which 
are in direct communication with processes in 
another site) can initiate probe messages [5,6]. 
Chandy's algorithm can fail to detect deadlocks as a 
result of boundary process abort [3]. A modified 
version of Chandy's probe-based distributed deadlock 
detection algorithm (MPA) was proposed in [3]. As a 
result of the high system overheads incurred in 
maintaining the dependency table for MPA, system 
performance is expected to be a major problem. An 
enhanced version of MPA (EPA) is introduced by 
replacing the dependency table with a local wait-for 
graph. This paper compares the performance of 
timeout, MPA and EPA through extensive 
simulation studies. As anticipated, EPA outperforms 
both MPA and timeout under most conditions, 
especially under a high data contention environment. 

The remainder of this paper is organized as 
followed. Section 2 presents the modified as well as 
the enhanced probe-based distributed deadlock 
detection algorithm. The simulation model and 
workload parameters for the set of experiments are 
presented in section 3. Section 4 are the results and 

S I G M O D  R E C O R D ,  Vol. 23, No.  3, Sep tember  1994 21 



their interpretation. Lastly, the conclusions and 
future research work are presented in section 5. 

2 The Modified and Enhanced Probe- 
based Algorithms 

The problem found in Chandy's algorithm 
concerning boundary process aborts can be rectified 
by eliminating the need to define boundary 
processes. Probes are transmitted whenever a 
transaction is blocked while another remote 
transaction is involved in the wait path. The major 
modifications to the original algorithm for MPA are: 
(1) In the original algorithm, only boundary 

transactions can send probe messages, and this 
limits the deadlock detection capability of the 
system (certain type of deadlocks will escape 
detection). The modified algorithm includes all 
the involved transactions in the sending of probe 
messages. 

(2) The modified algorithm will set all the 
dependency table entries for every transaction 
involved in the wait path instead of the first 
element only [3]. 

(3) As a transaction cannot wait for more than one 
transaction at a time, the modified algorithm 
traverses the wait chain once only starting from 
the newly blocked transaction. The traversal will 
terminate either at the last transaction in the 
wait path or when a deadlock cycle is detected. 

MPA suffers in performance because of the high 
overheads in maintaining the dependency table. To 
overcome this difficulty, an enhanced version of 
probe-based system (EPA) has been introduced. The 
major modifications to MPA are: 
(1) Local wait-for graph is used instead of 

dependency table for deadlock cycle detection. 
Probes are initiated whenever any of the local 
site's wait-for graph involves transactions being 
blocked by transactions from another site. 

(2) Probe messages are sent between the source and 
destination transactions in the wait path rather 
than through all the transactions. This should 
significantly reduce the message overheads. 

The detail of the enhanced probe-based algorithm 
is shown below: 

For initiation of probe computation by a controller 
for a constituent idle process Pi: 
if Pi is locally waiting on itself 
then declare deadlock 
else for a process Pb such that 

(i) there is a waiting path from Pi to Pb and 

(ii) Pi, Pb are on different controllers 
send Probe(i,b). 

For  a 

if 
then 

controller on receiving a Probe(i,k): 
Pk is idle 
begin 
if k=i 
then declare that Pk is deadlocked 
else for a process Pb such that 

(i) there is a waiting path from Pk to Pb and 
(ii) Pk, Pb are on different controllers 
send Probe(i,b). 

end 
Table 1: Enhanced probe-based algorithm 

3 P e r f o r m a n c e  M o d e l  

3.1 Dis t r ibu ted  Da tabase  Mode l  

The distributed database system (DBS) consists of a 
collection of N sites, S1, $2 . . . . .  SN, connected by a 
communication network. The network is assumed to 
be reliable and fully connected. Each site is a 
centralized database system where portion of the 
database is stored. There are M transactions, T1, T2, 
.... TM running on the distributed database system. 
A transaction presents its lock requests to its site 
controller. There is one controller Ci per each site Si. 
A transaction is blocked from the time it submits a 
request until it is notified that its requesting lock is 
granted. While a transaction is being blocked, it may 
not send any lock requests. A lock request can be 
local or refer to a data object located at another site. 
In such case the transaction is said to be distributed. 
A distributed transaction Ti is implemented by 
processes Pij, each of which is the local process for 
transaction Ti at site Sj. In case a process Pij 
requests a nonlocal data object that is managed by 
some controller Cm, the controller Cj transmits the 
request tO process Pim via controller C m. When Pim 
acquires the requested data object from Cm, it sends 
a message to Pij (via Cm and Cj) stating that the 
data object has been acquired. Hence, intersite 
requests are always between two processes of the 
same transaction. 

It is assumed that messages s e n d  by any 
controller Ci to Cj arrive sequentially and in finite 
time. If a single transaction runs by itself in the 
distributed database system, it will terminate in finite 
time and release all its seized data objects. 

3.2 Simulat ion m o d d  
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Three sites are used in the model. They are fully 
connected by duplex communication links. The 
communication links are modeled as service centers 
and it can service only one message at any time in 
any one direction. Each site consists of a central 
subsystem with a number of terminals. The central 
subsystem has one CPU and one disk unit where the 
database is stored. The terminals submit transactions 
interactively after a think time. Two phase 
commitment [11 ] is employed in the model to ensure 
the atomicity of distributed transactions. A modified 
Two phase locking concurrency control protocol is 
adopted. Under this locking protocol, the number of 
messages for locking is minimized by grouping the 
lock requests for the same site into one message. For 
example, all the locks for the data objects in site i 
will be send together in message mi. The order of 
sending messages for a transaction is ml,  m2 . . . . .  
mn. 

Local wait-for graph (WFG) are built for each 
site. The site controllers keep track of the owner of 
each data object, i.e. the transaction which locks a 
given data object. By referring to the data object 
ownership, local dependency can be determined. The 
dependency of a transaction on another transaction 
at a different site can be detected by searching the 
out-going edges of the WFG. 

3.3 W o r k l o a d  p a r a m e t e r s  

The following table is a list of workload parameters 
used in the set of experiments. 

Parameter Description Values 

N s Number of sites 3 
DO Number of data objects in 1000 

the database of each site 
TS Mean number of data objects 5,20 

to be accessed 
PI 60% 

MPL 

Tcou 

Tio 

Tch 
Tset 
Trel 
Twfgchk 

Probability of a lock request 
being local 
Multiprogramming level 
Mean CPU processing time 
for a data object 
Mean I/O time to access a 
data object 
Mean time to check a lock 
Mean time to set a lock 
Mean time to release a lock 
Mean time to check local 
wait-for graph 

1-25 
30 ms 

30 ms 

1 ms 
1 ms 
2 ms 
1 ms 

Twfauod Mean time to update local 
wait-for graph 

Time_out Timeout period 
Table 2: Model Workload parameters 

1 ms 

2.5 sec 

One of the greatest problems in performance 
modeling is to choose relevant parameter values 
which are able to demonstrate the performance 
characteristics of the protocols under studied. In 
order to be able to observe interesting performance 
characteristics without unduly long simulation ~runs, 
a heavy workload and high probability of lock 
conflicts among different transaction is highly 
desirable. A large number of terminals are used to 
model a heavy loaded system. To increase the degree 
of lock conflicts, a relative small database size in 
comparison with transaction size has been chosen. 

The degree of data contention is determined by 
the probability of conflict among different concurrent 
executing transactions and is therefore dependent on 
the transaction sizes as well as the 
multiprogramming level. Two transaction sizes, 5 
and 20, are selected to represent low and high data 
contention environments. The performance measures 
are system throughput and resource overheads for 
deadlock detection. Deadlock detection overhead is 
defined as the amount of CPU time used on deadlock 
detection. 

Performance studies for system using timeouts 
are complicated by the need to carefully select the 
time-out period. If the time-out period is too small, 
the number of false deadlock will be very large. If 
the time-out period is too long, deadlock cycles 
detecting will be delayed and more transactions will 
be blocked. Figure 1 shows the system throughput as 
a function of the time-out period. It is observed that 
the system performance for the present system is best 
when the time-out period is 2.5 second. Therefore it 
is adopted as the input parameter for our simulation 
model. 

4 P e r f o r m a n c e  R e s u l t s  a n d  

I n t e r p r e t a t i o n  

Measurements taken in this paper are the 
throughput, deadlock detection overhead, deadlocked 
transaction to committed transaction ratio, number 
of restart per transaction and blocking time. 
Throughput is the number of transaction committed 
per second. Deadlock detection overhead measures 
the percentage of the CPU time spent in the detection 
of deadlock cycles. Factors contributing to the 
deadlock detection overhead will differ for different 
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algorithms. Block time is also used as a performance 
indicator. It denotes the percentage of CPU time 
wasted waiting for the required data objects to be 
released by another transaction. The deadlocked to 
committed transaction ratio measures the number of 
transactions deadlocked per committed transaction. 
The number of restarts per transaction measures the 
average number of restarts by each transaction before 
it commits. 

In the set of experiments, the performance of the 
three algorithms i.e. enhanced & modified probe- 
based algorithms, and timeout under low and high 
data contention environment are compared. When 
data contention is negligible, timeout algorithm 
should outperform all the probe-based approaches 
[3]. As can be seen in figure 2, with increased data 
contention, the performance of timeout and the 
modified probe-based algorithm are comparable. 
Deadlock occurrences become more frequent, the 
deadlocked to committed transaction ratio as a 
function of MPL is shown in figure 3. It is obvious 
from figure 2, EPA has the worst performance 
amongst the three algorithms. For EPA, overheads 
have been incurred in searching the wait-for graph. 
Figure 5 shows that EPA has the highest deadlock 
detection overhead, especially for small MPLs. From 
figure 4, it is apparent that Blocking delay for EPA 
is only marginally higher than the other two 
algorithms. As can be seen in figure 6, under high 
data contention, the enhanced probe-based algorithm 
is much more efficient than the other two 
algorithms. Figure 7 gives the throughput for the 
three algorithms as a function of MPL when data 
contention is high. The performance of the enhanced 
probe-based algorithm is much better than the 
modified probe-based algorithm because of the 
smaller deadlock detection overhead. Figure 8 shows 
that the deadlock detection overhead for the 
enhanced probe-based algorithm is much lower than 
the other two algorithms. The high deadlock 
overheads for timeout can be explained in terms of 
the high cost of aborts for false deadlocks. As can be 
observed in figure 9, the number of restarts per 
transaction for the timeout algorithm (many are false 
deadlocks) is much higher than the other two 
algorithms. 

5 Conclusions 

Two new probe-based distributed deadlock detection 
algorithms have been introduced to rectify some of 
the shortfalls of the algorithm proposed by Chandy, 
Misra, and Haas. The new algorithms have been 

subjected to extensive simulation experiments and 
have shown to be error free. From the results 
obtained, the following conclusions can be drawn: 
(1) Under low data contention, timeout algorithm 

out-performs the probe-based approaches. The 
overheads in deadlock detection for the timeout 
algorithm is minimal when deadlock is 
infrequent. The deadlock detection overheads for 
the enhanced probe-based algorithm is greater 
than the modified probe-based algorithm 
because of the need to check the wait-for graph 
even deadlock is infrequent or even nonexistent. 

(2) Under high data contention, enhanced probe- 
based algorithm outperforms the modified 
probe-based and timeout algorithms. The 
number of transaction restarts for the timeout 
algorithm is much greater than the probe-based 
approach. This is the result of a large number of 
false deadlocks. 

(3) System suffers very little performance 
degradation from the additional overhead for the 
enhanced probe-based algorithm. 

Another observation from the experiments is the 
heavy penalty paid on the arbitrary initiation of the 
deadlock detection mechanism. Other ways of 
enhancing deadlock detection efficiency and the 
effect of communication network bandwidth also be 
examined. In the probe-based approach, there is no 
rule to-date to determine the best time for the 
initiation of probes. 
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