
Performance Evaluation of A New Distributed Deadlock Detection Algorithm

Chim- fu Yeung, Sheung- lun H u n g and K a m - y i u L a m

Department of Computer Science
City Polytechnic of Hong Kong

83 Tat Chee Avenue, Kowloon Tong, Hong Kong
email: { cscfjimslcshunglcskylam } @cphkvx.cphk.hk

Abstract

In this paper, a new probe-based distributed deadlock
detection algorithm is proposed. It is an enhanced
version of the algorithm originally proposed by
Chandy's et al. [5,6]. The new algorithm has proven
to be error free and suffers very little performance
degradation from the additional deadlock detection
overhead. The algorithm has been compared with the
modified probe-based and timeout methods. It is
found that under high data contention, it has the best
performance. Results also indicate that the rate of
probe initiation is significantly reduced in the new
algorithm.

1 Introduction

The objective of concurrency control is to allow
concurrent execution of transactions without
violating the consistency of the database [10].
Various concurrency control protocols have been
proposed [1,2,4,13]. Among them two phase locking
[1] is the one most commonly adopted in the design
of commercial products. In two phase locking, the
conflicts resulting from sharing of data objects are
resolved by setting locks on the data objects. One of
the major problem of two phase locking is that the
possibility of deadlock resulting from cyclic-wait for
locks among different transactions. Deadlock is
undesirable because the transactions involved in
deadlock cycle are blocked permanently. The
resulting system performance is thus dramatically
degraded.

In distributed database systems, deadlock
detection become very complex as a result of
uncertainties in the global system state. Although
many deadlock detection algorithms in distributed

database systems have been proposed [5, 6, 7, 14],
most of them are impractical because of high system
overheads. Two main approaches have been adopted
in distributed deadlock detection. The first one is to
construct a global system state [14] and the second is
to try to pass a special message through blocked
transactions in order to detect a deadlock cycle [5, 6,
7]. One method of the latter approach is the so called
probe-based distributed deadlock detection as
proposed by Chandy, Misra and Haas [5,6]. The
main feature of this method is that no global system
state is needed.

Chandy's deadlock detection algorithm is based
on passing probes through different sites. Only
processes residing in site boundaries (process which
are in direct communication with processes in
another site) can initiate probe messages [5,6].
Chandy's algorithm can fail to detect deadlocks as a
result of boundary process abort [3]. A modified
version of Chandy's probe-based distributed deadlock
detection algorithm (MPA) was proposed in [3]. As a
result of the high system overheads incurred in
maintaining the dependency table for MPA, system
performance is expected to be a major problem. An
enhanced version of MPA (EPA) is introduced by
replacing the dependency table with a local wait-for
graph. This paper compares the performance of
timeout, MPA and EPA through extensive
simulation studies. As anticipated, EPA outperforms
both MPA and timeout under most conditions,
especially under a high data contention environment.

The remainder of this paper is organized as
followed. Section 2 presents the modified as well as
the enhanced probe-based distributed deadlock
detection algorithm. The simulation model and
workload parameters for the set of experiments are
presented in section 3. Section 4 are the results and

S I G M O D R E C O R D , Vol. 23, No. 3, Sep tember 1994 21

their interpretation. Lastly, the conclusions and
future research work are presented in section 5.

2 The Modified and Enhanced Probe-
based Algorithms

The problem found in Chandy's algorithm
concerning boundary process aborts can be rectified
by eliminating the need to define boundary
processes. Probes are transmitted whenever a
transaction is blocked while another remote
transaction is involved in the wait path. The major
modifications to the original algorithm for MPA are:
(1) In the original algorithm, only boundary

transactions can send probe messages, and this
limits the deadlock detection capability of the
system (certain type of deadlocks will escape
detection). The modified algorithm includes all
the involved transactions in the sending of probe
messages.

(2) The modified algorithm will set all the
dependency table entries for every transaction
involved in the wait path instead of the first
element only [3].

(3) As a transaction cannot wait for more than one
transaction at a time, the modified algorithm
traverses the wait chain once only starting from
the newly blocked transaction. The traversal will
terminate either at the last transaction in the
wait path or when a deadlock cycle is detected.

MPA suffers in performance because of the high
overheads in maintaining the dependency table. To
overcome this difficulty, an enhanced version of
probe-based system (EPA) has been introduced. The
major modifications to MPA are:
(1) Local wait-for graph is used instead of

dependency table for deadlock cycle detection.
Probes are initiated whenever any of the local
site's wait-for graph involves transactions being
blocked by transactions from another site.

(2) Probe messages are sent between the source and
destination transactions in the wait path rather
than through all the transactions. This should
significantly reduce the message overheads.

The detail of the enhanced probe-based algorithm
is shown below:

For initiation of probe computation by a controller
for a constituent idle process Pi:
if Pi is locally waiting on itself
then declare deadlock
else for a process Pb such that

(i) there is a waiting path from Pi to Pb and

(ii) Pi, Pb are on different controllers
send Probe(i,b).

For a

if
then

controller on receiving a Probe(i,k):
Pk is idle
begin
if k=i
then declare that Pk is deadlocked
else for a process Pb such that

(i) there is a waiting path from Pk to Pb and
(ii) Pk, Pb are on different controllers
send Probe(i,b).

end
Table 1: Enhanced probe-based algorithm

3 P e r f o r m a n c e M o d e l

3.1 Dis t r ibu ted Da tabase Mode l

The distributed database system (DBS) consists of a
collection of N sites, S1, $2 SN, connected by a
communication network. The network is assumed to
be reliable and fully connected. Each site is a
centralized database system where portion of the
database is stored. There are M transactions, T1, T2,
.... TM running on the distributed database system.
A transaction presents its lock requests to its site
controller. There is one controller Ci per each site Si.
A transaction is blocked from the time it submits a
request until it is notified that its requesting lock is
granted. While a transaction is being blocked, it may
not send any lock requests. A lock request can be
local or refer to a data object located at another site.
In such case the transaction is said to be distributed.
A distributed transaction Ti is implemented by
processes Pij, each of which is the local process for
transaction Ti at site Sj. In case a process Pij
requests a nonlocal data object that is managed by
some controller Cm, the controller Cj transmits the
request tO process Pim via controller C m. When Pim
acquires the requested data object from Cm, it sends
a message to Pij (via Cm and Cj) stating that the
data object has been acquired. Hence, intersite
requests are always between two processes of the
same transaction.

It is assumed that messages s e n d by any
controller Ci to Cj arrive sequentially and in finite
time. If a single transaction runs by itself in the
distributed database system, it will terminate in finite
time and release all its seized data objects.

3.2 Simulat ion m o d d

22 S I G M O D R E C O R D , Vol. 23, No. 3, S e p t e m b e r 1994

Three sites are used in the model. They are fully
connected by duplex communication links. The
communication links are modeled as service centers
and it can service only one message at any time in
any one direction. Each site consists of a central
subsystem with a number of terminals. The central
subsystem has one CPU and one disk unit where the
database is stored. The terminals submit transactions
interactively after a think time. Two phase
commitment [11] is employed in the model to ensure
the atomicity of distributed transactions. A modified
Two phase locking concurrency control protocol is
adopted. Under this locking protocol, the number of
messages for locking is minimized by grouping the
lock requests for the same site into one message. For
example, all the locks for the data objects in site i
will be send together in message mi. The order of
sending messages for a transaction is ml, m2
mn.

Local wait-for graph (WFG) are built for each
site. The site controllers keep track of the owner of
each data object, i.e. the transaction which locks a
given data object. By referring to the data object
ownership, local dependency can be determined. The
dependency of a transaction on another transaction
at a different site can be detected by searching the
out-going edges of the WFG.

3.3 W o r k l o a d p a r a m e t e r s

The following table is a list of workload parameters
used in the set of experiments.

Parameter Description Values

N s Number of sites 3
DO Number of data objects in 1000

the database of each site
TS Mean number of data objects 5,20

to be accessed
PI 60%

MPL

Tcou

Tio

Tch
Tset
Trel
Twfgchk

Probability of a lock request
being local
Multiprogramming level
Mean CPU processing time
for a data object
Mean I/O time to access a
data object
Mean time to check a lock
Mean time to set a lock
Mean time to release a lock
Mean time to check local
wait-for graph

1-25
30 ms

30 ms

1 ms
1 ms
2 ms
1 ms

Twfauod Mean time to update local
wait-for graph

Time_out Timeout period
Table 2: Model Workload parameters

1 ms

2.5 sec

One of the greatest problems in performance
modeling is to choose relevant parameter values
which are able to demonstrate the performance
characteristics of the protocols under studied. In
order to be able to observe interesting performance
characteristics without unduly long simulation ~runs,
a heavy workload and high probability of lock
conflicts among different transaction is highly
desirable. A large number of terminals are used to
model a heavy loaded system. To increase the degree
of lock conflicts, a relative small database size in
comparison with transaction size has been chosen.

The degree of data contention is determined by
the probability of conflict among different concurrent
executing transactions and is therefore dependent on
the transaction sizes as well as the
multiprogramming level. Two transaction sizes, 5
and 20, are selected to represent low and high data
contention environments. The performance measures
are system throughput and resource overheads for
deadlock detection. Deadlock detection overhead is
defined as the amount of CPU time used on deadlock
detection.

Performance studies for system using timeouts
are complicated by the need to carefully select the
time-out period. If the time-out period is too small,
the number of false deadlock will be very large. If
the time-out period is too long, deadlock cycles
detecting will be delayed and more transactions will
be blocked. Figure 1 shows the system throughput as
a function of the time-out period. It is observed that
the system performance for the present system is best
when the time-out period is 2.5 second. Therefore it
is adopted as the input parameter for our simulation
model.

4 P e r f o r m a n c e R e s u l t s a n d

I n t e r p r e t a t i o n

Measurements taken in this paper are the
throughput, deadlock detection overhead, deadlocked
transaction to committed transaction ratio, number
of restart per transaction and blocking time.
Throughput is the number of transaction committed
per second. Deadlock detection overhead measures
the percentage of the CPU time spent in the detection
of deadlock cycles. Factors contributing to the
deadlock detection overhead will differ for different

S I G M O D R E C O R D , Vol. 23, No. 3, S e p t e m b e r 1994 23

algorithms. Block time is also used as a performance
indicator. It denotes the percentage of CPU time
wasted waiting for the required data objects to be
released by another transaction. The deadlocked to
committed transaction ratio measures the number of
transactions deadlocked per committed transaction.
The number of restarts per transaction measures the
average number of restarts by each transaction before
it commits.

In the set of experiments, the performance of the
three algorithms i.e. enhanced & modified probe-
based algorithms, and timeout under low and high
data contention environment are compared. When
data contention is negligible, timeout algorithm
should outperform all the probe-based approaches
[3]. As can be seen in figure 2, with increased data
contention, the performance of timeout and the
modified probe-based algorithm are comparable.
Deadlock occurrences become more frequent, the
deadlocked to committed transaction ratio as a
function of MPL is shown in figure 3. It is obvious
from figure 2, EPA has the worst performance
amongst the three algorithms. For EPA, overheads
have been incurred in searching the wait-for graph.
Figure 5 shows that EPA has the highest deadlock
detection overhead, especially for small MPLs. From
figure 4, it is apparent that Blocking delay for EPA
is only marginally higher than the other two
algorithms. As can be seen in figure 6, under high
data contention, the enhanced probe-based algorithm
is much more efficient than the other two
algorithms. Figure 7 gives the throughput for the
three algorithms as a function of MPL when data
contention is high. The performance of the enhanced
probe-based algorithm is much better than the
modified probe-based algorithm because of the
smaller deadlock detection overhead. Figure 8 shows
that the deadlock detection overhead for the
enhanced probe-based algorithm is much lower than
the other two algorithms. The high deadlock
overheads for timeout can be explained in terms of
the high cost of aborts for false deadlocks. As can be
observed in figure 9, the number of restarts per
transaction for the timeout algorithm (many are false
deadlocks) is much higher than the other two
algorithms.

5 Conclusions

Two new probe-based distributed deadlock detection
algorithms have been introduced to rectify some of
the shortfalls of the algorithm proposed by Chandy,
Misra, and Haas. The new algorithms have been

subjected to extensive simulation experiments and
have shown to be error free. From the results
obtained, the following conclusions can be drawn:
(1) Under low data contention, timeout algorithm

out-performs the probe-based approaches. The
overheads in deadlock detection for the timeout
algorithm is minimal when deadlock is
infrequent. The deadlock detection overheads for
the enhanced probe-based algorithm is greater
than the modified probe-based algorithm
because of the need to check the wait-for graph
even deadlock is infrequent or even nonexistent.

(2) Under high data contention, enhanced probe-
based algorithm outperforms the modified
probe-based and timeout algorithms. The
number of transaction restarts for the timeout
algorithm is much greater than the probe-based
approach. This is the result of a large number of
false deadlocks.

(3) System suffers very little performance
degradation from the additional overhead for the
enhanced probe-based algorithm.

Another observation from the experiments is the
heavy penalty paid on the arbitrary initiation of the
deadlock detection mechanism. Other ways of
enhancing deadlock detection efficiency and the
effect of communication network bandwidth also be
examined. In the probe-based approach, there is no
rule to-date to determine the best time for the
initiation of probes.

R e f e r e n c e s
[I] A. Bernstein and N. Goodman, "Concurrency Control

in Distributed Database Systems," ACM Comp. Sur.,
Vol. 13, No. 2, pp. 185-221, Jun. 1981.

[2] A. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Reading, Massachusetts, Addison-Wesley,
1987.

[3] Chim-fu Yeung, Sheung-lun Hung, Kam-yiu Lam and
Chee-keung Law, "A New Distributed Deadlock
Detection Algorithm for Distributed Database
Systems", IEEE TENCON '94, 1994.

[4] S. Ceri and G. Pelagatti, Distributed Databases
Principles and Systems, New York, McGraw-Hill
Book Company, 1984.

[51 M, Chandy and J. Misra, "A distributed algorithm for
detecting resource deadlocks in distributed systems",
Proceedings of the ACM Symposium on Principles of
Distributed Computing (Ottawa, Canada, Aug.), A CM,
New York, pp. 157-164, 1982.

24 S I G M O D R E C O R D , Vol. 23, No . 3, S e p t e m b e r 1994

[6] M. Chandy, J. Misra, and L. M. Haas, "Distributed
Deadlock Detection," ACM Trans. Comput. Syst., Vol.
1, pp. 143-156, May 1983.

[7] N. Choudhary, W. H. Kohler, J. A. Stankovic, and D.
Towsley, "A Modified Priority Based Probe Algorithm
for Distributed Deadlock Detection and Resolution,"
IEEE Trans. Software Eng., Vol. 15, No. 1, pp. 10-17,
Jan. 1989.

[8] A. K. Elmagarmid, "A survey of distributed deadlock
detection algorithms," ACM SIGMOD Rec. Vol. 15,
No. 3, Sep. 1986.

[9] H. Enslow, "What is a "Distributed" Data Processing
System?" Computer, Vol. 11, pp. 16-23, Jan. 1978.

[10] P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger,
"The Notions of Consistency and Predicate Locks in a
Database System," ACM Comm. Vol. 19, No. I l, pp.
623-633, Nov. 1976.

[11] N. Gray, "Notes on Database Operating System," in
Operating Systems: An Advanced Course (Lecture
Notes in Computer Science 60), Berlin, Germany,
Springer-Verlag, pp. 398-481, 1978.

[12] E. Knapp, "Deadlock Detection in Distributed
Database," ACM, Comp. Sur., Vol. 19, No. 4, pp. 302-
328, Dec. 1987.

[13] H. T. Kung and J. T. Robinson, "Optimistic Methods
for Concurrency Control," ACM Trans. Database Syst.,
Vol. 6, pp. 212-226, Jun. 1981.

[14] R. Obermarck, "Distributed Deadlock Detection
Algorithm," ACM Trans. Database Syst., Vol. 7, No.
2, pp. 202-223, Jun. 1982.

[15] Y. Parker and J.P. Verjus, Distributed Computing
Systems (Synchronization, Control and
Communication), Academic Press, 1983.

Throughput
3.5

3

2 .5

2

1 .5

1

0 .5

0
500

I I I

1000 2500 5000

Time-out Period
8000

Figure 1: Throughput vs Time-out Period (ms)

Throughput
!0,

1

101-

51-

0

--¢-Eahanced Probe-based algorithm
-*-Timeout algorithm

Modified Probe-based algorithm

'o ' ' 1 15 20
Multiprogramming Level

25

Figure 2: Throughput vs MPL

Deadlocked to Committed Transaction (%)
0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-c-Enhanced Probe-based algorithm

-.~-Timeout algorithm

-*- Modified Probe-based algorithm

L -

5 10 15 20 25

Multiprogramming Level

Figure 3: Deadlocked to committed transaction vs MPL

SIGMOD RECORD, Vol. 23, No. 3, September 1994 25

, • [" 5 Blocking time (%)

2 0

15

1o

/ t ~ -~-Timeout algorithm
• . • , • 0 -~ Modified Probe-based algorithm

1 1 5 10 15 20
/

[Multiprogramming Level

Figure 4: Blocking time vs MPL

Deadlock Detection Overhead (%)
0 . 2 5 ,

0 .2

0 .15

0.1

0 . 0 5

-.c-Enhanced Probe-based algorithm
--~-Timeout algorithm /

-'~ Modified Probe-based algo "

5 10 15 20

Multiprogramming Level
Figure 5: Deadlock detection overhead vs MPL

Throughput
5

Deadlocked to Committed Transaction (%)
6

-+-Enhanced Probe-based algorithm
i -*-Timeout algorithm /

o
5 lO 15 20 25

Multipmgramming Level

Figure 6: Deadlocked to committed transaction vs MPL

Deadlock Detection Overhead (%)
5

-*-Timeout algorithm
-,,t-Modified Probe-based algorithm

-- I I I I

5 10 15 20 25

Multiprogramming Level

Figure 7: Throughput vs MPL

Number of restart per transaction

-4- Enhanced Probe-based algorithm
-*-Timeout algorithm
-*- Modified Probe-based "algorithm

t i I I
5 10 15 20 25

Muttiprogramming Level
Figure 8: Deadlock detection overhead vs MPL

= ~E~h::u:al~r:b:hb:ed alg°d th m

4e Modified Probe-based algorithm J

Figure 9: Number of restart per transaction vs MPL

26 SIGMOD RECORD, Vol. 23, No. 3, September 1994

