
Distributed

with Scalable

File Organization

Cost/Performance*

Radek Vingralek~ Yuri Breitbartt Gerhard Weikum$

Abstract

This paper presents a distributed file organization for

record-structured, disk-resident files with key-based

exact-match access. The file is organized into buckets

that are spread across multiple servers, where a server

may hold multiple buckets. Client requests are serviced

by mapping keys onto buckets and looking up the corre-

sponding server in an address table. Dynamic growth in

terms of file size and access load is supported by bucket

splits and bucket migration onto other existing or newly

acquired servers.

The significant and challenging problem addressed here

is how to achieve scalability so that both the file size

and the client throughput can be scaled up by linearly

increasing the number of servers and dynamically re-

distributing data. Unlike previous work with similar

objectives, our data redistribution considers explicitly

the cost/performance ratio of the system by aiming to

minimize the number of servers that are acquired to pro-

vide the required performance. A new server is acquired

only if the overall server utilization in the system does

not drop below a specified threshold. Preliminary simu-

lation results show that the goal of scalability with con-

trolled cost/performance is indeed achieved to a large

extent.

1 Introduction

1.1 Problem Statement

Data-intensive computer applications are posing ever-

increasing demands in terms of storage and performance

*This material is bssed in part upon work supported by the grant
from Hewlett-Packard Corporation and by NSF under grant IRl-
92121301.

tDepartment of Computer Science, ETH Zurich, CH-8092,
Switzerland (on sabbatical leave from Department of Computer

Science, University of Kentucky, Lexington, KY 40506).

~Department of Computer Science, ETH Zurich, CH-8092,
Switzerland.

PermiSion to 00 y without fee all or part of this material is
J’granted provid that the copies are not made or cfistrfbuted for

direct commercial advantage, the ACM copyright notice andthe
title of the publicationanditsdateappear,and notice is given
that copying is by permission of the Association of Comp~ng
Machinery, To copy otherwise, or to republish, requires a fee
and/or specific permission.

capacity. One cost-effective approach to meeting such

requirements is to exploit distributed storage and com-

puting resources in a client-server architecture. Re-

cently, a number of proposals have been made for or-

ganizing record-structured, key-accessed, disk-resident

files so that the file size and the file access rate can be

increased in a theoretically unlimited way by dynam-

ically distributing the file across a number of servers

(e.g., [SPW90, MS91, Dev93, JK93, LNS93]).

Most notably, Litwin, Neimat, and Schneider [LNS93]

have developed a distributed version of linear hashing,

coined LH*, which assigns hash buckets to servers and

adds servers dynamically upon bucket splits. The most

salient feature of this approach is that its communica-

tion overhead is largely independent of the number of

servers and clients in the system; thus, it is considered

a scalable approach.

More precisely, the objective of scalability means the

following [Gr91, DG92]. Starting with a system where

one server manages a file of a specific size that is ac-

cessed by a specific number of clients at a specific rate,

a scalable approach can efficiently manage a file that is n

times bigger and accessed by n times more clients at the

same per-client rate, by adding servers and distributing

the file across these servers. Furthermore, the response

time of the clients’ requests should be as good as in the

one-server case. As perfect scalability (for non-trivial

workloads) is achievable only theoretically, we usually

speak of a scalable approach already if response time is

nearly constant (e.g., within a factor of 2) for reason-

ably large values of n (e.g., n = 100) and increases only

very slowly for very large values of n.

What is missing in this discussion of scalability, how-

ever, is a consideration of the cost that is incurred by

increasing the storage and performance capacity. Ideal

scalability would require that a capacity gain of n is

achieved by increasing the number of servers also by a

factor of n [DG92]. However, the bucket splitting mech-

anism of LH* and similar work inevitably increases the

number of servers by a factor higher than n. Expanding

a file that exhausts the complete capacity of one server

by a factor of 100 may, for example, lead to a system

of 140 servers with an average utilization of 7070, where

SIGMOD 94- S/94 Minneapolis, Minnesota, USA
Q 1994 ACM 0-89791 -839-5/94/0005..$3.50

253

utilization includes both storage and performance ca-

pacity. In our cost consideration, we would include all

140 servers for the following reasons:

● The servers need some free capacity to support

bucket growth before reaching the splitting point.

This extra capacity is not truly available to other

applications since it is withdrawn dynamically as

the number of buckets grows. Thus, other appli-

cations cannot really count on this “free” capacity.

● More servers imply a higher cost in terms of sys-

tem administration and availability, regardless of

how well loaded the servers are. As it is hard

to quantify these additional costs, we assume

throughout this paper that the cost of the sys-

tem is proportional to the number of servers that

are involved in the management of the file.

1.2 Our Approach

This paper presents a new approach for hash-based dis-

tributed files that strives for the objective of “cost-

conscious” scalability, by aiming to minimize the num-

ber of servers that are used for providing the necessary

performance capacity. Thus, our approach has a built-

in control of cost/performance. Our approach is based

on the following key concepts:

1.

2.

3.

In contrast to LH*, we assume an indirection be-

tween bucket numbers and server numbers, so

that multiple buckets can be assigned to the same

server. This indirection is implemented by an

address table, similar to the directory of the ex-

tendible hashing method [FNPS79] but stored in

a more compact way.

For each server, we employ a local load control

that prevents a server from being overloaded, by
redistributing buckets upon reaching a specified

server utilization, Having an explicit mapping of

buckets onto servers gives us additional flexibility

in redistributing the load of an overloaded server,

We can redistribute the load either by splitting

one or more buckets of the server or by migrating
some of its buckets to another server. Orthog~

nally to this issue, we can acquire a new server for

the buckets to be moved or we can merely move

the buckets to an existing server.

Hashing is used merely to distribute keys across
buckets. The internal organization of buckets can

be chosen freely, and may vary between servers.

For example, a single bucket could be organized

locally by linear hashing or as a B+-tree. For the

scope of this paper, the only important point is

that a bucket constitutes a certain access load that

4.

5.

has to be sustained by the server on which the

bucket resides. (A bucket also represents a cer-

tain storage cost, but this is of minor relevance in

this paper.)

The decisions about splitting versus migrating a

bucket and acquiring anew server versus redistrib-

uting across existing servers depend on the over-

all utilization of (the performance capacity of) the

existing servers. To make an intelligent decision,

our approach makes an “educated guess” of the

total load of the entire system (i.e., all servers),

based on a probabilistic model with sampling-

based information on bucket occupancy, For ease

of presentation, we assign this estimation task to a

logically centralized process that we refer to as the

file adviso~ however, our general approach would

S.I1OWa distributed estimation as well.

The guideline for the decisions mentioned under

point-4 is the following. As long as the estimated

total system utilization is below some threshold,

we do not acquire a new server and rather pre-

fer a redistribution of buckets among the exist-

ing servers. This policy aims to keep the number

of servers as small as possible, thus ensuring a

good cost/performance ratio and aiming at ‘[cost-

conscious” scalability (in the sense of Section 1.1).

The only exception from this policy is in the case

that there is no server that a bucket can migrate

to and yet one of the servers reached a maximum

capacity that started to affect its performance.

It is important to note that our main concern is

the control and (balanced) distribution of the access

load rather than the avoidance of overflow chains as

in conventional dynamic hashing methods (see, e.g.,

[RS84, ED88, Lar88]). We assume, for simplicity, that

the access load on a bucket is proportional to its size

(i.e., the number of records in the bucket). This is a rea-

sonable assumption for hash buckets with a sufficiently

large number of different keys, even though it disregards

the possibility of skew values [WDJ91] (which may oc-

cur especially if the search key of the file allows dupli-

cates). The load oj a server is the accumulated load of

its buckets, and the total system load is the accumulated
load of the servers.

These notions of server and system load may appear to

coincide with the classical notion of the “load factor” of

a hash file, applied to the buckets of one server or to all

buckets in the system, respectively. However, the differ-

ence is that the load factor reflects the storage utiliza-

tion rather than the utilization of performance capacity

(i.e., the percentage of the maximum throughput that

can be sustained).

In the rest of the paper we concentrate solely on the is-

sue of performance utilization and disregard storage uti-

254

lization. We assume that each server has the same per- we have been conducting. We conclude with a brief dis-

~ormunce capacity (expressed in the maximum amount cussion of possible extensions to and generalizations of

of data that the server can hold but actually reflecting our approach.

the access rate to this data). In principle, our approach

could allow servers with different performance capaci-
ties (e.g.,a heterogeneous workstation farm), but the 2 Overview of the Distributed
details of this generalization are left for future work.

File Algorithm

1.3 Related Work 2.1 System Model

Our approach is most closely related to the work of

[LNS93} and [Dev93]. In particular, we have adopted

the idea of using an address table from [Dev93], to gain

flexibility in the placement and splitting order of buck-

ets. (see also [RS84]). None of this previous work con-

siders the cost of scaling up a distributed system ex-

plicitly, and thus no attempt is made to minimize the

number of servers across which a file is spread. N’ote

that the consideration of the load factor of a hash file

is a storage utilization issue, whereas we assume that

storage capacity is relatively uncritical and are rather

concerned with the control of cost/performance. Thus,

the notion of an overflown bucket differs fundamentally

from the notion of an overloaded server.

Our approach draws on the option of redistributing

data by means of bucket migration. Data migra-

tion as a means for load balancing of data manage-

ment systems has been considered in a number of pa-

pers on multi-disk and distributed file systems (e.g.,

[WSZ91, WJ92, HW94]). However, the underlying file

model of these approaches is that of Unix files (i.e.,

bytestrings), whereas we assume record-structured files

with key-based access. To the best of our knowledge,

none of the previous approaches to distributed record-

structured file organizations has considered the migra-

tion of file portions to avoid or defer split-like reorgani-

zations.

Finally, our approach has adopted some of the prin-

ciples that have been developed in the context of dis-

tributed CPU load sharing and process migration (e.g.,

[BS85, ELZ86, LLM88] to mention some of the semi-

nal work in this area). In particular, our approach to

estimating the total system load resembles some of the

heuristics that are used in adaptive load sharing.

1.4 Overview of the Paper

The rest of the paper is organized as follows. Section
2 gives an overview of our distributed file algorithm.

Then, Section 3 and 4 present details of file advisor

methods for tracking the load of servers and for esti-

mating the total system load in order to make decisions

about when a new server should be acquired. Section 5

presents preliminary results of a simulation study that

Consider a file consisting of keyed records that is spread

across a number of servers connected by a network. A

file is stored as a collection of n buckets distributed

among m servers (m < n). .4 server keeps records of

the file primarily on disk and we assume that servers

are dedicated to managing a distributed file. We as-

sume that there is a distributed group of clients that

issue requests to insert, delete, and retrieve records for

a given key K in the file. We consider here the simplest

form of queries that are based on exact key match.

For a given key K a bucket that contains K is located

using a family of hash functions hi, i = O, 1, that

map a given key K to a bucket number, and an address

table that maps a given bucket number to the number

of the server that holds the bucket. The hash function

hi maps the key domain onto B .22 addresses in the

range O, 1,. . ., (B .2’ – 1) where B is the initial num-

ber of buckets. Our file organization uses the following

function:

IL,(K) = K mod (B ~2’)

With each bucket we associate a bucket level i, and we

define the server level as the maximum bucket level lo-

cated at the server. The bucket level is also an index for

the hash function shown above. The highest server level

among all servers is called the file level and denoted by

L.

The address table contains the mapping of bucket num-

bers onto server numbers, and it contains the level of

each bucket. An example of the address table is shown

in Figure 1.

BuckethTumber o 1 2 3 4 5 6 7 12

BucketLevel 3 3 3 3 4 3 3 4 4

ServerNTumber 5 2 2 4 1 4 5 3 3

Figure 1: Example of the Address Table

This address table is similar to the directory of the ex-
tendible hashing method [FNPS79] except that it does

not contain any “shared” entries for buckets at a level

less than the file level. This format is advantageous

when bucket levels can vary heavily for a given file

(because of non-uniform insertions), To compute the

bucket to which a key is mapped, the file-level hash

25.s

function hL is applied to the key. If the computed

bucket does not exist in the address table, this com-

putation is repeated with decreasing level i of the hash

function hi until an existing bucket is returned. Finally,

the table entry for this bucket yields the server number

where the bucket resides. For example, the key 27 would

be hashed to bucket 11 using hd if that bucket existed;

but as bucket 11 does not exist in the address table, it is

determined by using h3 that the key belongs to bucket

3 which resides on server 4.

Each server has a specified performance capacity, and

we assume, for simplicity, that this is the same for all

servers. As we assume that the access load for a bucket

is proportional to its size, the server performance ca-

pacity can be expressed in terms of the number of keys

that a server can hold. Thus, we define the feasible load

capacity CF as the maximum number of keys that the

server can keep without being overloaded. We assume

that a server can be overloaded to some extent with

degrading response time, before performance thrashing

will eventually occur and response time will approach

infinity because of queueing, Thus, we define the panic

load capacity Cp as the number of keys after which a

server is no longer capable of accepting additionzd keys.

Buckets, on the other hand, are of variable size and can

grow to any size provided the aggregate number of keys

at a server does not exceed the panic load capacity of a

server.

2.2 Client-Server Interaction

Each client c and each server .s have their own percep-

tion of the file that is characterized by their value of

the file level, denoted as L. and L,, respectively, and

a copy of the address table that they currently have.

The client’s and the server’s perception of the file may

or may not coincide with the current picture of the file

(i.e., they may have stale information on the file level

and the address table).

When a client c invokes an operation on key K (e.g., to

retrieve the record(s) with key K), it applies to K the

hash functions h, (L, ~ i > O) until it finds in its copy

of the address table a server s where K should reside
and sends K to that server.

When a server s receives a key K from the client, it

applies to K the hash functions ht (LS > i > O) until

it finds in its copy of the address table a server s’ where

K should reside as far as s is concerned. If K does

belong to the server that received it (i.e., if s = s’),

the server performs the requested operation. However,

if K has been sent to the wrong server, the server for-

wards it to s’, and updates the client’s view with its
file level L. and its address table. Eventually, K is re-

ceived by the correct server and the client operation is

executed. Further, as an important side effect, clients

gradually bring their perception of the file up-to-date,

so that the probability of wrongly addressed messages

is significantly reduced.

An interesting question is how many forwardings can

happen. As we will see in our simulation results, the

number of forwardings is indeed very small, and in the

majority of cases no key required more than two for-

wardings. On the other hand, for any number t it is

easy to design an experiment such that the length of a

forwarding chain will exceed t.This can happen when

the arrival rate of client requests is higher than the

speed at which bucket splits can be performed. This

fact, in a slightly different formulation, was pointed out

in [Dev93]. In our experiments with the algorithm of

[LNS93] we have observed cases where a key required

more than two forwardings while the theoretical bound

is only two forwardings. The discrepancy is caused by

the fact that the derivation of the theoretical bound

assumes an unrealistically synchronous system with in-

stantaneous message delivery and instantaneous bucket

splits,

2.3 Load Management

Our design is driven by two competing goals: to limit

the growth in the number of servers across which the

file is spread, and to guarantee good performance of

each server by cent rolling the server load. The first

goal is motivated by the cost minimization considera-

tion; that is, we do not want to pay for a new server

unless we have to for performance reasons. The sec-

ond goal is motivated by performance considerations:

we can efficiently service client requests only if none of

the server utilizations is higher than the feasible load

capacity. However, we assume that we have some slack

in this respect by overloading a server temporarily (up

to the server’s panic load capacity), at the expense of

degrading response time.

To reconcile these two goals, we allow redistributions of

buckets, either by splitting or by migration of buckets.

Such redistributions may be deferred if this is dictated

by the cost objective up to the point when either all
servers are operating in the range above the feasible load

capacity or at least one server reaches the panic load ca-

pacity. In this case, and ideally only in this case, our

method acquires a new server that alleviates the load on

the existing servers by taking over one or more buckets.

Following this rationale, the decision on increasing the

system’s resources is made dependent on the average

server utilization. Based on our assumption that access

load and data volume are proportional, we define the

global utilization of the system as the ratio of the aver-

age number of keys per server to the feasible load capac-

ity of a server. Our consideration of costlperformance

256

then amounts to the requirement that the global utiliza-

tion should always be above some specified threshold U

(e.g., U 2 0.9) while also ensuring that no server is
loaded higher than its panic load capacity would allow.

For monitoring and controlling the global utilization,

we introduce a logically centralized agent that we call

the file advisor. For simplicity, we will assume in this

paper that the file advisor resides on a single dedicated

server. Distributed implementations of the file advisor

are conceivable, but are beyond the scope of this paper.

As we will show in Section 5, however, the simplified

implementation of the file advisor does not adversely

affect scalability y for fairly large systems.

The file advisor maintains information about the num-

ber of keys at each server in its address table. One

way of enforcing a global load control would be to re-

quire a server to report its load to the file advisor after

each key that the server receives. Then, an additional

server would be acquired only if the global utilization,

with an additional server factored in, does not fall be-

low U. However, this approach would significantly in-

crease the message traffic between the advisor and the

other servers, which we want to avoid. Therefore, we

have adopted a different approach. Namely, we require

a server to report its load to the file advisor by sending

an overload message only if the server exceeds its feasi-

ble load capacity CF. We piggyback on these messages

information on the server’s buckets, so that we can usu-

ally assume that the file advisor has knowledge of the

up-to-date address table.

Once a server has started to send overload messages, it

continues to do so after each additional x keys that are

added to the server (where z is a fine-tuning parameter

with a typical value on the order of 10 or 100 depend-

ing on data and load characteristics) until the server

receives either a split or migrate message from the file

advisor.

Upon receiving an overload message from a server, the

file advisor “guesstimate? the number of additional

keys received by non-reporting servers since their last

overload message and executes an adjustment proce-

dure that updates the file advisor address table (see

Section 3). We have developed a heuristic estimation

method (described in section 4) that is used by the

adjustment procedure to come up with an “educated

guess” of the current global utilization. If the current

globrd utilization exceeds the specified threshold U, a

new server is acquired

When a new server is acquired, the file advisor selects

the server s that has the highest number of keys among
all existing servers and sends a split message to s telling

it that it should split all its buckets with a newly ac-

quired server s’. For each bucket b at s, records to be

migrated to server s’ are determined using h~~+l as the

hashing function where Lb is the level of bucket b. Af-

ter the split, the level Lb of bucket b at s and the new

bucket at the new servers’ are advanced to Lb+ 1.The

server levels ofs and s’ are updated accordingly.

If a server s reaches the panic load capacity, but the

global utilization would not exceed the threshold after

the split, then the file advisor first tries to migrate some

of the buckets ofs to other servers that have enough un-

used performance capacity to accept it. If that is pos-

sible and server s’ is found that can accept at least one

of the buckets b from s, the file advisor sends a migrate

message to s. If there is no server in the system that

may accept any bucket from s, then a new server s’ is

acquired and s is instructed to split all its buckets with

a newly acquired server s’.

Since the file advisor does not have a precise informa-

tion about the load at each server, its decision to mi-

grate a bucket from server s to server s’ in some cases

cannot be implemented. It happens in the case, when

the file advisor assumes that s’ has lower load than s’

really has. Recall, that s’ has not reported an overload

and therefore, the file advisor’s information about the

s’ load is based on its previosly reported load. Even

if the estimate is quite accurate (as we will see in our

performance results), from the time that s has sent a

panic message to the time that s’ receives a bucket from

s, the server s’ load could have increased and it will not

be able to accommodate bucket b from server s.

If s’ cannot accept b from server s, s reports to the

file advisor that the migrate attempt was unsuccessful.

There are many possible startegies to handle an un-

successful migration. For simplicity, we selected here

an option in which the file advisor receiving migration

failed message, acquires a new server and sends a split

message to s.

Pseudocode for actions executed by the client, the server

and the file advisor is shown in figures 2, 3 and 4, re-

spectively.

Loop Forever;

if (key to be sent) then

determine address;

send key to the address;

if (ADDR.TABLE-ADJUST received

from server) then
/* message contains new address table */

set address table to new table;

if (OPER-ACK received from server) then

process operat ion acknowledgement;

End;

Figure 2: Client’s algorithm

257

Loop Forever;

read next message;

if (OPER.REQ received from client) then

if (correct address) then

perform operation;

send OPER.ACK to client;

if (overloaded) then

send OVERLOAD to File Advisor;

else

forward message;

if (first addressing error) then

send ADDR.TABLE.ADJUST to client;

else if (SPLIT received

from File Advisor) then

perform split of all buckets;

send half of new buckets to new server;

send SPLIT-DONE to File Advisor;

else if (MIGRATE received

from File Advisor) then
/* message contains BUCKET */

/* to be moved to NEW-SERVER*/

send BUCKET to NEW.SERVER;

wait for response from NEW-SERVER;

if (BUCKET_ACCEPT received

from NEW-SERVER) then

delete BUCKET;

send MIGRATE-DONE to File Advisor;

else

send MIGRATE-REJECT to File Advisor;

wait for SPLIT from File Advisor;

else if (NEW BUCKET received

from SERVER) then

if (enough storage to accept bucket) then

insert the bucket;

send BUCKET-ACCEPT to SERVER;

else send BUCKET.REJECT to SERVER;

End ;

Figure3: Server’s algorithm

2.4 Example

Consider a distributed file where each server’s feasible

load capacityis 5andits panic capacity is6. Assume

that the global utilization threshold U is 8070 and ini-

tiallythe file has only one server with two buckets. Fig-

ure 5a depicts the file after it has received 6 keys. After

receiving the 6th key, the server sends a panic message

to the file advisor and since there are no more servers,

anew server is acquired and all buckets at server 1 are

split with server 2. Figure 5b shows the file after the

split is performed.

258

After two additional keys are inserted at server 2, the

server reports thatit has reached the panic load capac-

ity. Figure 5C shows the file after insertion of the two

keys. The file advisor knows that the server received 2

extra keys and, after using a heuristic estimation (de-

scribed later in Section 4, determines that no adjust-

ment of the load at server 1 is required, and thus a

migration of a bucket from server 2 to server 1 is per-

formed. The file after the migration is shown in figure

5d.

Loop Forever;

read next message;

if (OVERLOAD received from SERVER) then

update Addr Table with received info;

update Addr Table with estimates;

if (load factor after split >=

load factor threshold) then

send SPLIT to MOST_OVERLOAD_SERVER;

else if (Panic_Mode flag is on) then

Send MIGRATE to MOST_EMPTY_SERVER;
/+ move bucket that fits into

1* 1/2 of space on emptiest server

*/
*/

else if (SpLIT_DONE or MIGRAm_DoNE
received from SERVER) then

update Addr Table;

else if (MIGRATE REJECT received

from SERVER) then

Send SPLIT to SERVER;

End;

Figure4: File Advisor’s algorithm

3 ‘I’racking the System Load

The file advisor maintains information about thenum-

berofkeys at each server. Because an overloaded server

keeps the advisor up-to-date about its load, theadvi-

sor’s information about the current number of keys at
an overloaded server may differ from the actual load of

such server by no more than x – 1, where x is a num-

ber of keys that after receiving which an overloaded

server reports its load again to the file advisor. For

non-overloaded servers, however, the file advisor main-

tains an estimate of the number ofkeys ateach server.

As time passes and inserts take place, some server may

become overloaded whereas other servers may still ab-

sorb inserts without getting overloaded. To facilitate a

global load control, the file advisor must keep agood

estimate of the total number ofkeys at non-overloaded

servers.

Server 1 Server 1 Server 2

Hr

w “’”‘ lk!._!4w
a)

Server 1 Server 2

b)

Server 1

LJLJ
i

EiHa —Panic move

c)

LM!!JLJ

Figure 5: Distributed File Configuration

a) Server 1 sends OVERLOAD and receives SPLIT

b) File afier SPLIT is performed

c) Additional keys Id and 363 are inserted and server 2 is in PANIC

d) Bucket 2 from server 2 is migrated to server 1 to resolve PANIC

Whenever the file advisor receives an overload message,

it adjusts its estimate of the number of keys at non-

overloaded servers to take into account possible inserts

in their buckets. Assume that server s reports that it

has become overloaded and reports its total number of

keys and their distribution among its buckets. The file

advisor now derives that s has received t extra keys

since it last adjusted the number of keys of server s.

The file advisor, based on its address table information,

computes the total number of buckets N as well as the

number of non-overloaded buckets R as if all buckets

were at the file level L. This simplifying assumption is

feasible as a bucket at level i can be viewed as being

equivalent to two buckets at level i + 1. For example,

if the file contains 3 buckets of level 3 and the file level

is 5, then the file advisor considers that there are 12

buckets of level 5. It then uses the heuristic procedure

(described in section 4) to obtain the expected number

of keys l?(t) obtained by non-overloaded buckets (and

by implication, by non-overloaded servers). If E(t) is

less than one, then we assume that none of the non-

overloaded buckets has received any additional keys.

In the latter case, we do not completely discard the

information that s has reported to the file advisor.

Clearly, with the next overload message reporting that
server s’ (which may or may not be the same as s) has

received tl additional keys, the probability that non-

Additional inserts

Server 2

L12

u

10
242

d)

overloaded buckets have received some extra keys is in-

creased, provided that keys are uniformly distributed.

Therefore, when the server s’ reports that it has re-

ceived tl extra keys, the file advisor uses an estimation

heuristics not for tl but for t + tl,to account for the

information that has not yet been used for adjusting the

estimated number of keys.

The file advisor then updates its estimate of a number of

keys at non-overloaded servers by “distributing” these

l?(t) keys among them. For the purpose of the distri-

bution, the non-overloaded servers are processed in a

non-decreasing order of the number of keys at them as

follows:

1.

2.

Let servers have ~ buckets at the file level L. (For

example, if server has 3 buckets at level 3 and one

bucket at level 4 and the file level is 5, then the

file advisor assumes that the server has a total of

3 “ 25-3 + 1 .25-4 = 14 buckets at level 5). Then
the file advisor increases its current estimate ofs

by j (without exceeding feasible capacity of the
server), where j = min(r, E(t)).

Decrease E(t) by T and continue with the next

non-overloaded server if E(t) is still greater than

o.

259

To illustrate the above adjustment procedure, let us

consider the following example. Assume that the file

consists of 4 servers and file level L = 4. The feasible

load capacity of each server is 20 keys, Assume the key

distribution is as given in Figure 6 (such a configura-

tion could have been produced, for example, by first

inserting many keys and then deleting a large fraction

of them).

Thus, server 1 is overloaded while servers 2, 3, and 4

are non-overloaded. The file advisor knows the precise

number of keys at server 1, while for servers 2, 3, and 4

the shown numbers are the best estimates by the advi-

sor

Server 1

m
Server 3

I I r

Server 2

bucket 1: 6 keys

level 4
I

Server 4

1-l
bucket 1: 2 keys bucket 1: 3 keys

level 3 level 4

bucket 2: 2 keys bucket 2: 1 key

level 4 level 4

nFile Advisor

Figure 6: File Load Adjustment Example

Assume now that the file advisor has received an over-

load message from server 4 indicating that the server

has received t = 17 more keys. Thus, server 4 has be-
come overloaded. The file advisor calculates that there

are altogether N = 8 buckets of level 4 and among them

R = 4 buckets of level 4 that are non-overloaded (server

2 contains one such bucket, server 3 contains 1 bucket of

level 3 which is perceived by the file advisor as 2 buckets

of level 4, and also contains one bucket of level 4).

Using the estimation heuristic of the next Section, the

adjustment procedure derives that the number of keys

in servers 2 and 3 needs to be adjusted by a total of

.E(17) = 4 keys. observe that at this point the file ad-

visor knows the precise number of keys at servers 1 and

4. The file advisor adjusts the number of keys at server

2 by increasing it by 1 and the number of keys at server

3 again by increasing it by 3.

4 Estimation Heuristics

In this section we discuss the heuristic method used by

the file advisor to estimate the number of keys received

by non-overloaded servers at the time that some server

has reported an overload. Let the additional number

of keys reported by the overloaded server be denoted

by t. Based on the value of t, the file advisor should

estimate the number of keys that were received by the

non-overloaded servers.

The heuristic we propose here assumes an uniform dis-

tribution of keys across buckets (provided that buckets

were at the same level). Assume that the file has level

L and contains n buckets in total. Since a bucket with

level i contains, on average, twice as many keys as a

bucket with level i + 1, we can simplify the estimation

by viewing the level i bucket as two buckets of level

z+1. In the sequel, we will therefore assume, that there

are IV = 2L buckets in the system all of which are at

the same level L (where L is the file level). Thus, the

probability for a key to be placed into a given bucket is

I/N.

Recall that once a server has sent an overload message

to the file advisor, it continues to do so after every ad-

ditional z keys. To simplify our discussion, we assume

that x = 1. Thus all servers in the file are subdivided

into overloaded and non – overloaded servers. All buck-

ets at the overloaded and non-overloaded servers are

referred to as overloaded and non-overloaded buckets,

respectively. Let R be the number of non-overloaded

buckets among all N buckets.

NTOW,the problem we need to address can be formu-

lated as follows: Assume that there are N buckets with

R of them non-overloaded and S of them overloaded

(N= R + S). Furthermore, assume that we know that

one of these buckets has reported that it received t keys.

We need to determine the number of keys E(t) received

by non-overloaded buckets (recall, that under our as-

sumption, no overloaded bucket (except the one that is

reporting an overload) has received any extra keys!).

Let T be the total number of keys in non-overloaded

buckets at the time of the last adjustment for the non-

overloaded servers. Since none of the non-overloaded

buckets reports its load, the total number of new keys

received at all such buckets cannot exceed R CF – r,

where CF is the feasible load capacity of a server.

Now, we assume that we have only 2 “metabuckets”.

One of them contains keys from all non-overloaded

buckets (we denote it by A) and the other contains keys

260

from all overloaded buckets (we denote it by l?). From

the information available to the file advisor we derive

the probability p that metabucket A receives a key and

the probability q that metabucket B receives a key as

p = R/N and q = S/N.

In the sequel < j, t > stands for a configuration, where

j is the number of new keys received in metabucket

A at the time that metabucket B reported that it has

received t additional keys. At the time that a bucket

has reported an overload, we know that the last key

has been received by an overloaded bucket. Thus, if

there are no additional constraints on configurations,

the probability of each configuration is as follows:

Pro/)(< j,t >) = ()t+.j-l ~qt

j

However, the configurations are subject to the following

constraint:

O~j~R.C~-T

The probability that the above condition is satisfied is:

R.CF-r

M=
E

l%ob(< j, t >)

j=o

R.CF-r

x)

t+j–1 ~Qt
=

j=o j

Thus, our elementary event space consists of R.CF –T+ 1

different events where each event haa a probability of

Prob(< j, t>) / M.

Let E(t) be the expected value of the number of new

keys received by non-overloaded buckets at the time

that some bucket has reported that it has received t

additional keys. Thus, the following formula holds for

E(t):

R.CF-r

E(t) =
E

.pTOb(< j, t >)
.7 Mj=o

= “?-’j “+;2$9’
J=o

The formula indicates, however, that the precise calcu-

lation of E(t) is computationally expensive. Thus, we

actually use the approximation

(t-l)RE(t) % ~N

for the value of E(t). This approximation is fairly ac-

curate (as determined by comparing the exact and ap-

proximate figures for a large range of p and q values).

5 Preliminary

Suits

We have been conducting

Simulation Re-

a performance evaluation of

our algorithm using a discrete-event simulation model.

This section reports some preliminary results of this

study. The simulation model was built using the CSIM

run-time library [Sch92].

5.1 Simulation Model

Our simulation model consists of three major compo-

nents: a server model, a client model and a network

model, Each server has a CPU and disk storage with

identical characteristics, and uses a hash-based file or-

ganization locally.

The feasible load capacity of a server is expressed in

terms of the maximum number of keys that the server is

able to keep (and service their access requests) without

any performance degradation, Similarly, the panic load

capacity of a server is expressed in terms of the maxi-

mum number of keys after which the server would start

thrashing. Each server has the same 1/0 block size (set

to the size of a disk track); the record size and the key

size were fixed throughout the simulation. For simplic-

ity, we assume that queries do not benefit from caching:

each query is assumed to cause exactly one disk 1/0.

Inserts, on the other hand, are assumed to be batched,

so that a number of inserted records can be written to

disk in a single disk 1/0 (this can be done irrespective

of the insert rate provided the inserts are acknowledged

immediately and performed on the background). Log-

ging is employed to ensure that inserts are not lost (due

to server failures) before they are eventually written to

disk.

Keys are generated using a uniform distribution. The

arrivals of client requests are exponentially distributed

with the same average arrival rate for each client. Each

client request is acknowledged. However, the acknowl-

edgement is asynchronous with requests submissions.

The network performance in the model was character-

ized by the network latency IVL and the bandwidth

BW The total time each packet spends in the network
is equal to: NL + BW . PacketSize. The large data

transfers that are caused by redistribution of buckets

are divided up into a number of packets with a speci-

fied maximum size. All other messages correspond to

exactly one packet.

261

feasible load capacity 10000 records

panic load capacity 11000 records

CPU cost for servicing 10000 instructions

a client request

client requests arrival rate 0.1 requests/see per client

fraction of insert requests 0.1

fraction of queries 0.9

network latency 20 ,usec

network bandwidth 10 MBytes/see

CPU cost for each message 5000 instructions

maximum packet size 1 MByte

Figure 7: Setting of Simulation Parameters

5.2 Simulation Experiments and Re-

sults

IVe have conducted a number of experiments for dif-

ferent system and workload parameters. Since they all

showed consistent results wit bout significant differences,

we concentrate here on a single series of experiments in

which all system and workload parameters were kept

invariant. The values of these parameters are summa-

rized in Figure 7. These settings were chosen to model

approximately a workstation farm with an FDDI inter-

connect.

The “cost-conscious” scalability of the algorithm is

demonstrated aa follows. We first loaded a distributed

file of a specific size by issuing only insert requests from

a specific number of clients, such that the final file size

would be proportional to the number of clients. The

loading waa done by employing our algorithm, start-

ing from a single (‘[empty”) server having ten buckets

and acquiring servers as dictated by our redistribution

method.

The correlation between the eventual file size and the

number of clients (and thus also the access rate) fol-

lows the type of scaling rules that are used in vari-

ous transaction processing and database benchmarks

[Gr91]. Specifically, each client would insert 1000
records (with a total data volume of 10 MBytes), so

that, for example, 100 clients correspond to a file size of

100000 records (1 GB yte). Note that the data size it-

self is used here only to represent a proportional access

load, and that such relatively small figures can them-

selves be scaled up by keeping the ratio of clients and

file size constant.

After the loading phase, we ran a mix of insert requests

and queries (with a ratio of 1 to 9, see Figure 7) from

the same number of clients until the file size had grown

by 10 percent of the file size as it was right after the

loading. For example, with 100 clients and a file size of

100000 records, a simulation run included 10000 insert

requests (plus 90000 queries). The simulation results

given below were collected during this execution phase.

To demonstrate scalability, we repeated the described

experiment (both the loading and the execution phase)

for different numbers of clients and corresponding file

sizes, ranging from 100 clients (100000 records, 1

GByte) to 1000 clients (1 Million records, 10 GBytes).

The global utilization threshold U was set to 0.9 in all

runs; that is, the goal was to limit the number of servers

such that the average server load would be at least 90

percent of the feasible load capacity while also ensuring

that no server would have a load higher than the panic

load capacity. The main results for this series of ex-

periments are given in Figures 8 and 9, separated into
performance-oriented and cost-oriented metrics.

clients total avg. resp. time avg. resp. time % requests max.
?

throughput of inserts of queries w/o forward forward

100 10 requests/see 1.80 msec 22.8 msec 99.5 % 2

200 20 requests/see 1.88 msec 22.9 msec 99.2 % 2

300 30 requests/see 1.89 msec 22.9 msec 99.3 % 2

500 50 requests/see 2.13 msec 23.2 msec 98.8 % 2

1000 100 requestslsec 2.49 msec 23.7 msec 98.7 % 3

Figure 8: Performance Results of the Simulation Experiments (for U = 0,9)

262

clients # servers # buckets avg. server # bucket # bucket failed

ut ilizat ion splits migrations migrations

100 12 134 0.91 1 1 1

200 24 251 0.91 3 3 0

300 36 396 0.91 3 4 3

500 59 617 0.93 6 19 6

1000 119 1340 0.92 12 20 2

Figure 9: Cost Results of the Simulation Experiments (for U = 0.9)

The most striking result of the experiments was that

our algorithm did indeed manage to keep the global

utilization above 90 percent, while also providing al-

most constant response time for queries (which are more

critical than inserts) for linearly increasing throughput.

Thus, we have a constant cost/performance ratio, as

expressed, for example, in the ratio of the number of

clients (which is proportional to throughput) to the

number of servers upon which the file is spread. Fur-

ther note that the number of servers and buckets also

grows only linearly with the file size and access load;

this shows that the splitting of servers is indeed done in

a carefully controlled way. Furthermore, in most cases

splits were caused by failed attempts to migrate buck-

ets (which failed because no other server could accept

the additional load without becoming overloaded itself).

This is a reconfirmation that our algorithm maintains

a good cost/performance ratio, so that each acquired

server is utilized at an acceptable level.

The good response time result can be attributed to two

observed effects. First, as shown in Figure 8, almost

all client requests could be serviced without any for-

warding, and the longest chain of forwardings was 2 for

most cases and 3 (for a few requests) in the case of 1000

clients. Secondly, as shown in Figure 9, the number

of bucket splits and migrations that would potentially

cause some delays in the servicing of client requests (be-

cause of disk or network contention) was small enough

so as not to have any significant adverse effect on the re-

sponse time of client requests. The mild increase in the

response time with increasing file size is indeed caused

by the interference of client requests and bucket redis-

tribution, however. On the other hand, recall that the

file size was increased by 10 percent during the measure-

ment phase, so that some interference is inescapable.

The network had a low utilization in all experiments

and never incurred any bottleneck, A summary of the

message costs in the execution phase is given in Fig-

ure 10 for completeness. Note that the vast majority
of messages simply correspond to the client requests

and server responses (i.e., they do not represent any

additional overhead). The network traffic due to splits

and migrations (which are the only larger messages) was

fairly low.

The described type of scalability experiment waa per-

formed also for other values of the global utilization

threshold U (0.8 and O.7); these experiments merely

confirmed the above findings and are thus omitted here.

To conclude this section, we observe that the variance

of mea.surments provided in the above tables is quite

low, which gives us a high confidence level of our exper-

imental figures.

clients total # # overload avg. # packets

messages messages per split or

migration

~

Figure 10: Network Costs of the Simulation

Experiments (for U = 0.9)

6 Conclusion

In this paper we have presented a new distributed file

organization that supports dynamic growth in terms of

both file size and access load while allowing us to con-

trol the cost/performance ratio of the distributed sys-

tem. Unlike previous approaches to scalable distributed

file organizations that do not have the kind of “cost-

consciousness” that we are advocating, our approach

acquires a new server only if the global utilization of

servers does not drop below a specified threshold while

also ensuring that no server is overloaded. Thus, we

minimize the number of servers that are needed to sus-

tain the required performance. This is an important

achievement as the system administration and the ad-

ditional steps for ensuring high availability (that would,

perhaps, be necessary but are disregarded in this paper)

incur significant costs in proportion to the number of

servers that are involved.

The presented simulation experiments show very

promising scalability results, but are still too pre-

liminary to draw any final conclusions. We are in

263

the process of performing a comprehensive simulation

study. We also plan to compare our approach to other

recently proposed methods for distributed hash files, no-

tably the methods of [LNS93] and [Dev93]. Note, how-

ever, that these methods in their original form are not

really comparable to our approach, as they disregard the

important issue of cost/performance. This issue h~ to

be added to these previous approaches (i.e., some form

of controlling the global utilization) in order to conduct

a systematic comparison.

Beyond our current system model with homogeneous

servers, our approach has the potential of being ap-

plicable also to heterogeneous servers where servers may

differ in their local data organization or may have differ-

ent load capacities. Another extension of our approach

would be to replace the logically centralized file advi-

sor process by a distributed algorithm that would be

carried out by the servers themselves. These extensions

are certainly feasible, and details are being worked out.

Finally, we are working also on adding controlled redun-

dancy to the file organization to enhance data availabil-

ity in the presence of server failures.

References

[BS85]

[CS92]

[Dev93]

[DG92]

[ED88]

[ELz86]

A. Barak, A. Shiloh, A Distributed Load Balancing
Policy for a Multicomputer, Software Practice & Ex-
perience VO1.15 No.9, September 1985, pp. 901-913.

D.D. Chamberlain, .F.B. Schmuck, Dynamic Data Dis-
tribution (D3) in a Shared-Nothing Multiprocessor
Data Store, VLDB Conference, Vancouver, 1992.

R. Devine, Design and Implementation of DDH: A
Distributed Dynamic Hashing Algorithm, 4th Inter-
national Conference on Foundations of Data Organi-
zation and Algorithms (FODO), Chicago, 1993,

D.J. DeWitt, J.N. Gray, Parallel Database Systems:
The Future of High Performance Database Systems,
Communications of the ACM VO1.35 No.6, June 1992,
pp. 85-98.

R.J. Enbody, H.C. Du, Dynamic Hashing Schemes,
ACM Computing Surveys VO1.20 No.2, June 1988,
Pp.85-113.

D.L. Eager, E.D. Lazowska, J. Zahorjan, Adaptive
Load Sharing in Homogeneous Distributed Systems,
IEEE Transactions on Software Engineering Vol. 12
No.5, May 1986, pp. 662-675.

[FNPS79]

[Gr91]

[HW94]

[JK93J

[LM88]

[LLM88]

[LNS93]

[MS91]

[RS84]

[SPW90]

[Sch92]

[WDJ91]

[WJ92]

[WSZ91]

R. Fagin, J, Nievergelt, N. Pippenger, H.R. Strong,
Extendible Hashing - A Fast Access Method for Dy-
namic Files, ACM llansactions on Database Systems
VO1.4 No.3, 1979, pp. 315-344.

J. Gray (Editor), The Benchmark Handbook for Data-
base and Transaction Processing Systems, Morgan
Kaufmann, 1991.

Y. Huang, O. Wolfson, Object Allocation in Distrib-
uted Databases and Mobile Computers, Data Engi-
neering Conference, Houston, 1994.

T. Johnson, P. Krishna, Lazy Updates for Distributed
Search Structure, ACM SIGMOD Conference, Wash-
ington, 1993.

P.A. Larson, Dynamic Hash Tables, Communications
of the ACM VO1.31 No.4, April 1988, pp. 446-457.

M.J. Litzkow, M. Livny, M.W. Mutka, Condor - A
Hunter of Idle Workstations, 8th International Confer-
ence on Distributed Computing Systems (DCS), San
Jose, 1988.

W. Litwin, M.-A. Neimat, D.A. Schneider, LH* -
Linear Hashing for Distributed Files, ACM SIGMOD
Conference, Washington, 1993; extended version pub-

lished SS: Technical Report HPL-93-21, Hewlett-
Packard Labs, 1993.

G. Matsliach, O. Shmueli, An Efficient Method for Dis-
tributing Search Structures, 1st International Confer-
ence on Parallel and Distributed Information Systems
(PDIS), Miami Beach, 1991.

K. Ramamohanarao, R. Sacks-Davis, Recursive Lin-
ear Hashing, ACM !lhnsactions on Database Systems,
VOI.9 No.3, September 1984, pp. 369-391.

C. Severance, S. Pramanik, P. Wolberg, Distributed
Linear Hashing and Parallel Projection in Main Mem-
ory Databases, VLDB Conference, Brisbane, 1990.

H. Schwetman, CSIM Reference Manual (Revision 16),
Microelectronics and Computer Technology Corpora-
tion, Austin, 1992.

C.B. Walton, A.G. Dale, R.M. Jenevein, A Taxonomy
and Performance Model of Data Skew Effects in Par-
allel Joins, VLDB Conference, Barcelona, 1991.

0. Wolfson, S. Jajodia, Distributed Algorithms for Dy-
namic Replication of Data, ACM PODS Conference,
San Diego, 1992,

G. Weikum, P. Scheuermann, P, Zabback, Dynamic
File Allocation in Disk Arrays, ACM SIGMOD Con-
ference, Denver, 1991.

264

