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Abstract

We describe the implementation of the magic-sets transfor-

mation in the Starburst extensible relational database sys-

tem. To our knowledge this is the first implementation of

the magic-sets transformation in a relational database sys-

tem. The Starburst implementation has many novel fea-

tures that make our implementation especially interesting to

database practitioners (in addition to database researchers).

(1) We use a cost-based heuristic for determining jotrs or-
ders (sips) before applying magic. (2) We push all equal-

ity and non-equality predicates using magic, replacing tra-

ditional predicate pushdown optimizations. (3) We apply

magic to full SQL with duplicates, aggregation, null values,

and subqueries. (4) We integrate magic with other relational

optimization techniques. (5) The implementation is em!en-

s~ble.

Our implementation demonstrates the feasibility of the

magic-sets transformation for commercial relational systems,

and provides a mechanism to implement magic as an integral

part of a new database system, or as an add-on to an existing

database system.

1 Introduction

Magic-sets [BMSU86, BR91, Ram88, Mum91] is a

query-rewrite optimization algorithm for recursive and

nonrecursive queries written in Datalog or SQL. The

magic-sets transformation has been implemented in

deductive database systems for optimizing recursive

queries: Coral [RSS92] implements magic templates

[Ram88], Aditi [VRK+90], EDS [FF93], CDL [NT88],

NAIL [MNS+87], and Glue-Nail [DMP93] implement

the supplementary magic-sets transformation [BR91].
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However, the deductive implementations have ignored

several aspects critical to commercial relational systems

— join ordering, predicates other than equality, integra-

tion with traditional optimizations, existential and uni-

versal quantification, sub queries, nonrecursive queries,

(strict) adherence to SQL semantics, and, in one case,

the need to maintain ground tuples while working with

predicates other than equality.

Motivation:

EXAMPLE 1.1 Let employee be a stored relation

with attributes empno, empnatne, workdept, and salary,

amongst others. Let department be a stored relation

with attributes deptno and deptneme, amongst others.

The query

(DO): SELECTd.deptname, s.~orkdept, s.avgsalary
FROMdepartment d, avgMgrSal s
UMEREd,deptno = s,workdept AIJD

d.deptname = ‘Planning’.

defines a query table containing the average salary of all

the managers in the department with name ‘Planning’.

The complete query includes the definition of two views:

avgMgrSal that computes the average salary of all

managers in each department, and mgrSal that contains

information on employees who are managers (We have

dropped the CREATE VIEW keywords for brevity).

(Dl): avgMgrSal(workdept , avgsalary) AS
(SELECT workdept, AVG (salary)
FROMmgrSal
GROUPBYworkdept).

(D2): mgrsai(empno, empnsme, workdept, salary) AS
(SELECT e.empno, e.empname, e.workdept, e.salary

FRO14employee e, department d

WHEREe.empno = d.mgrno).

The query graph for query D, (Figure 1, left side)

shows the flow of information amongst the query blocks.

department and employee are used to compute mgrSal,

and the result is grouped upon to compute avg MgrSal.

The GROUPBY view D1 is shown by a triplet of boxes –
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ORIGINAL QLERY

——.——
QUERY TRANSFORMED BY MAGIC-SETS

Figure 1: Magic Transformation introduces more joins,

bu~ leads to better performance.

the first box represents the SELECT FROM WHERE clause

of the view D1, the second box represents the actual

GROUPBY operation, and the third box accommodates a

possible selection due to the HAVING clause (the reasons

for having a triplet should not concern the reader here).

department and avgMgrSal are then joined in the query

block.

The right side of Figure 1 shows the flow of infor-

mation if the magic-sets transformation was applied to

this query graph. The department information can be

used, through two other magic views, to limit the com-

putation of the mgrSal view. Since only the ‘Planning’

department is of interest to the query, the magic views

will cause mgrSal to be computed only for the managers

in the ‘Planning’ dept. Clearly, this is a big reduction in

the size of m grSal, so it will be computed faster. Further,

the grouping operation now groups a smaller relation,

and is more efficient. The query block also works with

smaller inputs, and can be evaluated faster than in the

original query graph.

The transformed query graph is more complex - it

has more query blocks, and more’ joins, However, the

graph in Figure 1 does not represent the end of query-

rewrite in Starburst. The graph is further optimized,

using traditional relational optimization, to generate a

final equivalent query graph that has only one extra

box, and only one extra join (Figure 4, discussed

later). The additional join is very inexpensive, and

our performance experiments [Table 1, Experiment G)

show that the transformed query executes two and a half

orders of magnitude faster. This example illustrates the

savings that can be achieved using magic-sets, and the

importance of integrating magic-sets with other query

optimization techniques. ❑

We have done performance experiments on large

benchmark data on IBM’S DB2 database, and seen that

queries transformed by our extended magic-sets trans-

formation can execute orders of magnitude faster, Some

of the experiments were reported in [MFPR90a]. Re-

sults of those and other experiments are summarized in

Table 1. The experiments compare the execution times

EQuery

E

Exp A

Exp B

Exp C

Exp D

Exp E

Exp F

Exp G

Exp H

Original

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

Elamed Time

correlated

0.40
2.12

513.27
5136.49

52.56
0.54
2.41

19.91

EMST

0.47

0.28

50.24

109.00

7.62

0.84

0.49

4.46

of nonrecursive aueries rewritten using the extended

magic-sets transformation (EMST), whose implementa-

tion we describe in this paper, and correlation (a lead-

ing optimization technique for complex SQL queries),

and show that EMST is a far more stable optimization

than correlation. The experiments thus show that the

magic-sets transformation is invaluable for optimization

of nonrecursive SQL queries, particularly for complex

queries such as decision-support queries.

Deductive implementations don’t satisfy the

needs of a commercial relational implementa-

tion: The magic-sets transformation has been imple-

mented in deductive databases, but is not popular in

relational database systems for nonrecursive queries.

There are several reasons for this. First, deductive

database theory and implementations have advocated

that the magic-sets transformation is useful only for re-

cursive queries, and that too only for non-linear recur-

sive queries. Non-linear recursive queries do occur in

applications, but are not common enough to demand

extensive optimization priority; besides most relational

systems do not support recursive queries any way. Sec-

ond, the magic-sets transformation can rewrite a non-

recursive query into a recursive query, making it inap-

plicable in most relational systems that do not support

recursion. Third, commercial RDBMSS usually have a

complex query language (such as SQL), with features

and semantics different from Datalog and other logic

languages. For example, SQL has existential and uni-

versal quantifiers, nested subqueries, correlation, dupli-

cates, aggregation, ordering, and nulls. The magic-sets

transformation must strictly adhere to the semantics of

SQL (or another complex query language). The deduc-

tive database implementations do not comply with the
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complex non-logical features. Fourth, it is not known

how magic-sets transformation interacts with other op-

timization techniques. What is the relationship between

predicate pushdown, decorrelation, and magic? How

does one determine the join-order information needed

forrnagic? In acommercial relational database, an un-

derstanding of the interaction with other traditional op-

timizationsis critical for magic to be useful. Fifth, as

Example 1.1 showed, the magic-sets transformation pro-

duces a complex query graph with many extra boxes and

joins. Deductive database implementations of magic-

sets do not optimize the graph any further. Lastly, op-

timizers in commercial RDB MSS have a complex im-

plementation, and it is not easy to integrate a complex

optimization like magic-sets transformation into an ex-

isting optimizer. No effort has been devoted to consid-

ering issues related to integrating the magic-sets trans-

formation into a relational optimizer (EDS [FF93] being

a recent and welcome exception).

In this paper, we give a detailed account of our

implementation and explain our solutions to the above

problems with implementing magic-sets in a real system:

how to integrate magic-sets transformation with other

optimization techniques, how to use magic as a general

and uniform predicate pushdown technique in SQL,

how to determine join orders, how to adorn queries,

how to be extensible when new functionality is added

to the database, how to reduce the complexity of

queries produced by magic-sets, and how to handle

complex language features such as aggregation. The

implementation effort was modest – about 6 person-

months of coding work.

This paper is organized as follows. Section 2 defines

some terms and notation we will use in the rest of

the paper. The Starburst query-rewrite architecture

is presented in Section 3. We also discuss how the

magic-sets transformation fits into the query-rewrite

and the cost based join optimization phases. Section 4

describes the implementation of EMST as a rule in the

Starburst query-rewrite system. The design decisions

that make the implementation extensible are explained

out in Section 5. Related work is discussed in Section 6,

and Section 7 summarizes our contributions.

2 Preliminaries

In Starburst SQL [M PR90], a query defines one or more
views, some of which may be recursive, and designates

one of the tables as the query table. A view definition
can be a single SELECT statement, of the form

(Q): SELECT . . . FROM . . .

[WHERE . ..] [GROUPBY ...] [HAVIBG . ..] .

Alternatively, a view may be defined as a UNION,

INTERSECTION, and EXCEPT of multiple SELECT state-

ments. A subquery g in an SQL statement a~so defines

a view v. This view v is just like any other view in the

query, except that its definition often depends upon the

enclosing SQL statement.

A single select statement, of the form Q above will be

called a block. The SQL code defining a view will be

called a blob. A blob can consist of a single block, or

a union, difference and intersection of blocks. Since a

subquery is treated as a view, it has its own blob, which

may contain a single block, or a union, difference and

intersection of blocks.

EXAMPLE 2.1 Consider the query and views defined

in Example 1.1. The query consisting of statements

DO, D1, . . . is called query D. The SQL code defining

view avgMgrSal in statement D1 is the blob. This blob

consists of a single block, containing the code of the

SELECT FROM GROUPBY statement. The blobs DO and

D2 each consist of a single block, containing the code

of the corresponding SELECT FROM WHERE statement. ❑

Stratum Numbers: Given a query, assign stratum

numbers to blobs as follows: Construct a dependency

graph with blobs as nodes, and an edge from blob U

to blob P’ if table U appears in the FROM clause of

blob V. Construct an acyclic reduced dependency graph

by collapsing every strongly connected component of

the dependency graph to a single node (applicable only

if the original program has recursion). A topological

sort of the reduced dependency graph assigns a stratum

number to each node. If a node represents a strongly

connected component, all blobs in the strongly con-

nected component are assigned the stratum number of

the node, By convention, the base tables are assigned

stratum number = O.

The Query Graph Model

In Starburst, a query is internally represented by a

query graph in the Query Graph Model (QGM) [PHH92].

The query graph is made of one or more QGM boxes. A

QGM box is roughly equivalent to a single SELECT state-

ment (block), or to a single Datalog rule. A QGM box

represents a unit of evaluation, such as a join and select

operation (select-box), a grouping and aggregation op-

eration (groupby-box), a union operation (union-box),

a difference operation (difference-box), an intersection

operation (intersection-box), and so on,

EXAMPLE 2.2 Figure 1 shows the QGM graph

for query D. Boxes labeled DEPARTMENT and

EMPLOYEE represent the stored relations department

and employee. The box labeled MGRSAL is a select-

box defining the view mgrSal. The view avgMgrSal

is split between three boxes – box T1 is a select-

box representing the code ‘(T1 AS (SELECT * FROM

mgrSa l)”, T2 is a groupby-box representing the code

“T2 AS (GROUPBY workdept, AVG (salary) FROM Tl)”,

and AVGMGRSAL is the select-box for “avgMgrSal AS

(SELECT * FROM T2)”. ❑
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We formalize the relationship between a QGM box

and an SQL block. In general, a block is made up

of one or more boxes. A block without a GROUPBY

clause consists of a single select-box. A block with a

GROUPBY clause is decomposed into three boxes, called a

group by-triplez!, so that no selections get mixed up with

the grouping operation. The groupby-triplet consists

of a se~ect- box implementing the SELECT-FROM-WHERE

clause (box T1 in Figure 1), a group by- box implementing

the GROUPBY clause (box T2 in Figure 1), and another

select- box implementing the selection given by the

HAVING clause (box labeled AVGMGRSAL in Figure 1).

Inside each QGM box is a mini-graph representing

the corresponding SQL statement. The vertices of

the mini-graph are called quantifiers. There is one

quantifier for each table referenced in the FROM clause

or in the sub queries of the SQL statement. For

instance, given view D1 for mgrSal, the box for MGRSAL

has quantifiers e and d for the tables EMPLOYEE

and DE PARTM E NT. Arcs between boxes in Figure 1

represent tables referenced by quantifiers in the boxes.

For example, the arcs from boxes AVGMGRSAL and

DEPARTMENT to box QUERY mean that box QUERY

contains quantifiers ranging over boxes AVG M G RSAL

and DEPARTMENT, as should be expected since the

SQL block DO of the QUERY box computes a join of

tables avgMgrSal and department. Thus, an out-edge

from a box B represents a usage of the table computed

by box B, and an in-edge into a box C represents a table

referenced by box C’. QGM represents predicates in the

WHERE clause by edges between quantifiers. Correlation

predicates are represented by edges between quantifiers

in different boxes.

When the output of a QGM box is used multiple

times (e.g., a view may be used multiple times in

the same query), common sub expressions are created.

Recursive queries create cycles in QGM, The number

of boxes in the query graph determines the complexity

of the query; the greater the number of boxes, greater

the complexity of the query, and greater the cost of

optimization. However, a query is not necessarily more

expensive to evaluate simply because it has more QGM

boxes; indeed, queries produceed by the magic-sets

transformation have more boxes, and can be evaluated

more efficiently,

Magic-sets transformation

The magic-sets transformation [BR91, Mum91] opti-

mizes database queries by defining a set of auxiliary

magzc tables that that are used as filters to restrict

computation of the SQL query. For example, since the

query DO asks for only the avgMgrSal tuples that are in

‘Planning’ dept, the computation of the views avgMgr-

Sal and mgrSa I can be filtered so as to exclude all other

departments. In Figure 1, magic tables m~vgMgrSal

and m -rngrSal are defined to contain deptno of only the

‘Planning’ department. The filtering is then done by

adding the magic tables to the FROM clause, and equijoin

predicates to the WHERE clause, of each SQL statement.

Figure 1 illustrates the filtering graphically. The supp-

lementary magic-sets transformation [BR91] is a variant

of the magic-sets transformation where supplementary

magtc tables are created as common subexpressions to

avoid duplicating work. The ground magic-sets trans-

formation [MFPR90b] is an extension of the magic sets

idea to push down non-equality predicates in addition

to equality predicates.

Each of the above magic transformations accepts

an adorned query as input, thus requiring two phases

for optimization - (1) an adornment phase, and (2) a

transformation phase.

In the adornment phase, each table reference is

annotated to indicate which attributes of the table are

restricted by equality predicates, which are restricted by

predicates other than equality (conditions), and which

are free. The annotation is indicated by an adornment

string using letters b for bound by an equality predicate,

c for condttzoned, and f for free.

EXAMPLE 2.3 (Magic-sets Transformation):

The SQL queries corresponding to the boxes in Figure 1

for the query graph after magic transformation are:

(&fDO): SELECT d.deptname, s.workdept, s.avgsalary

~MH department d, avgMgrSalbf s

UHERE d.deptno = s.workdept AIJD

d.deptname = ‘planning’.

(A!f~l): avgMgrSalbf(workdept , avgsalary) AS

(SELECT s.workdept, AVG (salary)

FROM m=vgMgrSalbf m, mgrSalfif s

WHERE ?n.~orkdept = s. Rorkdept

GROUPBY workdept).

(M~2): mgrsalfif (empno, empname, workdept, salary) AS

(SELECT e.empno, e.empname, e.workdept, e.salary

FROM mmgrSa@f m, employee e, department d

WHERErn.workdept = e.r?orkdept AND

e.empno = d.mgrno ).

(MJ13): m-avgMgrSalbf(workdept) AS

(SELECT DISTIECT deptno FROM department

WHEREdeptname = ‘planning’).

(Af~4): m-mgrsalfif(workdept) AS

(SELECT DISTIIJCT workdept

FROM m-avgMgrSalbf).

m_avgMgrSalbf and mmgrSalfif are magic tables for

the views avgMgrSalbf and mgrSal~f respectively,

giving the relevant department numbers for which the

view needs to be evaluated. The superscripts bf and ffbf

indicate that the views avgMgrSa Ibf and mgrSal ‘if will

always be evaluated with the attribute workdept (first

attribute of avgMgrSal and the third attribute of mgrSal)

bound to a set of department numbers, and with the

remaining attributes free. ❑
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The magic-sets transformation requires a join-ordering

of tables in the FROM clause so as to be able to choose

a strategy needed to adorn and magic-transform the

query. The choice of the join-order is very important for

an efficient transformation, and is one of the weak points

of all implementations of magic in deductive databases.

Deductive database systems don ‘t do any cost-based

optimization to determine the join orders needed for

magic-sets transformation.

3 System Architecture

Figure 2 shows the architecture of the Starburst database

I
SQL Query

+

Query Graph

}Query F@vrfte,.t)ptirnizatkm

Query Graph

1

Answer

Figure 2: Starburst System Architecture.

system [HCL+ 90], The system parses an SQL query into the

QGM interual graphical form. The query theu goes through

two phases of optimization, a query rewrite phase (SO

called since it rewrites one query graph into another),

and a plan optimization phase. Disregard the back arrow

from plan optimization to query rewrite optimization for

now. Plan optimization looks at a single QGM box and

decides about optimal join orders, access methods, and so

on [SAC+ 79, Loh88].

3.1 Query Rewrite Opt imization

The query rewrite phase [PHH92] looks at the full query

graph and does global optimization. The query rewrite opti-

mizer performs transformations such as merging boxes (ana-

log of unfolding in logic), pushing predicates and projections

down into lower boxes so that they may be applied early

during evaluation, redundant join elimination, redundant

duplicate elimination, and the extended magic-sets trans-

formation ( EMS I”). The transformations are done using a

production rule-based system that encodes each query trans-

formation as a rewrite rule. The extended magic-sets trans-

formation (EMST) is also implemented as a rewrite rule. A

cursor facility traverses the query blocks depth first (other

traversal methods are also possible), and a forward chain-

ing engine applies the rules, including the EMST rule, at

each query block. The EMST rule differs from a typical

rewrite rules in that it needs join order information. Thus,

the nature of the integration of the EMST rule into the query

rewrite phase depends critically upon how cost-based join or-

der optimization is done. This issue has been ignored in all

previous implementations.

3.2 Cost Based Join Orders

The extended magic-sets transformation on a box is sensitive

to the join order of the referenced tables. Optimal join

orders are determined in Starburst by the plan optimizer,

using extensive statistical information and cost estimates.

To compute the optimal query plan, we should apply EMST

for every possible join order (2n options in a box with

n quantifiers), and then run the plan optimizer on each

transformed program to determine the program with the

least cost. The plan optimizer would thus be executed 2n

times. However, even without applying EMST, the cost of

looking at all join alternatives is usually unacceptably high

when large number of tables are joined. Optimizers employ

pruning techniques such as greedy search and dynamic

programming to reduce the number of alternatives. Further,

optimizers represent alternative plans in highly optimized

data structures to make it feasible to store and search

through large number of alternatives. If we apply EMST for

each join order, the shape of generated alternative queries

are very different compared with simple permutation of

tables. As a result, the current technique of pruning and

using compact data structures are not sufficient, resulting in

unacceptable optimization time.

The Starburst Solution: In Starburst, we use a cost-

based heuristic to determine the join order to be used for

applying EMST. Under our heuristic, optimization proceeds

as follows:

1.

2.

3.

4.

5.

Do query rewrite transformation without using the

EMST rule (actually, a version of the EMST rule that

does not depend on join orders and pushes only local

predicates is used in Starburst, but this variant rule is

not the subject of this paper). A join order is therefore

not needed in this rewrite phase.

Do plan optimization to determine the best join order

for each query block (traverse the edge from the query

optimizer to the plan optimizer as shown in Figure 2).

Do query rewrite transformation using the EMST rule,

using the join orders determined by the plan optimizer

in Step 2. This new phase of query-rewrite is represented

by the bac~ edge from the plan optimizer to the query

rewrite optimizer in Figure 2.

Do plan optimization to determine the new optimal join

orders in each query block. As shown in Figure 2, the

edge from from the query optimizer to the plan optimizer

is thus traversed for the second time.

Compare the costs of the optimal plans before and after

EMST transformation. Execute the cheaper plan.
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Thus, under our cost based heuristic, we do plan opti-

mization twice. The back edge from the plan optimizer to

the query rewrite optimizer in Figure 2 is introduced into

the Starburst architecture to support the cost-based join or-

der determination for the magic-sets transformation. The

heuristic has the following desirable properties: (1) The to-

tal cost of join order determination is 0(2m+l). (2) More

important, the plan optimizer can continue to use pruning

strategies during each invocation. (3) We can prove that

under our cost-based heuristic, usage of the EMST rewrite

rule cannot degrade a query plan produced without using

the EMST rule: Do all the optimization you can without

knowing join orders and without using EMST. Then, after

you determine the optimal join orders, perhaps you can use

the join orders to improve the plan you just selected.

We have experimented with our cost-based heuristic,

and the preliminary results are extremely encouraging.

The performance experiments of Table 1 [MFPR90a] used

the cost-based heuristic (applied manually by iterating

through the DB2 optimizer) to achieve impressive gains.

The Starburst implementation provides a testbed for the

above and other possible heuristics for investigating the

interaction between cost-based optimization and magic-sets

transformation.

3.3 Tile EMST Rule inside the Query-Rewrite

The join order heuristic requires that the query-rewrite occur

twice, once without EMST, and once with EMST. In the

Starburst implementation, we find it best to do the query

rewrite in three phases, with tight control over execution

of the EMST rule, as illustrated in Figure 3. Note that

I
Query Graph

+
Simplify Query Graph <Merge, ...> Query Rewrite Phase 1:

1 EMST Disabled
Quer~ Graph

+
Plan Optimlzatlon <join orders>

I

Quer~ Graph

@@$- Query Rewrite Phase 2:

EMST Enabled
Quer~ Graph

+
Simplify Query Graph <Merge, ...> QUCIY Rewrite Phase 3

EMST Disabled
Q.er~Graph

+
Plan Optimization <join orders>

Quer~ Plan

I

t

Figure 3: Query-Rewrite, EMST, and Plan Optimiza-

tion.

plan optimization is still done only twice, as required by the

join order heuristic. During the first phase of query-rewrite,

rewrite rules other than EMST that do not depend on

join orders, such as local predicate pushdown (implemented

through a local magic rule not discussed in this paper),

duplicate elimination pushdown, redundant join elimination,

and the merge rule are applied. Plan optimization is done

after the first phase to determine join orders. Then, in the

second phase, EMST, as well as rewrite rules other than

EMST are active, and the join orders determined by the plan

optimizer are used. A third query-rewrite phase is used to

simplify the query graph after the EMST application. The

EMST rule is disabled in the third phase. Thus, the EMST

rule is applied only during the second phase of query-rewrite

EXAMPLE 3.1 Consider the query D of Example 1.1. Its

query graph is reproduced in the upper left quadrant of

Figure 4. In the phase 1 of query-rewrite, the merge rule

merges the AVG MG RSAL select-box into the QUERY select-

box, and the MGRSAL select-box into the T1 select-box,

deriving the QGM graph shown in the upper right quadrant,

of Figure 4. We now use the name AVGMGRSAL for the

groupby box formerly called T2. The SQL representation of

the query has not changed during phase I in this particular

example. ❑

4 Implementing the Extended

Magic-sets Transformation Rule

In this section, we give details of the EMST rule itself,

the algorithm used, the data structures used, and the

manner of application of the EMST rule. Like other

rewrite rules, the Eh’IST rule operates on one QGM

box at a time. (QGM, or the query graph model,

was described in Section 2.) A select-box in QGM

is like an SQL blob with one SELECT block without

a groupby clause. Thus the action of EMST on a

select-box is very similar to the action of the magic-

sets transformation on one Datalog rule, The action of

EMST on other types of boxes, such as a difference-

box or a union-box is different from the action of

EMST on a select-box. Further, new types of boxes

may be incorporated into the QGM. For example, an

outer-join operation can be defined by defining an

outer-join-box. The EMST rule is applied once on

each QGM box as the query graph is traversed depth-

first, culminating in a complete magic transformation

of the query graph. We illustrate the EMST rule

with a nonrecursive example for simplicity; however we

stress that the EMST rule applies to nonrecursive and

general recursive queries with stratified negation and

aggregation. The major differences of EMST over the

GMST algorithm presented in [Mum91] are (1) EMST

combines adornment and magic-sets transformations

into one step, (2) the modular nature of EMST, (3) the

lack of control over the order in which various boxes (or

blobs) are processed by EMST, and the (4) interaction

permitted between EMST and other rewrite rules.

These differences force adaptations of the algorithm

that are discussed in this section. The techniques to

adapt to these reaLworld constraints are very important

for any system that hopes to implement the magic-

sets transformation inside an integrated query-rewrite
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optimization system, The EMST rule uses other rewrite

rules while transforming a box. For example, the EMST

rule uses the predicate pushdown rule to push predicates

into each referenced table to derive an adornment for the

referenced table.

We first illustrate the EMST rule and its integration

into the query-rewrite system (Figure 3) by applying

EMST to the query D of Example 1.1. Other

rewrite rules will be applied concurrently, as applicable.

After the example, we will give details of the EMST

algorithm.

ORIGINAL QUERY

,—----- ———
QUERY ~Do

QUERY TRANSFORMED BY PHASE 2

-— 1
~QUERY
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:
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———
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Figure 4: QGM query graph for query D, before, and

after, phases 1, 2, and 3 of query-rewrite.

EXAMPLE 4.1 We start with the QGM graph shown in

the upper left quadrant of Figure 4. The corresponding SQL

query D is repeated in Figure 5.

-Inthefirstphase ofquery-rewrite (Example 31),
the query graph was simplified. to the QGM shown in the

upper right quadrant of Figure 4. Following phase 1, let

the plan optimizer produce the join order (department M

avgMgrSal).

Original Query before application of EMST:

(DO): SELECT d.deptname, s.workdept, s.avgsalary

FROM department d, avgMgrSal s

UHERE d.deptno = s.workdept AUD

d.deptname = ‘Planning’.

(Lll): avgMgrSal(workdept , avgsalary) AS

(SELECT workdept, AVG (salary)

FROH mgrSal

GROUPBY srorkdept ).

(~’2): mgrsal(empno, empname, workdept, salary) AS

(SELECT e.empno, e.empname, e.workdept, e.salary

FROM employee e, department d

UHERE e.empno = d.mgrno).

Query after EMST application in Phase 2:

(SL30): SELECT ~.deptname, s.workdept, s.avgsalary

FROIII sin-query q, avgMgrSalbf s

WHEREq.deptno = s.workdept.

(SllI): avgMgrSalbf(workdept , avgsalary) AS

(SELECT workdept, AVG (salary)

FROM mgrSalfif

GROUPBY workdept ).

(S132): mgrSal~f (empno, empname, workdept, salary) AS

(SELECT e.empno, e.empname, e.workdept, e.salary

FROM m_mgrSal~f m, employee e, department d

WHEREm.workdept = e.workdept AtiD

e.empno = d.mgrno ).

(.9D3): m-avgMgrSalbf(workdept) AS

(SELECT deptno FROIII sm.query).

(S’D4): m.mgrSalfif(workdept) AS

(SELECT srorkdept FROM m.avgMgrSalbf).

(S~5): sm-query(deptno, deptname) AS

(SELECT deptno, deptname FROH department

WHEREdeptname = ‘Planning’).

Query after simplification in Phase 3: Same as after

phase 2, except that SD3 and SD4 are eliminated, and SD2

is modified to SD2’ as below:

(,5’~2’): mgrsalfif (empno , empname , workdept , salary) AS

(SELECT e.empno, e.empname, e.workdept, e.salary

FROFl sin-query sm, employee e, department d

WHERE sm.deptno = e.workdept AND

e.empno = d,mgrno ),

Figure 5: SQL Queries before and after optimization by

EMST.
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-1 III phase 2 of query-rewrite, the EMST rule

transforms the select-box QUERY, and the groupby-box

AVGMGRSAL.

select-box labeled QUERY: The predicate

“department .deptno=AVGMGRSAL. workdept”

can be pushed into the quantifier over groupby-box AVG-

MGRSAL, leading to an adorned box AVGMGRSALbf. A

supplementary-magic-box sm.QUERY is created to com-

pute the selection (deptname=’Planning’) on the depart-

ment table. The supplementary-magic-box is then used

in QUERY and in defining a magic-box m-AVGMGRSALbf

bf The magic-box is linked with thefor AVGMGRSAL .

AVGMGRSAL bf box, but it is not used to restrict compu-

bf box (QGM semantics for atation in the AVGMGRSAL

groupby-box does not let us apply the restriction).

groupby-box labeled AVGMGRSAL bf: The magic-box link-

ed with the groupby-box AVG MG RSALbf provides the pred-

icate

“MgrSal.worlidept = m-AVGMGRSALbf.workdept”

that can be pushed further into the box MGRSAL, lead-

ing to the adorned box MGRSAL~f. The magic-box

m.MGRSAL~f derives department numbers from m_AVG-

MGRSALbf, and passes them into the box MGRSALbf, com-

pleting the EMST application on box AVGMG RSAL bf.

select-box labeled MG RSAL~f: No action is taken since

all referenced tables are either magic tables or stored tables.

Final Result of phase 2: The magic transformation of

the query graph is now complete, and the lower left quad-

rant of Figure 4 shows the resulting query graph. Besides

the EMST rule, a distinct pullup rule is used twice in this

phase to infer that there is no need to eliminate duplicates

from the magic tables, since one can infer that duplicate

magic tuples will not be generated. Thus, we arrive at the

SQL query shown in Figure 5 as statements SDO – SD5.

DPhase 3. In the final phase of query-rewrite, the select-

box m-MGRSALfif is merged into the select-box MG R-

SAL~f, and the select-box m_AVGMGRSAL bf is also

merged into the select-box MGRSALfif, outputting the

simpler query graph shown in the lower right quadrant

of Figure 4, This merge was possible only because we

inferred, in phase 2, that duplicates were guaranteed to be

absent from the magic tables, and so we did not need to

apply the DISTINCT operator in statements SD3 and SD4.

The example thus highlights the need to apply other query

rewrite rules to simplify the query graph produced by EMST.

The resulting SQL query is identical t~t~ one produced by

phase 2, except that the view mgrSal is now defined by

statement SD2’, shown in Figure 5, and the views SD3 and

SD4 are discarded. El

The optimized query in the lower right quadrant

of Figure 4 has more blobs than the phase 1 query

in the upper right quadrant. However, note that

predicates have been pushed down in the optimized

query, so they get applied earlier during evaluation,

and computation is more efficient. Indeed, a query

isomorphic to D was one of the queries tested in the DB2

benchmark (Experiment G), and the optimized query in

the lower right quadrant showed two and a half orders

of magnitude improvement in execution time over the

query in the upper right quadrant.

4.1 Data Structures Used

The EMST rule introduces three special types of

QGM boxes into the query graph model: the magic-

box (e.g. m.MGRSAL~f), condition-magic-box,

and supplementary-magic-box (e.g. sm_QUERY).

A box that is not of one of the above three types will be

called a regular box (e.g. MGRSALfif ). A quantifier

that references any of the above special boxes will be

caIIed a rnagzc quanttjier.

The magic-box is a QGM box constructed during an

EMST processing of a box whose adornment does not

contain a c adornment. A magic-box contributes tuples

to the magic table of the associated adorned box. The

magic-box is either a select-box, or a union-box. Both

the magic-boxes in Example 4.1 are select-boxes. A

magic-box differs from regular select-boxes in that the

EMST rule does not apply to a magic box. To other

rewrite rules, the magic-box is indistinguishable from

other select- or union-boxes.

The condition-magic-box is similar to a magic-box

except that (1) it is constructed during the EMST pro-

cessing of a box whose adornment contains a c adorn-

ment, and (2) The EMST rule processes a condition-

magic-box. A condition-magic-box is ungrounded at

time of construction, and may be grounded later (us-

ing the GMST algorithm [Mum9 1]).

The supplementary-magic-box is also constructed

during the EMST processing of a box. A supplementary-

magic-box contributes tuples to the supplementary ta-

ble of the associated box being processed.

4.2 AMQ and NMQ Properties

QGM allows boxes of different operation types — SE-

LECT, UNION, GROUP-BY, INTERSECTION, and DIFFE-

RENCE being a few. New operation types can also

be defined by the database customizer. The EMST

processing of a box depends on ~the operation type

of the box. It is difficult to write a separate EMST

rule for every operation type, and unrealistic to expect

future customizers of Starburst to provide an EMST

rule for every operation they define. It is thus important

to identify the properties of an operation type that

determine the type of EMST processing on a box of

that operation. The relevant property is whether a

box 13 allows a quantifier (i.e., a table reference) to be

added to the box with the semantics that the new table

reference is to be joined with the table being output

by box B earlier. If it does, box B is said to be
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an AMQ (accepts magic quantifier) box, and a magic

quantifier over the magic-box can be inserted into the

box B. Supplementary tables can also be created for an

AMQ box. If a box B does not permit a quantifier to be

added, or if it does not cause the inserted table reference

to be joined with the other table references, then box

B is said to be an NMQ (no magic quantifier) box, and

box B cannot use the magic quantifier to restrict the

computation done inside the box. However, an NMQ

box may be able to pass the restriction represented by

the magic table down into its quantifiers, so that one

may compute restricted tables to start with.

A select-box is AMQ, while the union-, groupby-, and

difference-boxes are N MQ.

4.3 Adorning a QGM-box

The adorn-box algorithm described below is used to

adorn a QGM box from within the EMST rule. The

given algorithm can be used to adorn an SQL block or

a Datalog rule by appropriately mapping notation. For

example, a quantifier corresponds to a table reference

in an SQL block, and to a subgoal in a Datalog rule.

Consider a quantifier q in a box B, ranging over a

box Bq. Adornment of the box Bq depends on the

predicates restricting q’s usage. To determine all the

predicates on box Bq, we need to (1) Determine which

predicates from box B, and elsewhere, can potentially

restrict box Bq, and (2) What is the form of these

predicates on box Bq.

When B is an AMQ box (e.g. the QUERY box),

all and only the predicates in box B can restrict

Bq. However, when B is an NMQ box (e.g. the

AVGMGRSALbf box), it does not have a magic

quantifier over its magic table, so the computation of

box B is not restricted by predicates in its own magic

table. However the predicates in the magic table of

B can be used to restrict computation of a child box

Bq. Further, predicates inside box B can also restrict

computation of a child box Bq. As an example, a

predicate on the outer table in a difference-box can

restrict computation of the inner table.

The predicate pushdown rules [PHH92] to push

predicates are query-rewrite rules defined separately,

and independently, from EMST. A separate predicate

pushdown rule is written for each type of box (select-

union-, . . .) in the system. The predicate-push-down

~ules can map predicates from attributes in the SELECT

clause onto attributes in the FROM clause, can push

predicates through a groupby-box, including predicates

on an aggregated column, and can recognize that a

predicate on an inner table in a difference-box cannot

be pushed into the outer table, while a predicate on the

outer table can be pushed into the inner table,

Algorithm 4.1 adorn-box

Input: A QGM box B.

Output: Adornments for quantifiers in box B

Method: For each quantifier q in box B:

1.

2.

3.

4.

Find the predicates that need to be pushed out of box

B. If B is an AMQ box, all predicates in box B can be

pushed down. If B is an N MQ box, all predicates in box

B, as well as predicates implied by existing magic-boxes

for B need to be pushed down.

EXAMPLE 4,2 Let B be the QUERY box, and

consider quantifier g ranging over the AVGMGRSAL

box. The QUERY box is an AMQ box, so the predicate

department. deptno = avgMgrSal.workdept can be pushed

into the AVGMGRSAL box. ❑

EXAMPLE 4.3 Now let B be the AVGMGRSALbf

box, and consider quantifier q ranging over the MGRSAL

bf box is an NMQ box, so thebox. The AVGMGRSAL

predicate

“MgrSal.workdept = m.AVGMGRSALbf.workdept”

implied by the linked magic-box can be pushed into the

MGRSAL box. ❑

Determine the quantifiers that are eligible to pass infor-

mation into g. Eligibility depends on join-orders, and the

correlation predicates the quantifier g participates in. To

pass information into g, a quantifier in box B must pre-

cede q in the join-order, while a quantifier outside box

B linked to g by a correlation must satisfy a condition

based upon correlation levels.

EXAMPLE 4.4 Continuing with Example 4.2: The

join order (department N avgMgrSal) was determined in

a previous plan optimization phase. Since department

precedes avgMgrSa I in the join order, the quantifier

over department is eligible to pass information into q =
avgMgrSal. ❑

Use predicate-push-down rules to push down all of the

above determined predicates subject to the eligibility

of quantifiers. The set of pushed predicates on the

referenced tables is thus determined.

EXAMPLE 4.5 Continuing with Example 4.4: The

predicate

“department. deptno = avgMgrSal.workdept”

is pushed into the AVGMGRSAL box. ❑

EXAMPLE 4.6 Continuing with Example 4.3: The

predicate

“MgrSal.workdept = m. AVGMGRSAL bf .workdept”

is pushed into the MGRSAL box. ❑

Select a bcf adornment appropriate for the set of

predicates on the referenced table.

EXAMPLE 4.7 Continuing with Example 4.5: The

predicate

“department. deptno = avgMgrSal.workdept”

is used to derive the adornment bf for the AVGMGR-

SAL box. ❑
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EXAMPLE 4.8 Continuing with Example 4.6: The

predicate

“MgrSal .workdept = mAVG MGRSALbf .workdept”

is used to derive the adornment ffbf for the MGRSAL

box. ❑

The Starburst implementation uses the c adorn-

ment to represent dependent and independent con-

ditions. However, there are complex N MQ opera-

tions (such as outer-joins) where the refined bcf adorn-

ments of [Mum91] are needed to represent dependent

conditions.

4.4 EMST application on one QGM box

We define a procedure magic+ rocess(l?) to apply EMST

on one QGM box B. magic+ rocess(l?) assumes

that the table defined by B has been adorned, and

that magic-boxes or condition-magic-boxes for 1? are

available. However, when m agic+rocess is first invoked

on the query graph, only a null (n) adornment is

supplied. magic-process creates an j~ . . . ~ adornment

for the top query box, and proceeds normally.

Algorithm 4.2 magic-process

Input: A QGM box B in a query graph G.

Output: Query graph G’ after applying EMST rule to box

B.

Method: For each quantifier g in box B, in the given join

order:

1.

2.

3.

4.

Determine the quantifiers eligible to pass information

into g.

Apply the adorn-box Algorithm 4.1 to compute the

pushed predicates and the adornment a for quantifier

!7.

Make g range over a box Bq with adornment (Y. The

box referenced by q may already have adornment a, or

a copy with adornment a may have been made earlier,

or such a copy may be created at this step.

EXAMPLE 4.9 Continuing with Example 4.7: A copy

of the box AVGMGRSAL for the adornment bf is

created, and the quantifier ranging over AVGMGRSAL

is made to range over the box AVGMGRSALbf. ❑

EXAMPLE 4.10 Continuing with Example 4.8: A

copy of the box MGRSAL for the adornment fFbf is

created, and the quantifier ranging over MGRSAL is

made to range over the box MGRSALfif. ❑

Ifa#ff. ..f do:

(a) If box B is an AMQ box, and if it is desirable to

construct a supplementary-magic-box before position

t, do so by moving all the eligible quantifiers from

box B into a supplementary-magic-box, and placing

in B a quantifier over the supplementary-magic-box.

It is not desirable to construct a supplementary-magic-

box at a position just before the magic quantifier or

before the first non magic quantifier in the join order,

or if the supplementary-magic-box would include one

quantifier and no predicates.

(b)

(c)

EXAMPLE 4.11 Continuing with Example 4.9: Sin-

ce 1?, the QUERY box, is an AMQ box, we construct

a supplementary-magic-box at the join order posi-

tion just before the quantifier over AVGMGRSALbf.

The supplementary-magic-box, sin-query, contains the

preceding quantifier over department, along with the

selection predicate “department. deptname = ‘Plan-

ning’ (statement SD5 in Figure 5). The QUERY box

now refers to the supplementary-magic-box sm.-q uery

rather than to the box department ❑

EXAMPLE 4.12 Continuing with Example 4.10:

Since l?, the AVGMGRSALbf box, is not an AMQ

box, a supplementary box is not constructed. ❑

Construct a magic-box or a condition-magic-box from

q for the magic table of box Bq referenced by q. The

eligible quantifiers, including the magic quantifier, and

the pushed predicates will go into the magic box.

However if B is an NMQ box and has c adorn-

ments, the condition-magic-box CMB for box B is

ungrounded. Descendant boxes of box B will ground

the predicates in the condition-magic-box CMB, and

each descendant will ground CMB differently. There-

fore, for this case, contents of the box CMB must be

copied into the magic-box (or condition-magic-box)

constructed for box Bq.

EXAMPLE 4.13 Continuing with Example 4.1 I:

The magic box m_avgMgrSa Ibf is constructed, with a

single quantifier over sm _q u e ry. ❑

EXAMPLE 4.14 Continuing with Example 4.12:

The magic box m_mgrSa Ifif is constructed, with a

single quantifier over m.avgMgrSa I
bf ❑

Add the magic- or the condition-magic-box m con-

structed above to the magic table for box Bq.

If Bq is an NMQ box, the box m is linked to box Bq

so that it may be retrieved from box Bq, but no magic

quantifier is introduced. If Bg is an AMQ box, and m

is a magic-box, a magic quantifier referencing magic-

box m is inserted into box Bq. If Bq is an AMQ box,

and m is a condition-magic-box, a suPPlementarY-

magic-table is created, and the condition-magic-box m

is ground to construct a supplementary-magic-box (as

required by GMST [Mum91]).

EXAMPLE 4.15 Continuing with Example 4.13:

Since AVGMGRSALbf is an NMQ box, its magic

box m-avgMgrSalbf is simply linked to it; no magic

quantifiers over the magic box get created. ❑

EXAMPLE 4.16 Continuing with Example 4.14:

Since MGRSAL~f is an AM Q box, a quantifier over

its magic box m-mgrSal frbf .
M added to the definition

of mgrSalfif (statement SD2 in Figure 5). ❑
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5 Extensibility

Extensibility is a major design goal in Starburst. A

database customizer can add (1) features to the SQL

language, leading to new operations in QGM boxes,

(2) new optimization rules, (3) new traversal orders

on the query graph, and (4) new access methods and

cost-estimating functions, and so on. The query-rewrite

optimizer, including the EMST rule, are required to be

extensible with all customizations. The implementation

described in Section 4 meets the extensibility goals.

When a database customizer defines a new operation,

such as an outer-join, it is expected that the customizer

will write predicate pushdown rules for outer-join.

Specification of the predicate pushdown rules was

purposefully kept independent of the EMST rule to

facilitate definitions of predicate pushdown rules by the

customizer. Further, the customizer is required to state

whether a quantifier can be inserted into the box with

a join semantics (AMQ or NMQ) – a simple property to

state.

When new rewrite rules are added, a decision must be

taken on the firing priority and sequence with respect

to all other rules in the system. The EMST rule does

not introduce additional complexity. The introduction

of magi c-, condition-m agic-, and supplementary-magic-

boxes helps extensibility by allowing EMST to distin-

guish between different types of select-boxes, while pro-

tecting other rules from noticing the difference. The

EMST rule can be applied to the QGM boxes in any

order of traversal, achieving the same final transforma-

tion, though the time taken to arrive at the result will

differ. Join orders are determined outside the EMST

rule, so a change in cost-estimating functions does not

affect EMST.

6 Related Work

Our previous work on magic-sets transformation in rela-

tional systems has concentrated on performance evalu-

ation [M FPR90a], and the adaptation of the magic-sets

algorithm to duplicates and aggregates [M PR90]. We

have now completed an implementation, and this paper

describes the results of our implementation effort.

The magic-sets implementation in Starburst has

goals and addresses issues very different from the

goals and issues addressed by previous and concurrent

deductive database implementations (Aditi [VRK+90],

,C12C [NT88], NAIL! [MNS+87], Glue-Nail [DMP93],

Coral [RSS92], and EDS [FF93]).

The Starburst implementation is done in the context

of an extensible relational system, with extended SQL as

the query language. With the exception of EDS [FF93]

all other implementations of magic-sets have been done

for extended versions of Datalog. EDS works on

extended SQL, but applies magic only to the Datalog

style recursive subcomponent of extended SQL. SQL

has many non-logical features, such as duplicates,

aggregates, grouping, nested subqueries, existential

and universal quantification, null values, and outer

joins, all of which puts demands on the magic-sets

design. We handle all complex features of SQL, and

are fully compatible with SQL semantics. Further, our

implementation is extensible to new features.

The Starburst implementation of magic-sets pushes

conditions as well as equality predicates, and it does so

while staying within the SQL evaluation semantics that

requires all tuples to be ground terms. All other im-

plementation either do not push conditions [VRK+90,

NT88, MNS+87, DMP93, FF93], or introduce non-

ground tuples [RSS92]. By pushing conditions along

with equality predicates, the Starburst implementa-

tion integrates traditional predicate pushdown tech-

niques that work on local conditions into the magic-

sets transformation. The Starburst implementation is

the first implementation to incorporate the magic con-

ditions algorithm [M FPR90b], and the first implementa-

tion to use bcf and the more complex refined adornment

classes [Mum91, MPR94].

Starburst is also unique in doing the magic-sets trans-

formation on nonrecursive queries. The other systems

have concentrated on recursive queries, where the im-

portance of magic-sets transformation is questionable

since the more specialized techniques for linear recursive

queries, when applicable, do better than magic-sets.

Previous implementations of magic-sets transform the

query in two steps: the query is adorned in the first

step, and magic transformed in the second step. The

EMST algorithm in Starburst combines the two steps:

it creates magic tables concurrently while adorning

the original query. The one-step processing in the

EMST algorithm reduces the complexity of adornments

and provide more precise constraint information while

adorning the query [Mum9 1].

To summarize, compatibility with SQL, extensibil-

ity, uniform treatment of conditions and equality pred-

icates, use of cost-based join order estimation, integra-

tion with traditional relational optimizations, and the

focus on nonrecursive queries, are the major strengths

of our implementation, differentiate us from other im-

plementations, and strongly demonstrate the feasibility

of using magic-sets transformation in a commercial re-

lational database system.

7 Conclusions

We have implemented an extended magic-sets transfor-

mation (EMST) for nonrecursive and stratified recur-

sive SQL queries in Starburst. The implementation re-

quired about 6 person-months of coding effort. The

EMST transformation is integrated into a rule-based

query rewrite system, and is implemented as a rule that

transforms the query in a modular fashion, one unit, at a
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time. The integration of EMST into the complete query-

rewrite rule system enables us to eliminate the unnec-

essary complexity introduced by EMST in the query

graph. Eh4ST uses bcf adornments, can push equality

and condition predicates, can push local and join pred-

icates, adorns and transforms queries in one phase, can

handle correlations, and is extensible, We have devel-

oped a cost-based heuristic to determine the join orders

to be used for the magic-sets transformation, with the

desirable property that the magic-sets transformation

cannot degrade a query plan generated without doing

the magic-sets transformation.

Commercial database vendors are now realising the

extreme importance of optimization for complex de-

cision support queries. In some cases, much ef-

fort has been spent to optimize TPCD benchmark

queries [TPCD94] by hand in order to achieve better

performance. The magic-sets transformation provides

an opportunity to optimize decision support queries in

a stable manner [MFPR90a]. However, the relational

vendors have found the magic-sets technique difficult to

understand, and impractical to implement. We have ex-

plained magic-sets at an intuitive level, and have given

sufficient details of an actual implementation in a re-

lational system to convince the vendors that (1) The

perceived problems with implementing magic-sets have

been solved by us, and (2) The magic-sets transforma-

tion can be implemented in relational database systems

with modest effort (about 6 person-months).

Our implementation shows that it is feasible to build

a magic-sets transformation module as a layer above

existing relational databases, with feedback from the

database systems about a join order to use for the

magic-sets transformation, and with the guarantee that

the resulting system will be as or more efficient than

the existing system. Such an architecture brings the

magic-sets transformation to the open world, and we

hope it will encourage products from SQL conditioning

companies. We also believe that our work will lead to

many more implementations of the magic-sets transfor-

mation in commercial relational systems, especially for

nonrecursive queries.
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