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Abstract 

While the number of database management systems 
(DBMSs) increases and the various DBMSs get more 
and more complex, no uniform method for DBMS con- 
struction exists. As a result, developers are forced to 
start more or less from scratch again for every desired 
system, resulting in a waste of time, effort, and cost. 
Hence, the database community is challenged with the 
development of an appropriate method, i.e. the time- 
saving application of engineering principles (e.g., re- 
use). Problems related to a construction method are de- 
scribed, as well as approaches towards solutions. 

1 Introduction and Motivation 

Traditional (e.g., relational) database management sys- 
tems satisfy the needs of most conventional applications 
rather well. This is not true for many so-called non- 
standard application domains like CAx, OIS, multime- 
dia applications, and so forth. Not only were 
conventional data models (like the relational model) 
recognized as inadequate, some new applications also 
require advanced transaction models (e.g., supporting 
long-lived, cooperative units of work), and subtle integ- 
rity enforcement mechanisms. 

Since it turned out that realizing this desired ad- 
vanced functionality on top of existing (relational) sys- 
tems can lead to severe inherent performance 
drawbacks, entire new systems have been developed 
from scratch. 

Object-oriented DBMSs [2] are advocated for many 
non-standard application domains. However, none of 
these systems will probably be general enough to sup 
port a broad spectrum of different application domains 
(with diverging requirements) equally well. 

Consequently, a variety of DBMSs with different 
models and functionalities are likely to be developed. 
Hence, it is necessary to approach DBMS construction 
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itself in a more engineering manner. In other words, im- 
plementation eflciency and maintenance eflciency has 
to be stressed. while database technology in the past 
(like other areas in computing!) has focussed almost 
solely on runtime emiency. 

An engineering approach to DBMS construction 
treats DBMSs as products of a “software community” 
[12] and tries to make extensive use of pre-fabricated ar- 
tifacts, methods, and tools. Nevertheiess, it is clear that 
simple “reuse” [15] alone does not help much (recall 
that the implementation on top of relational DBMSs is 
ZllSOOlE - though not successful - kind of reuse). We 
still require ideas and experience about what artifacts to 
reuse, how to describe them, how to encounter the 
sometimes broad variety of applicable alternatives, and 
so forth. 

Database technology is challenged to develop inno- 
vative DBMS construction methods which support the 
specification, design, and implementation of DBMSsfor 
various application domains that make use of proven re- 
use techniques [15]. 

The remainder of this paper is structured as follows: 
section 2 surveys systems and concepts proposed for 
support of DBMS construction. Section 3 describes the 
challenges of an engineering-style DBMS construction 
method in more detail and shows some rough ides on 
how to encounter these challenges. Section 4 contains a 
conclusion. 

2 DBMS Construction Systems 

In this section, we shall briefly survey work on extensi- 
ble database systems [6] and elaborate on shortcomings 
of these systems. Also, we describe principles and prob- 
lems in DBMS construction methodology. 

Kernel Systems 
Kernel systems (e.g., WISS [7], the kernel of DASDBS 
[20]) offer a general, fixed interface that supports com- 
mon functionality required by all or most DBMSs (e.g., 
physical object management). Upper layers of a DBMS 
have to be implemented (i.e., programmed) by the DBI’. 

Obviously, the functionality of the kernel is crucial. 
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If the kernel offers too much functionality, it also re- 
stricts the opportunities of the upper layers, while too 
less functionality increases the implementation efforts 
of the DBI. 

Customizable Systems 
This type of systems (e.g., STARBURST [14]) are 
based on a complete DBMS that can be modified/ex- 
tended in order to satisfy new requirements. Hence, the 
basic DBMS is customized to a concrete, new DBMS. 
In principle, the modifications are performed at code 
level and therefore require advanced programming 
skills [ 141. Even if some functionality can be realized in 
a rule-based manner. a high degree of experience (con- 
cerning the base system and DBMS technology) is man- 
datory. 

Toolkit Systems 
Too&it systems (e.g., EXODUS [5]) offer a library of 
modules, which in turn realize alternative techniques for 
a given task (e.g., physical access paths). However, at 
least in the plain approach, selection of techniques is not 
supported and left entirely to the DBI. Likewise, defin- 
ing an appropriate architecture and linking together the 
selected modules is also the task of the DBI. 

Generator Systems 
Generator systems (e.g., GENESIS [4], the EXODUS 
optimizer generator [13], DMC [16]) support the speci- 
fication of (parts of) a DBMS functionality and the gen- 
eration of DBMS components based on those 
specifications. However, they mostly address only one 
aspect (e.g.. the data model) or even assume a fixed data 
model (for instance). Hence, new features cannot be 
easily integrated, nor is the choice among alternative re- 
alization techniques supported. 

Principles of DBMS Construction Systems 
The analysis of the aforementioned DBMS construction 
systems shows that they rely on some kind of reuse (in 
the broader sense). Essentially. there are two basic prin- 
ciples of reuse: generation and conjiguration (or com- 
position). 

Generation refers to the automatic creation of code 
components that realize the mapping from one interface 
to a lower-level one, or to the automated coding of a 
specification. Hence, generation is reasonably applica- 
ble in cases where a general and unique mapping can be 
found and an underlying formal model exists. It is not 
reasonable (at least not without large-scale DBI inter- 
vention) if a broad variety of realization alternatives ex- 
ist. 

1. DBMS Implementor 

These cases, on the other hand, are well supported 
by configuration. Configuration means to select appro- 
priate primitives and to plug them together into an oper- 
ational system. 

Requirements and Features 
Based on the short survey given above, we infer that a 
DBMS construction method should satisfy the foliow- 
ing requirements: 
1. 

2. 

3. 

4. 

5. 

Architecture 
A generic yet adaptable architecture model is re- 
quired that is applicable for a broad range of signifi- 
cantly different DBMSs. 

Knowledge Representation 
Knowledge about database technology (e.g., on al- 
ternative realization techniques for a specific task, or 
on experiences of previous designs) has to be ex- 
pressed. 

Design for Reuse 
Design for reuse has to be enforced, i.e., decomposi- 
tion of techniques and components into easily reus- 
able artifacts. 

Specification-Based Design 
As far as possible, the construction method should 
be specification-based (e.g., ACTA [8] for transac- 
tion management). 

Design Completion and Integration 
Based on the architecture design and the require- 
ments specifications, the method has to support com- 
pletion of the design and the retrieval of adequate 
artifacts. Based on the architecture framework and 
the selected techniques, the construction method 
should support the integration of required classes (be 
they generated or composed). This assembly results 
in an operational DBMS (at least, partially). 

3 Towards a DBMS Construction 
Method 

In this section, we shall address each of the aforemen- 
tioned requirements and corresponding possible solu- 
tions in more detail. 

3.1 Architecture of Configured DBMSs 

Although reuse is often understood as reuse of co& 
frasmetis, reuse of analysis and design information is 
probably much more promising 131, [18]. For DBMS 
construction, the prerequisite and first result is a clear 
understanding of the architecture of the resulting 
DBMS. Since the DBMS architecture is also the result 
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of analysis and design, a DBMS construction method 
should support the reuse of DBMS architectures. 

The question arises whether always the same archi- 
tecture can be reused or whether there have to be multi- 
ple ones for different DBMSs. In fact, we feel that 
multiple architectures will be necessary (even in con- 
ventional cases there is no uniform architecture that all 
DBMSs conform to). Note that current extensible 
DBMSs either leave architectural design to the DBI or 
use a fixed architecture. 

Given a variety of architecture skeletons (amongst 
which the DBMS designer selects the one that satisfies 
his/her needs best), we have the problem to identify a 
predefined set of architectures, to represent them and to 
support selection of appropriate ones. Another problem 
is how refinement (implementation) of a selected archi- 
tecture can be supported. In other words, beside the 
problem of DBMS architecture, a construction method 
also has to address the architecture of the entire DBMS 
construction environment. 

Challenge 1: Can a set of architecture frame- 
works be identified, which is small but also applica- 
ble to a broad spectrum of DBMSs? On which level 
of abstraction can these architectures be described? 

To a large extent, these questions are answered by 
the socalled domain analysis [9], [ 151. Domain analysis 
usually yields the area in which the construction method 
(e.g., generation) has to be applied (trivially, DBMSs in 
our case). Domain analysis addresses the following 
questions: 
1. 

2. 

3. 

4. 

5. 

Recognizing the domain: where can reusability suc- 
cessfully be applied? What are the common require- 
ments and properties of the systems to be 
constructed? 

Identifying domain boundaries: what is the domain 
range, i.e., the range of cases the method should sup- 
port? Which are the interfaces to other parts (of an 
enclosing system or other systems)? 

Identifying variants and invariants: which parts can 
be fix (e.g., realized hard-wired) and which parts 
have to be variable? 

Defining specification input for the variant part, 
does a unified (meta) model exist that can be used for 
a specification of the domain range? 

Determining layers: given a level of abstraction for 
specifications (see question 4), what is the appropri- 
ate level of primitives for the implementation? In 
other words, in terms of which interfaces/platforms 

can the specification be realized? Is there a unified 
z=yg of specifications into the level of primi- 

6. Alternatively, are there “many” possible techniques 
to realize cases within the domain range? 

Challenge 2: Which parts of a DBMS are 
promising subjects to reuse? Which parts can re- 
main invariant but are nevertheless widely applica- 
ble without performance drawbacks? 

The answers to some of the questions above seem 
obvious in the sense that there cannot be one uniform 
approach to DBMS construction in its entirety (e.g., 
there is no DBMS meta model with significant domain 
range). Hence, it is advisable to recursively identify sev- 
eral DBMS aspects and to apply domain analysis to 
them. Such aspects may be object management, transac- 
tion management, integrity maintenance, and so on. 
While a uniform approach cannot be found for the de- 
velopment of an entire DBMS, it should be possible for 
the various aspects. However, in this case identification 
of boundaries has to be stressed. 

The results of a sample domain analysis might read 
as follows: the kernel approach is extended in that a 
fixed, low-level kernel (object server) is supported. This 
component offers functionality which is likely to be re- 
quired by all DBMSs, like physical object management 
and transaction control for low level storage objects. 
Multi-level transaction management [21] is applied. The 
object server is regarded as an invariant for the con- 
structed DBMS, i.e. generation/configuration is not re- 
garded as necessary here. 

Application domain dependent functionality (e.g., 
data model and transaction management for data model 
objects) is partitioned into aspects, which in turn are as- 
signed to (i.e., realized by) subsystems. These sub- 
systems are realized on top of the low-level kernel. The 
upper subsystems are subdivided further into those that 
realize fixed functionality right away (again, invariants). 
For instance, a subsystem user management realizes the 
management of a user and group concept. Since for that 
task a general concept can be offered and can later on be 
used in parts or in its entirety, no configuration/genera- 
tion is necessary. For other subsystems like object man- 
agement or transaction management, no general 
(efficient) solution can be realized right away. There- 
fore, these subsystems will have to be configured or 
generated. For each of these subsystems/aspects, the 
process described above may be necessary to continue 
recursively, since it may be the case that one part of a 
subsystem can be reasonably generated while others 
have to be configured. Take transaction management as 
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an example. While the transaction manager (the compo- 
nent that e.g. keeps track of inter-transaction dependen- 
cies) can be subject to generation, other components like 
the scheduler will require configuration due to the large 
number of alternative implementations. 

Challenge 3: Which parts of a DBMS can be 
generated (since they can be described formally 
and/or a uniform realization exists)? 

Summar&ing, reuse of analysis and design is sup- 
ported by a DBMS architecture framework (which re- 
flects results of domain analysis, but also represents 
previous design experiences). A set of aspects that po- 
tentially can be addressed by a DBMS construction and 
a collection of subsystems will be identified. Each of the 
subsystems can be regarded as a collection of classes or 
objects, hence has an interface (in the object-oriented 
sense) and an internal state invisible for the outside 
world. Starting with such a framework, DBMS con- 
struction can add additional subsystems and will detail 
the functionality of each of the subsystems. 

3.2 Knowledge Representation 

In the previous section, we stressed the importance of 
reusability for DBMS construction. If we aim at the 
computer-assisted reuse of &signs and implementa- 
tions, how can we represent these reusable artifacts? 

To that end, abstraction is one crucial issue (i.e., the 
degree of implementation independence): the more ab- 
stract a representation, the easier is reuse of represented 
artifacts [15]. Since selection (and modification) have to 
be performed for any reused artifact, specijicify of arti- 
facts is another problem [3]. If reused artifacts are 
“large”, their reuse payoff is high. Nevertheless, large 
artifacts are also very specific and therefore are applica- 
ble without large-scale modifications only in very few 
cases. Small and generic artifacts, on the other hand, am 
easier to find (select), but require composition and thus 
render lower payoff. Additionally, for small artifacts it is 
easier to recognize differences and similarities, and se- 
lection and ranking of (partially) adequate artifacts is 
easier as well. 

Challenge 4: How can we describe our knowl- 
edge on database technology such that 
- it is reusable, 
- represented facts are not too specific, 
- a broad domain range is ensured? 

Beside the concept of subsystems (introduced above), 
the following concepts for the representation of knowl- 

edge will be useful for the cases that require composi- 
tion and configuration. In these cases, there are usually 
different ways to achieve specific functionality. Differ- 
ent strazegies are identified where each of them de- 
scribes a collection of alternative implementations that 
are similar under one specific point of view. They are 
realized by techniques, where the way how a technique 
realizes a given task is (partially) predetermined by its 
strategies. As an example, take concurmncy control. 
Tbere, one criteria will be the vufiaiztion time, i.e. the 
point in the execution of a transaction when the correct- 
ness of its operations is checked. Concretely, we can 
distinguish strategies for preclaiming, pessimistic, and 
optimistic validation. One technique for the pessimistic 
stmtegy is strict two-phase locking. 

Futthermore, the concrete use of techniques will 
still depend on the properties of other parts (of the 
DBMS). Hence, they are not useful atomic units of re- 
use, but have in turn to be composed. Atomic units (i.e., 
artifacts that - beside instantiation - do not require 
modification/composition) are termed primitives. 

The benefit of this three-level approach is twofold 
first, it stresses the important distinction between strate- 
gies and techniques (or policies and mechanisms), and 
therefore suggests a design from the abstract to the con- 
crete. Second, it can serve as a hook for selecting similar 
artifacts (where techniques within the same strategy are 
more similar than those in different ones). Beside this 
distinction, other relationships (e.g., expressing incon- 
sistent or consistent combinations) will be necessary. 

The approach described so far is still static, while 
DBMS construction (for multiple systems) is dynamic 
in the sense that occasionally new solutions are invented 
and in that experience of designers is a very important 
factor. Actually, many systems have been implemented 
at least twice: after weaknesses of a prototype have been 
recognized, the system is redesigned and implemented a 
second time. Hence, another problem related to knowl- 
edge representation is that it is desirable to represent ex- 
periences of designers. In the ideal case the construction 
method can also learn and consider experiences of pre- 
vious designers. 

Challenge 5: Can we classify and structure our 
knowledge of database technology? Is such a classi- 
fication (e.g., in terms of strategies and techniques) 
possible at all? Can we represent our experience 
(uniformly)? 

Although different concepts and models may be ad- 
equate to represent the various kinds of knowledge, it is 
desirable to have one uniform underlying model for 
knowledge representation (e.g., the Telos model [17]). 
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3.3 (Component) Design for Reuse 

The conliguration approach relies heavily on the repre- 
sentation and storage of primitives and techniques in a 
software information base. Nevertheless, these software 
artifacts can only be used successfully if they were de- 
signed in such a way that reuse is supported well (design 
for reuse). 

Fit, it is not sufficient to represent classes by their 
interfaces and implementations only, i.e. source code 
[ 121. In order to enable selection of classes and primi- 
tives at configuration time, additional information de- 
scribing the semantics of primitives and classes has to 
be attached. However, because of the complexity of 
such component specitications it seems obvious that 
they cannot be given in a fully formal manner (e.g., al- 
gebraically). 

Second, design for reuse also means appropriate de- 
composition of artifacts (recall the aforementioned no- 
tion of “specificity”). Techniques, for example, are 
reasonably decomposed if the resulting (atomic) parts 
can be plugged together easily to (possibly new) tech- 
niques without many modifications. Hence, given a a 
collection of techniques, it may be necessary to redesign 
them in order to get them properly decomposed. As an 
example, take multi-version concurrency control, where 
a redesign (for reuse) leads to the separation of version 
control and concurrency control [ 11. 

Challenge 6: By which (DBMS-specific) con- 
cepts can we represent knowledge about the seman- 
tics of components designed for reuse? Is it realistic 
at all that DBMS researchers cooperate in decom- 
position and reuse? 

3.4 DBMS Specification 

Reasonable DBMS construction cannot start with the 
design (refinement) of a subsystem right away, since the 
variety of alternatives will usually be too complex for 
the “‘average” DBI. Additionally, whereever possible, a 
high level of abstraction is desirable [15]. For instance, 
a DBI will usually prefer to “think” in terms of rules for 
transaction dependencies [8] instead of technical terms 
like validation time. Hence, a DBMS construction meth- 
od also has to support the specification of the semantics 
of the various subsystems. Nevertheless, the corre- 
sponding aspects refer to rather different universes of 
discourse. In terms of domain analysis, one specifica- 
tion language for entire DBMSs would be too complex. 
Therefore, one specification language per aspect seems 
desirable (e.g., one for transaction models, one for data 
structures, and so forth). However, if multiple specifica- 

tion languages are suggested, the question is once more 
how these languages interface with each other (domain 
boundaries). 

Challenge 7: Which aspects of a DBMS can be 
described by specification languages? What are rea- 
sonable languages for the various aspects? How can 
they “exchange” information? 

What is the result of a specification (for a specihc 
aspect)? Obviously, the result of such a specification 
may be twofold: input to a generator (e.g., an optimizer 
generator [13]), or input for configuration/composition. 
For composition, the specitkations describe the abstract 
semantics of aspects. Additionally, specifications can be 
used to derive requirements for the subsystems to be 
configured. In this case an aspect specification is trans- 
formed into a requirements specification. This is also the 
step from the aspect level to the subsystem level, or 
from the abstract to the more concrete. Naturally, while 
the specification languages are aspect-specific, a reason- 
able requirements language should be uniform over the 
subsystems. Crucial issues to be expressed in such a re- 
quirements language are the strategies (and techniques) 
to be used by a subsystem. 

Challenge 8: What are the features of a re- 
quirements specification language dedicated to 
DBMSs? 

3.5 Design Completion and Integration 

So far, we derived reuse of designs, knowledge repre- 
sentation, support of specification and requirements lan- 
guages as necessary features of a construction method. 
However, two further issues are still open: how to com- 
plete the design and how to integrate reused compo- 
nents. 

For the first, the requirements language supports the 
specification of necessary features of artifacts to be re- 
used. Obviously, a construction method supports the se- 
lection of artifacts matching the specified requirements. 
In other words, in a given case the requirements specifi- 
cation restricts the potentially large search space of reus- 
able artifacts. However, a requirements specification (as 
the outcome of aspect specifications) can still be partial 
and incomplete; hence it has to be possible to let the 
DBI interactively edit and complete requirements speci- 
fication. 

Simultaneously, after artifacts to be reused have 
been generated or selected, they have to be infegrtied to 
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an operational DBMS or a part of a DBMS. In object- 
oriented terminology, objects have to be introduced and 
bound together in order to cooperatively support some 
task (scripting [19]). In this context, another interesting 
point is how scripting can support the integration of 
generated and configured/selected components. 

Challenge 9: How well can generators and 
configuration tools be integrated? Which is a script- 
ing model well-suited for DBMS design? 

4 Conclusion 

One might ask whether a construction method really is a 
challenge for future database technology, or whether it 
is simply an application of proper software engineering. 

In fact, DBMS construction can benefit from soft- 
ware engineering approaches and avoid pitfalls that 
have been experienced there. Nevertheless, many prin- 
cipal problems outlined in this paper are not solved by 
software engineering in a satisfying manner. Additional- 
ly, as often mentioned [9], [18], constructing reusability 
environments can only succeed if it is performed by 
people experienced in the domain (thus, DBMS technol- 
WY). 

Consequently, the construction method is a chaJ- 
lenging topic for the intersection of software engineer- 
,ing and database technology: 
1. 

2. 

3. 

Up to now, no adequate, generic architecture model 
for DBMSs is known2, whereby “‘designing a frame- 
work is itself research” [23]. Frameworks seem to be 
a reasonable solution for the architecture problem 
(for instance, the A Lu Carte approach [ll] also re- 
lies on frameworks for the integration of heteroge- 
neous DBMSs). Especially, a construction method 
can prove that such architecture frameworks are ap- 
plicable with comparable runtime performance. 

The construction method relies on a model for the 
description of strategies and techniques for database 
management, and a concrete taxonomy of those 
techniques. Obviously, such a widely accepted tax- 
onomy does not exist and can only be developed 
with a precise knowledge on database technology. 

With some exceptions (e.g., ACTA [8]) specification 
languages for various DBMS aspects for the use in 
configurable DBMSs are unknown. 

2. Although such an architecture recently has been pro- 
posed for Open OODB [22], it remains still unclear 
how and by which mechanisms this architecture can 
be tailored to a concrete DBMS. 

On the other hand, we feel that an engineering approach 
to DBMS construction based on reuse is not an unrealiz- 
able ideal. It has been shown e.g. for compiler construc- 
tion that reuse (generation, in the compiler case) can be 
effective. 

While the development of a construction method 
for DBMSs increases the amount of work on the princi- 
ples of DBMS development (which - beside scientific 
insights - has no payoff). it decrease s the work neces- 
sary for concrete DBMSs on the other hand. Hence, a 
construction method is of great practical use: in the 
short run, it can serve as an experimental framework for 
validating new developments. In the long run, it can be 
used for products and thus decrease construction and 
maintenance efforts significantly. 
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