
Constructing the Next 100 Database Management Systems:
Like the Handyman or Like the Engineer?

Andreas Geppert, Klaus R. Dittrich
Institut fii Infonnatik, Universitit Ziirich

Abstract

While the number of database management systems
(DBMSs) increases and the various DBMSs get more
and more complex, no uniform method for DBMS con-
struction exists. As a result, developers are forced to
start more or less from scratch again for every desired
system, resulting in a waste of time, effort, and cost.
Hence, the database community is challenged with the
development of an appropriate method, i.e. the time-
saving application of engineering principles (e.g., re-
use). Problems related to a construction method are de-
scribed, as well as approaches towards solutions.

1 Introduction and Motivation

Traditional (e.g., relational) database management sys-
tems satisfy the needs of most conventional applications
rather well. This is not true for many so-called non-
standard application domains like CAx, OIS, multime-
dia applications, and so forth. Not only were
conventional data models (like the relational model)
recognized as inadequate, some new applications also
require advanced transaction models (e.g., supporting
long-lived, cooperative units of work), and subtle integ-
rity enforcement mechanisms.

Since it turned out that realizing this desired ad-
vanced functionality on top of existing (relational) sys-
tems can lead to severe inherent performance
drawbacks, entire new systems have been developed
from scratch.

Object-oriented DBMSs [2] are advocated for many
non-standard application domains. However, none of
these systems will probably be general enough to sup
port a broad spectrum of different application domains
(with diverging requirements) equally well.

Consequently, a variety of DBMSs with different
models and functionalities are likely to be developed.
Hence, it is necessary to approach DBMS construction

Authors’ address: Institut fuer Informatik, Universi-
taet Zuerich, Winterthurerstr. 190, CH-8057 Zuerich,
Switzerland. Email: { geppert, d&rich) @ifi.unizh.ch

itself in a more engineering manner. In other words, im-
plementation eflciency and maintenance eflciency has
to be stressed. while database technology in the past
(like other areas in computing!) has focussed almost
solely on runtime emiency.

An engineering approach to DBMS construction
treats DBMSs as products of a “software community”
[12] and tries to make extensive use of pre-fabricated ar-
tifacts, methods, and tools. Nevertheiess, it is clear that
simple “reuse” [15] alone does not help much (recall
that the implementation on top of relational DBMSs is
ZllSOOlE - though not successful - kind of reuse). We
still require ideas and experience about what artifacts to
reuse, how to describe them, how to encounter the
sometimes broad variety of applicable alternatives, and
so forth.

Database technology is challenged to develop inno-
vative DBMS construction methods which support the
specification, design, and implementation of DBMSsfor
various application domains that make use of proven re-
use techniques [15].

The remainder of this paper is structured as follows:
section 2 surveys systems and concepts proposed for
support of DBMS construction. Section 3 describes the
challenges of an engineering-style DBMS construction
method in more detail and shows some rough ides on
how to encounter these challenges. Section 4 contains a
conclusion.

2 DBMS Construction Systems

In this section, we shall briefly survey work on extensi-
ble database systems [6] and elaborate on shortcomings
of these systems. Also, we describe principles and prob-
lems in DBMS construction methodology.

Kernel Systems
Kernel systems (e.g., WISS [7], the kernel of DASDBS
[20]) offer a general, fixed interface that supports com-
mon functionality required by all or most DBMSs (e.g.,
physical object management). Upper layers of a DBMS
have to be implemented (i.e., programmed) by the DBI’.

Obviously, the functionality of the kernel is crucial.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 27

If the kernel offers too much functionality, it also re-
stricts the opportunities of the upper layers, while too
less functionality increases the implementation efforts
of the DBI.

Customizable Systems
This type of systems (e.g., STARBURST [14]) are
based on a complete DBMS that can be modified/ex-
tended in order to satisfy new requirements. Hence, the
basic DBMS is customized to a concrete, new DBMS.
In principle, the modifications are performed at code
level and therefore require advanced programming
skills [141. Even if some functionality can be realized in
a rule-based manner. a high degree of experience (con-
cerning the base system and DBMS technology) is man-
datory.

Toolkit Systems
Too&it systems (e.g., EXODUS [5]) offer a library of
modules, which in turn realize alternative techniques for
a given task (e.g., physical access paths). However, at
least in the plain approach, selection of techniques is not
supported and left entirely to the DBI. Likewise, defin-
ing an appropriate architecture and linking together the
selected modules is also the task of the DBI.

Generator Systems
Generator systems (e.g., GENESIS [4], the EXODUS
optimizer generator [13], DMC [16]) support the speci-
fication of (parts of) a DBMS functionality and the gen-
eration of DBMS components based on those
specifications. However, they mostly address only one
aspect (e.g.. the data model) or even assume a fixed data
model (for instance). Hence, new features cannot be
easily integrated, nor is the choice among alternative re-
alization techniques supported.

Principles of DBMS Construction Systems
The analysis of the aforementioned DBMS construction
systems shows that they rely on some kind of reuse (in
the broader sense). Essentially. there are two basic prin-
ciples of reuse: generation and conjiguration (or com-
position).

Generation refers to the automatic creation of code
components that realize the mapping from one interface
to a lower-level one, or to the automated coding of a
specification. Hence, generation is reasonably applica-
ble in cases where a general and unique mapping can be
found and an underlying formal model exists. It is not
reasonable (at least not without large-scale DBI inter-
vention) if a broad variety of realization alternatives ex-
ist.

1. DBMS Implementor

These cases, on the other hand, are well supported
by configuration. Configuration means to select appro-
priate primitives and to plug them together into an oper-
ational system.

Requirements and Features
Based on the short survey given above, we infer that a
DBMS construction method should satisfy the foliow-
ing requirements:
1.

2.

3.

4.

5.

Architecture
A generic yet adaptable architecture model is re-
quired that is applicable for a broad range of signifi-
cantly different DBMSs.

Knowledge Representation
Knowledge about database technology (e.g., on al-
ternative realization techniques for a specific task, or
on experiences of previous designs) has to be ex-
pressed.

Design for Reuse
Design for reuse has to be enforced, i.e., decomposi-
tion of techniques and components into easily reus-
able artifacts.

Specification-Based Design
As far as possible, the construction method should
be specification-based (e.g., ACTA [8] for transac-
tion management).

Design Completion and Integration
Based on the architecture design and the require-
ments specifications, the method has to support com-
pletion of the design and the retrieval of adequate
artifacts. Based on the architecture framework and
the selected techniques, the construction method
should support the integration of required classes (be
they generated or composed). This assembly results
in an operational DBMS (at least, partially).

3 Towards a DBMS Construction
Method

In this section, we shall address each of the aforemen-
tioned requirements and corresponding possible solu-
tions in more detail.

3.1 Architecture of Configured DBMSs

Although reuse is often understood as reuse of co&
frasmetis, reuse of analysis and design information is
probably much more promising 131, [18]. For DBMS
construction, the prerequisite and first result is a clear
understanding of the architecture of the resulting
DBMS. Since the DBMS architecture is also the result

28 SIGMOD RECORD, Vol. 23, No. 1, March 1994

of analysis and design, a DBMS construction method
should support the reuse of DBMS architectures.

The question arises whether always the same archi-
tecture can be reused or whether there have to be multi-
ple ones for different DBMSs. In fact, we feel that
multiple architectures will be necessary (even in con-
ventional cases there is no uniform architecture that all
DBMSs conform to). Note that current extensible
DBMSs either leave architectural design to the DBI or
use a fixed architecture.

Given a variety of architecture skeletons (amongst
which the DBMS designer selects the one that satisfies
his/her needs best), we have the problem to identify a
predefined set of architectures, to represent them and to
support selection of appropriate ones. Another problem
is how refinement (implementation) of a selected archi-
tecture can be supported. In other words, beside the
problem of DBMS architecture, a construction method
also has to address the architecture of the entire DBMS
construction environment.

Challenge 1: Can a set of architecture frame-
works be identified, which is small but also applica-
ble to a broad spectrum of DBMSs? On which level
of abstraction can these architectures be described?

To a large extent, these questions are answered by
the socalled domain analysis [9], [151. Domain analysis
usually yields the area in which the construction method
(e.g., generation) has to be applied (trivially, DBMSs in
our case). Domain analysis addresses the following
questions:
1.

2.

3.

4.

5.

Recognizing the domain: where can reusability suc-
cessfully be applied? What are the common require-
ments and properties of the systems to be
constructed?

Identifying domain boundaries: what is the domain
range, i.e., the range of cases the method should sup-
port? Which are the interfaces to other parts (of an
enclosing system or other systems)?

Identifying variants and invariants: which parts can
be fix (e.g., realized hard-wired) and which parts
have to be variable?

Defining specification input for the variant part,
does a unified (meta) model exist that can be used for
a specification of the domain range?

Determining layers: given a level of abstraction for
specifications (see question 4), what is the appropri-
ate level of primitives for the implementation? In
other words, in terms of which interfaces/platforms

can the specification be realized? Is there a unified
z=yg of specifications into the level of primi-

6. Alternatively, are there “many” possible techniques
to realize cases within the domain range?

Challenge 2: Which parts of a DBMS are
promising subjects to reuse? Which parts can re-
main invariant but are nevertheless widely applica-
ble without performance drawbacks?

The answers to some of the questions above seem
obvious in the sense that there cannot be one uniform
approach to DBMS construction in its entirety (e.g.,
there is no DBMS meta model with significant domain
range). Hence, it is advisable to recursively identify sev-
eral DBMS aspects and to apply domain analysis to
them. Such aspects may be object management, transac-
tion management, integrity maintenance, and so on.
While a uniform approach cannot be found for the de-
velopment of an entire DBMS, it should be possible for
the various aspects. However, in this case identification
of boundaries has to be stressed.

The results of a sample domain analysis might read
as follows: the kernel approach is extended in that a
fixed, low-level kernel (object server) is supported. This
component offers functionality which is likely to be re-
quired by all DBMSs, like physical object management
and transaction control for low level storage objects.
Multi-level transaction management [21] is applied. The
object server is regarded as an invariant for the con-
structed DBMS, i.e. generation/configuration is not re-
garded as necessary here.

Application domain dependent functionality (e.g.,
data model and transaction management for data model
objects) is partitioned into aspects, which in turn are as-
signed to (i.e., realized by) subsystems. These sub-
systems are realized on top of the low-level kernel. The
upper subsystems are subdivided further into those that
realize fixed functionality right away (again, invariants).
For instance, a subsystem user management realizes the
management of a user and group concept. Since for that
task a general concept can be offered and can later on be
used in parts or in its entirety, no configuration/genera-
tion is necessary. For other subsystems like object man-
agement or transaction management, no general
(efficient) solution can be realized right away. There-
fore, these subsystems will have to be configured or
generated. For each of these subsystems/aspects, the
process described above may be necessary to continue
recursively, since it may be the case that one part of a
subsystem can be reasonably generated while others
have to be configured. Take transaction management as

SIGMOD RECORD, Vol. 23, No. 1, March 1994 29

an example. While the transaction manager (the compo-
nent that e.g. keeps track of inter-transaction dependen-
cies) can be subject to generation, other components like
the scheduler will require configuration due to the large
number of alternative implementations.

Challenge 3: Which parts of a DBMS can be
generated (since they can be described formally
and/or a uniform realization exists)?

Summar&ing, reuse of analysis and design is sup-
ported by a DBMS architecture framework (which re-
flects results of domain analysis, but also represents
previous design experiences). A set of aspects that po-
tentially can be addressed by a DBMS construction and
a collection of subsystems will be identified. Each of the
subsystems can be regarded as a collection of classes or
objects, hence has an interface (in the object-oriented
sense) and an internal state invisible for the outside
world. Starting with such a framework, DBMS con-
struction can add additional subsystems and will detail
the functionality of each of the subsystems.

3.2 Knowledge Representation

In the previous section, we stressed the importance of
reusability for DBMS construction. If we aim at the
computer-assisted reuse of &signs and implementa-
tions, how can we represent these reusable artifacts?

To that end, abstraction is one crucial issue (i.e., the
degree of implementation independence): the more ab-
stract a representation, the easier is reuse of represented
artifacts [15]. Since selection (and modification) have to
be performed for any reused artifact, specijicify of arti-
facts is another problem [3]. If reused artifacts are
“large”, their reuse payoff is high. Nevertheless, large
artifacts are also very specific and therefore are applica-
ble without large-scale modifications only in very few
cases. Small and generic artifacts, on the other hand, am
easier to find (select), but require composition and thus
render lower payoff. Additionally, for small artifacts it is
easier to recognize differences and similarities, and se-
lection and ranking of (partially) adequate artifacts is
easier as well.

Challenge 4: How can we describe our knowl-
edge on database technology such that
- it is reusable,
- represented facts are not too specific,
- a broad domain range is ensured?

Beside the concept of subsystems (introduced above),
the following concepts for the representation of knowl-

edge will be useful for the cases that require composi-
tion and configuration. In these cases, there are usually
different ways to achieve specific functionality. Differ-
ent strazegies are identified where each of them de-
scribes a collection of alternative implementations that
are similar under one specific point of view. They are
realized by techniques, where the way how a technique
realizes a given task is (partially) predetermined by its
strategies. As an example, take concurmncy control.
Tbere, one criteria will be the vufiaiztion time, i.e. the
point in the execution of a transaction when the correct-
ness of its operations is checked. Concretely, we can
distinguish strategies for preclaiming, pessimistic, and
optimistic validation. One technique for the pessimistic
stmtegy is strict two-phase locking.

Futthermore, the concrete use of techniques will
still depend on the properties of other parts (of the
DBMS). Hence, they are not useful atomic units of re-
use, but have in turn to be composed. Atomic units (i.e.,
artifacts that - beside instantiation - do not require
modification/composition) are termed primitives.

The benefit of this three-level approach is twofold
first, it stresses the important distinction between strate-
gies and techniques (or policies and mechanisms), and
therefore suggests a design from the abstract to the con-
crete. Second, it can serve as a hook for selecting similar
artifacts (where techniques within the same strategy are
more similar than those in different ones). Beside this
distinction, other relationships (e.g., expressing incon-
sistent or consistent combinations) will be necessary.

The approach described so far is still static, while
DBMS construction (for multiple systems) is dynamic
in the sense that occasionally new solutions are invented
and in that experience of designers is a very important
factor. Actually, many systems have been implemented
at least twice: after weaknesses of a prototype have been
recognized, the system is redesigned and implemented a
second time. Hence, another problem related to knowl-
edge representation is that it is desirable to represent ex-
periences of designers. In the ideal case the construction
method can also learn and consider experiences of pre-
vious designers.

Challenge 5: Can we classify and structure our
knowledge of database technology? Is such a classi-
fication (e.g., in terms of strategies and techniques)
possible at all? Can we represent our experience
(uniformly)?

Although different concepts and models may be ad-
equate to represent the various kinds of knowledge, it is
desirable to have one uniform underlying model for
knowledge representation (e.g., the Telos model [17]).

30 SIGMOD RECORD, Vol. 23, No. 1, March 1994

3.3 (Component) Design for Reuse

The conliguration approach relies heavily on the repre-
sentation and storage of primitives and techniques in a
software information base. Nevertheless, these software
artifacts can only be used successfully if they were de-
signed in such a way that reuse is supported well (design
for reuse).

Fit, it is not sufficient to represent classes by their
interfaces and implementations only, i.e. source code
[121. In order to enable selection of classes and primi-
tives at configuration time, additional information de-
scribing the semantics of primitives and classes has to
be attached. However, because of the complexity of
such component specitications it seems obvious that
they cannot be given in a fully formal manner (e.g., al-
gebraically).

Second, design for reuse also means appropriate de-
composition of artifacts (recall the aforementioned no-
tion of “specificity”). Techniques, for example, are
reasonably decomposed if the resulting (atomic) parts
can be plugged together easily to (possibly new) tech-
niques without many modifications. Hence, given a a
collection of techniques, it may be necessary to redesign
them in order to get them properly decomposed. As an
example, take multi-version concurrency control, where
a redesign (for reuse) leads to the separation of version
control and concurrency control [11.

Challenge 6: By which (DBMS-specific) con-
cepts can we represent knowledge about the seman-
tics of components designed for reuse? Is it realistic
at all that DBMS researchers cooperate in decom-
position and reuse?

3.4 DBMS Specification

Reasonable DBMS construction cannot start with the
design (refinement) of a subsystem right away, since the
variety of alternatives will usually be too complex for
the “‘average” DBI. Additionally, whereever possible, a
high level of abstraction is desirable [15]. For instance,
a DBI will usually prefer to “think” in terms of rules for
transaction dependencies [8] instead of technical terms
like validation time. Hence, a DBMS construction meth-
od also has to support the specification of the semantics
of the various subsystems. Nevertheless, the corre-
sponding aspects refer to rather different universes of
discourse. In terms of domain analysis, one specifica-
tion language for entire DBMSs would be too complex.
Therefore, one specification language per aspect seems
desirable (e.g., one for transaction models, one for data
structures, and so forth). However, if multiple specifica-

tion languages are suggested, the question is once more
how these languages interface with each other (domain
boundaries).

Challenge 7: Which aspects of a DBMS can be
described by specification languages? What are rea-
sonable languages for the various aspects? How can
they “exchange” information?

What is the result of a specification (for a specihc
aspect)? Obviously, the result of such a specification
may be twofold: input to a generator (e.g., an optimizer
generator [13]), or input for configuration/composition.
For composition, the specitkations describe the abstract
semantics of aspects. Additionally, specifications can be
used to derive requirements for the subsystems to be
configured. In this case an aspect specification is trans-
formed into a requirements specification. This is also the
step from the aspect level to the subsystem level, or
from the abstract to the more concrete. Naturally, while
the specification languages are aspect-specific, a reason-
able requirements language should be uniform over the
subsystems. Crucial issues to be expressed in such a re-
quirements language are the strategies (and techniques)
to be used by a subsystem.

Challenge 8: What are the features of a re-
quirements specification language dedicated to
DBMSs?

3.5 Design Completion and Integration

So far, we derived reuse of designs, knowledge repre-
sentation, support of specification and requirements lan-
guages as necessary features of a construction method.
However, two further issues are still open: how to com-
plete the design and how to integrate reused compo-
nents.

For the first, the requirements language supports the
specification of necessary features of artifacts to be re-
used. Obviously, a construction method supports the se-
lection of artifacts matching the specified requirements.
In other words, in a given case the requirements specifi-
cation restricts the potentially large search space of reus-
able artifacts. However, a requirements specification (as
the outcome of aspect specifications) can still be partial
and incomplete; hence it has to be possible to let the
DBI interactively edit and complete requirements speci-
fication.

Simultaneously, after artifacts to be reused have
been generated or selected, they have to be infegrtied to

SIGMOD RECORD, Vol. 23, No. 1, March 1994

an operational DBMS or a part of a DBMS. In object-
oriented terminology, objects have to be introduced and
bound together in order to cooperatively support some
task (scripting [19]). In this context, another interesting
point is how scripting can support the integration of
generated and configured/selected components.

Challenge 9: How well can generators and
configuration tools be integrated? Which is a script-
ing model well-suited for DBMS design?

4 Conclusion

One might ask whether a construction method really is a
challenge for future database technology, or whether it
is simply an application of proper software engineering.

In fact, DBMS construction can benefit from soft-
ware engineering approaches and avoid pitfalls that
have been experienced there. Nevertheless, many prin-
cipal problems outlined in this paper are not solved by
software engineering in a satisfying manner. Additional-
ly, as often mentioned [9], [18], constructing reusability
environments can only succeed if it is performed by
people experienced in the domain (thus, DBMS technol-
WY).

Consequently, the construction method is a chaJ-
lenging topic for the intersection of software engineer-
,ing and database technology:
1.

2.

3.

Up to now, no adequate, generic architecture model
for DBMSs is known2, whereby “‘designing a frame-
work is itself research” [23]. Frameworks seem to be
a reasonable solution for the architecture problem
(for instance, the A Lu Carte approach [ll] also re-
lies on frameworks for the integration of heteroge-
neous DBMSs). Especially, a construction method
can prove that such architecture frameworks are ap-
plicable with comparable runtime performance.

The construction method relies on a model for the
description of strategies and techniques for database
management, and a concrete taxonomy of those
techniques. Obviously, such a widely accepted tax-
onomy does not exist and can only be developed
with a precise knowledge on database technology.

With some exceptions (e.g., ACTA [8]) specification
languages for various DBMS aspects for the use in
configurable DBMSs are unknown.

2. Although such an architecture recently has been pro-
posed for Open OODB [22], it remains still unclear
how and by which mechanisms this architecture can
be tailored to a concrete DBMS.

On the other hand, we feel that an engineering approach
to DBMS construction based on reuse is not an unrealiz-
able ideal. It has been shown e.g. for compiler construc-
tion that reuse (generation, in the compiler case) can be
effective.

While the development of a construction method
for DBMSs increases the amount of work on the princi-
ples of DBMS development (which - beside scientific
insights - has no payoff). it decrease s the work neces-
sary for concrete DBMSs on the other hand. Hence, a
construction method is of great practical use: in the
short run, it can serve as an experimental framework for
validating new developments. In the long run, it can be
used for products and thus decrease construction and
maintenance efforts significantly.

5 References

HI

PI

[31

[41

PI

WI

[71

181

D. Agrawal, S. Sengupta: Modular Synchroniza-
tion in Multiversion Databases: Version Control
and Concurrency Control. Proc. ACM SIGMOD
IntI. Conf. on Management of Data 1989.

M. Atkinson, F. Bancilhon, D.J. Dewitt, K.R.
D&rich, D. Maier, S.B. Zdonik: 27~ Object-Ori-
ented Database System Manifesto (a Political
Pamphlet). FVoc. Intl. Conf. on Deductive and
Object-Oriented Database Systems 1989.

T.J. Biggerstaff, C. Richter: Reusability Frume-
work, Assessment, and Directions. IEEE Soft-
ware, July 1987.

D.S. Batory, T.Y. Leung, T.E. Wise: Impfementa-
tian Concepts for an Extensible Data Model and
Data Language. ACM Trans. on Database Sys-
tems 13:3, 1988.

M.J. Carey, D.J. Dewitt, D. Frank, G. Graefe, M.
Muralikrishna, J.E. Richardson: The Architecture
of the EXODUS Extensible DBMS. In [lo].

M. Carey, L. Haas: Extensible Database Man-
agement Systems. In W. Kim (Ed.): Special Issue
on Directions for Future Database Research and
Development. ACM-SIGMOD Record 19:4,
1990.

H.-T. Chou, D.J. Dewitt, R.H. Katz, A.C. Klug:
Design and Implementation of the Wisconsin
Storage System. Software - Practice and Experi-
ence 15:10, 1985.

I?K. Chrysanthis, K. Ramamritham: ACTA: A
Framework for Specifying and Reasoning about
Transaction Structure and Behavior. Ptoc. ACM-

32 SIGMOD RECORD, Vol. 23, No. 1, March 1994

[91

WA

[ill

WI

u31

[I41

H51

WI

1171

W31

u91

PO1

SIGMOD Intl. Conf. on Management of Data
1990.

J.C. Cleaveland: Building Application Genera-
tors. IEEE Software, July 1988.

K.R. Dittrich, U. Dayal (eds.): Prooxdings of the
1986 International Workshop on Object-Orient-
ed Database Systems. IEEE Computer Science
Press. 1986.

P. Drew, R. King, D. Heimbignex A Toolkit for
the Incremental Implementation of Heteroge-
neous Database iUanagement Systems. VLDB
Journal 1:2, 1992.

S. Gibbs, D. Tsichritzis, E. Casais, 0. Nierstrasz,
X. Pintado: Class Management for Sojtware
Communities. Special Issue ou Object-Oriented
Design, CACM 33:9,1990.

G. Graefe, D.J. Dewitt: The EXODUS Optimizer
Generator. Proc. ACM SIGMOD Intl. Conf. on
Management of Data 1987.

L.M. Haas, W. Chang, GM. Lohman, J. McPher-
son, P.F. Wilms, G. Lapis, B. Lindsay, H. Pira-
hesh, MJ. Carey, E. Shekitaz Starburst Mid-
Flight: As the Dust Clears. IEEE Trans. on
Knowledge and Data Engineering 2:1,1990.

C.W. Krueger: Software Reuse. ACM Computing
Surveys 24:2,1992.

F. Maryanski, J. Bed@, S. Hoelscher, S. Hong, L.
McDonald, J. Peckham, D. Stock: The Data
Mute1 Compiler: A Tool for Generating Object-
Oriented Database Systems. In [lo].

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubar-
&is: Telos: Representing Knowledge About In-
formation Systems. ACM Trans. on Information
Systems 8:4, 1990.

J.M. Neighbors: Draco: A Method for Engineer-
ing Reusable Sofrware Systems. In TJ. Bigger-
staff, A.J. Perlis (eds.): Software Reusability.
Volume I: Concepts and Models. ACM Press,
1989.

0. Nierstrasz, D. Tsichritzis, V. de Mey, M. Sta-
dehnann: Objects + Scripts = Applications. In D.
Tsichritzis (ed.): Object Composition. Centre
Universitaire d’Infommtique, Universite de Gen-
eve, Geneva 1991.

H.-B. Paul, H.-J. Schek, M.H. Scholl, G. Wei-
kum, U. Deppisch: Architecture and Implementa-
tion of the Darmstadt Database Kernel System.
Proc. ACM SIGMOD Intl. Conf. on Management
of Data 1987.

[21] G. Weikum: Principles and Realization Strate-
gies of Multilevel Transaction Management.
ACM Trans. on Database Systems 16:1,1991.

[22] D.L. Wells, J.A. Blakeley, C.W. Thompson: Ar-
chitecture of an Open Object-Oriented Database
Managemenr System. IEEE Computer 2510,
1992.

[23] RJ. W&s-Brock, R.E. Johnson: Surveying Cur-
rent Research in Object-Oriented Design. Special
Issue on Object-Oriented Design. Communica-
tions of the ACM 33:9,1990.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 33

