
Semi-automatic, Self-adaptive Control of

Garbage Collection Rates in Object Databases

Jonathan E. Cook Artur W. Klauser Alexander L. Wolf

University of Colorado University of Colorado University of Colorado

jcook@cs.colorado. edu klauser@cs.colorado. edu alw@cs. colorado.edu

Benjamin G. Zorn

University of Colorado

zornClcs. Colorado. edu

Abstract

A fundamental problem in automating object database

storage reclamation is determining how often to perform

garbage collection. We show that the choice of collection rate

can have a significant impact on application performance

and that the “best” rate depends on the dynamic behavior

of the application, tempered by the particular performance

goals of the user. We describe two semi-automatic, self-

adaptive policies for controlling collection rate that we

have developed to address the problem. Using trace-

driven simulations, we evaluate the performance of the

policies on a test database application that demonstrates

two distinct reclustering behaviors. Our results show that

the policies are effective at achieving user-specified levels

of 1/0 operations and database garbage percentage. We

also investigate the sensitivity of the policies over a range

of object connectivities, The evaluation demonstrates that

semi-automatic, self-adaptive policies are a practical means

for flexibly controlling garbage collection rate.

1 Introduction

Automatic storage reclamation, or garbage collection

(GC), is becoming recognized as an important new

feature for object database management systems

(ODBMSS). A number of recent research papers have

considered some of the important aspects of the cor-

rectness and performance of ODBMS garbage collec-

tion [AFG95, CWZ94, KLW89, KW93, YNY94]. A re-

cently proposed standard suggests using garbage col-

lection for at least some of the programmatic inter-

faces to an ODBMS [Cat93]. Commercial ODBMSS

are now providing implementations of garbage collec-

tion (e.g., [Cor94]).

This work was supported in part by the National Science
Foundation under grant IRI-95-21046. A. Klauser was supported
by a BMfWF/Fulbright Graduate Fellowship.

Permissionto make digitabhard copy of part or all of thk work for personal
or classroom use is granted without fee provided that @pies are not made
or distributed for profit or commercial advankwe, the qxmykrht notim, the
title of the publication and its date appear, and notice ISgiven that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers,or to redistribute to Iisls, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
0 1996 ACM 0-89791 -794-4196/0006.. .$3.50

In a previous paper [CWZ94] we presented a frame-

work for investigating the issues surrounding parti-

tioned garbage collection of ODBMSS. Partitioned col-

lection is an incremental technique based on manipu-

lating disjoint portions of a database [YNY94] and is

akin to generational collection in programming language

systems [Wi192]. We categorized the issues into a num-

ber of policy areas that together contribute to a com-

plete garbage collection algorithm. We described the

results of our investigation in one policy area, partitton

selection, which is the selection of which partition of a

database to collect during a given garbage collection.

In that paper we introduced a new partition selection

policy, called UPDATEDPOINTER.

In this paper we investigate another critical policy

area of partitioned garbage collection algorithms, that

of determining how often to perform garbage collection.

We refer to this policy area as the collection rate.

Intuitively, we can understand how collection rate

impacts both 1/0 performance and database size. If

garbage collection occurs frequently, then the number

of 1/0 operations associated with reclamation will

dominate the number of 1/0 operations associated

with the application, but very little garbage will exist

in the database. Conversely, if collection occurs

infrequently, then the impact of reclamation on 1/0

performance will be small, but a significant amount

of garbage may accumulate in the database between

collections, reducing storage efficiency and possibly

increasing access time. Thus, finding an appropriate

collection rate is an exercise in determining a time/space

tradeoff between 1/0 and storage overheads.

Figures la and lb show the effect of varying the

collection rate on the 1/0 performance and on the

total garbage collected in a test database. Specific

details of the test database, an instance of the 007

benchmark [CD N93], are discussed in Section 3.3. The

figures highlight the time/space tradeoff of collection

rate policies. For example, it is clear that choosing a

collection rate for this application of “50”, measured

in pointer overwrites (i.e., modifications of pointers

between objects) per collection, results in excessive

377

40000 3500
..<

...
~.,

35000 N..>
3000 - “’....

.*+*. -.. e-... *---- .*---- +---- ,%::,::,,.,,3,,,,,,,-,,,,, ,,,,,.-,-?.-.75! ! ‘%...
30000 -

~+.. ... ,,+.....+..++...’ .+’...
“%..

~.
~ 2500 - ...

*.
25000 - -s ‘ %*.

g g .. .

~ g “u.
“%*.

~ 20000
! 2000 -
: “k....<

. E %

15000 - .-.. a.
g , ~oo

.

10000 Total 1/0 (?. .ollect#on — *-

?
Total 1/0 (wlh COIIWNO” -+- -----

A@icat:: ;\: -;:

. 1000 Garbage Created —

5000 - ‘“m G,*W Collected -*-

c?
so, ., ~, ~

0 Q m.. ~..&. ,,.
500

0 100 200 300 400 500 600 700 800 0
Collecmn Rate [P.mter Ov@rwr#!es/mllection)

100 200 300 400 500 600 700 800
C.llemon flak (Pointer Ovmwr$eefColtect!on)

(a) (b)

Figure 1: Collection Rate versus 1/0 Operations (a) and Total Garbage Collected (b).

numbers of 1/0 operations, while choosing a collection

rate of “800” pointer overwrites per collection results in

little garbage being collected.1 So the question remains,

what is a reasonable rate for collecting garbage?

Unfortunately, this question depends on a number

of different parameters and, as a result, is difficult

to answer in general. Foremost, there is the issue of

the relative importance of 1/0 overhead versus storage

overhead. This issue is best decided by the ODBMS

user,2 which is tantamount to saying that the choice

of a collection rate achieving the desired optimization

is necessarily application dependent. Thus, it is

inappropriate for the ODBMS implementor to preset

a collection rate. On the other hand, in order for

the ODBMS user to determine a suitable collection

rate, they would need to understand the performance

of the application as a function of collection rate by

gathering data similar to those of Figure 1. Of course,

for any significant database, such an exploration of

application performance is costly in execution time and

in human effort. Moreover, the data would reflect just

that single application, which may be in conflict with

other applications manipulating the same database.

A reasonable conclusion, therefore, is that a mech-

anism for controlling collection rate should be semi-

automatic, in that the ODBMS, rather than the ODBMS

implementor or the ODBMS user, should set the rate.

More than that, the mechanism should be self-adaptive,

in that the collection rate can vary in response to the

dynamic behavior of the applications manipulating the

database. Adaptiveness has two components: respon-

siveness, which is the speed with which a mechanism

1As we explain in Section 2, one meaningful measure of
collection rate is in terms of the number of pointer overwrites
per collection.

2By “user” wc mean the database administrator, the applica-
tion developer, or the application user.

recognizes a change in behavior and reacts to that

change, and accuracy, which is the degree to which the

mechanism correctly responds to the change. The role

of the ODBMS implementor and user should be to pro-

vide the broad performance goals that implicitly guide

the ODBMS’S semi-automatic, self-adaptive control of

the collection rate.

In this paper we describe and evaluate two new

ODBMS policies for determining appropriate collection

rates. The policies are given input from the ODBMS

user about the relative importance of 1/0 or storage

resources and are adaptive to the dynamic behavior

of database applications. In particular, our policies

allow the user to specify a target percentage of 1/0

operations to be dedicated to garbage collection or a

target percentage of garbage to be allowed to exist

in the database. For example, if the specified target

1/0 percentage is 5%, then the collector automatically

adjusts the collection rate to match the total number of

garbage collection 1/0 operations to that percentage.

As the mix of 1/0 operations changes, the collection

rate adjusts to maintain the target percentage.

The policies we describe are intended to provide

an exact level of performance (e.g., garbage or 1/0

percentage), under the assumption that the levels

defined by the user apply while the database is under

an active workload. Whenj for example, the database

is quiescent, it would be desirable to have the collector

run beyond its user-stated limits. In the case of 1/0

operations, this means a higher percentage of 1/0 can be

given over to the collector in order to reduce the garbage

in the database, while in the case of garbage percentage,

this means the collector could attempt to reduce the

amount of garbage below what was requested. Although

we do not explore this dimension here, our policies can

be extended to handle such situations.

We present a performance evaluation of our two

378

GenDB

Figure 2: Phases of the 007 Test Application.

new collection rate policies that is based on trace-

driven simulations of an application developed by Yong,

Naughton, and Yu [YNY94] for the 007 ODBMS

benchmark [CDN93]. The application consists of four

distinct phases, each exhibiting behavior different from

the one that it precedes. Figure 2 illustrates the pro-

gression of the phases, which we describe fully in Sec-

tion 3. Our results show that the policies give excel-

lent performance, accurately and responsively reacting

to changes in application behavior. Furthermore, our

collection rate policies add only little time and space

overhead. We also show that our results hold across

databases with different object connectivities.

While there has been a significant amount of research

in object database garbage collection [AFG95, Bjo93,

But87, CA86, CWZ94, KLW89, KW93, ML94, Mat85,

YNY94], none of that previous work has investigated

the issue of collection rate. For example, Yong,

Naughton, and Yu propose a partitioned garbage

collection policy, but assume that collection is triggered

either when free-space becomes unavailable or after a

fixed amount of storage is allocated [YNY94]. Their

concern in that work is in comparing partitioned

garbage collection against other approaches, and they

choose a collection rate policy drawn from the realm

of programming languages. In contrast, our work is

aimed at both quantifying the cost of poor collection

rate choices and proposing new policies for effectively

controlling the collection rate in object databases.

There are a number of similarities between copytng

garbage collection [Che70] and on-line object reclus-

terzng. In particular, they both have the potential to

improve application performance by relocating objects,

they both incur additional execution overhead that must

be balanced against the performance benefits they pro-

vide, and they both must find an appropriate rate at

which to operate effectively. In recent work, for exam-

ple, McIver and King [WJMK94] investigate the perfor-

mance of an algorithm in which on-line reclustering is

triggered when a measure of reference locality (the “ex-

ternal tension”) exceeds a certain threshold and when a

cluster analysis determines that reclustering might im-

prove performance. The goal of their work is strictly to

reduce the total number of application 1/0 operations.

Our work is complicated by the additional (and some-

times conflicting) goal of trying to reduce the amount

of storage required by the database.

Both reclustering and garbage collection can be

addressed via off-line algorithms or “opportunistic” on-

line algorithms that attempt to schedule large-scale

database reorganizations when there is little database

activity. Because many databases currently cannot be

taken off-line and seldom have periods of low activity, we

feel that investigating algorithms for on-line reclustering

and garbage collection remains very important.

In Section 2 we present our new collection rate

policies. Section 3 describes the experimental method

we use to evaluate the policies and details the test

databases and application we use in the evaluation.

Section 4 presents the results of our experiments and

Section 5 summarizes our findings.

2 Collection Rate Policies

In order to reclaim the most garbage, we need to iden-

tify what events occur that indicate when garbage is

created. In programming language C~C algorithms, ob-

ject allocation and garbage creation are often assumed

to be correlated. As a result, a heuristic of collecting af-

ter allocating a fixed number of bytes is sometimes used.

However, allocation and garbage creation are not always

correlated in object databases. Alternatively, we know

that when pointers are overwritten, the objects are “less

connected”. Overwriting the final pointer to an object

or group of objects actually does create garbage. Thus,

we choose to use pointer-overwrite events as an indica-

tor that garbage is being created in the database.

2.1 Fixed Rat e Policies

A very simple collection rate policy is one that fixes the

rate of collection over all applications. Unfortunately, a

policy that chooses a fixed rate is destined to fail, as the

amount of collection required will vary from database

application to application, and any particular choice will

not be optimal for all applications.

A more clever fixed-rate policy might attempt to

determine the collection rate based on application

characteristics, such as connectivity, object size, and

ODBMS characteristics, such as partition size. For

example, we know that the 007 application we use has

an approximate average connectivity of four (i.e., each

object has four pointers pointing to it), and that object

size is 133 bytes on average. From this, we could infer

that every four pointer overwrites creates 133 bytes of

garbage. If we assume that partitions are 96 kilobytes

in size, then an obvious choice for collection rate would

be to collect every 2956 pointer overwrites—that is,

when a partition’s worth of garbage has been created.

Unfortunately, this simple heuristic also fails miserably.

The 007 application actually creates garbage at a rate

of one kilobyte per six pointer overwrites, or jive tames

more garbage than the simple calculation would predict.

There are two reasons why such simple heuristics

fail. First, some individual overwrites can detach large

379

connected structures from the rest of the database and

theheuristic does not capture this possibility. Second, a

single overwrite may disconnect very large objects from

the database, such as 007 document nodes.

Another failing of fixed-rate policies is that they

cannot adapt to changes in the database behavior, The

007 application we use, for example, has two distinct

reorganizations with very different properties. As a

result, any fixed-rate policy used in this application

will fail to work effectively for one or the other

reorganization. We conclude that fixed-rate policies are

unacceptable.

The obvious alternative to a fixed-rate policy is a

policy that adjusts the collection rate automatically in

an effort to achieve an optimal result. Unfortunately,

because a time/space tradeoff is involved, there is

no global “optimum” to achieve. As a result, we

have investigated two semi-automatic policies that

control collection rate based on user preferences. The

first policy attempts to limit garbage collector 1/0

operations and we call it the Sernt-Automattc 1/0

(SAIO) policy. The second policy attempts to limit

the amount of garbage in the database, and we call it

the Semz-Automattc GArbage (SAC;A) policy. Both of

these policies are self-adaptive, that is, they adjust the

collection rate dynamically as the database application

behavior changes. We use methods from control theory

to develop the policies. To our knowledge, control

theory has not been previously applied to this problem.

2.2 SAIO: An 1/0 Percentage Policy

Under the SAIO policy, the database user indicates

what fraction of 1/0 operations should be used to

perform garbage collection. For example, if the user

wants garbage collection to utilize approximately 10%

of the total 1/0 operations, then the user would set the

SAIO parameter (called SAIO.Frac below) to 10%. In

this policy, we use a count of 1/0 operations as a unit

of time, because it corresponds exactly to the value the

policy is trying to control.

The count of 1/0 operations indicates a behavior of

the system, not a state. This means that 1/0 operation

counts are always coupled with a measurement period,

which we refer to as a htst ory below. A natural

time period in our application is the time between two

successive collections, We use integral numbers of this

basic period to describe history in our formulation of

the SAIO rate policy. To describe a history, we use the

notation zl~ to indicate the history of c starting at a

and ending at b. To express the history from the current

collection to the next collection we use the intuitive

notational abbreviation Ax ~ zl~+l.

In the formulation of the SAIO policy, we use the

following definitions.

SAIO.Frac . .

AppIO

GCIO

c . . .

ch%8t

requested collector 1/0 percentage

application 1/0 operations

garbage collection 1/0 operations

current collection

history size (number of collections)

The goal of the SAIO policy is to determine the interval

AAppIO after which the next garbage collection should

occur, such that the SAIO-Frac constraint is met. In

terms of 1/0 histories, this can be formulated as follows.

GCIOl;~;, t,, +l = GCIOl:_Ckz,, +l + AG6’10

AZJP~OlS:ik,,i+] = APP~~l&,,+l + AAPP1O

GC~Ols:ik,,i+l = APPIOIS~~kl~,+l * SAIO.Frac

GCIO1:_ck,,, +l + AGCIO

= (’AppIOl:_ck,,,+l -t AAppIO) * SA 10-Frac

where C’urrGC’10 ❑ GCIO/ ~_ ~. The approximation for

AAppIO is achieved by making the assumption that

A GCIO = CarrGCIO, which means successive garbage

collections incur approximately the same number of 1/0

operations.

To implement this policy, the collector must be able to

determine the number of application and collection 1/0

operations. Additionallyj the ODBMS must be able to

trigger a garbage collection after the calculated number

of application 1/0 operations has occurred. Since

ODBMSS typically perform 1/0 operations explicitly,

this requirement does not pose a problem.

2.3 SAGA: A Garbage Percentage Policy

Under the SAGA policy, the database user indicates

what fraction of the database should contain garbage.

For example, if the user wants garbage to account for

approximately 5’%0 of the total database size, then the

user would set the SAGA parameter (called SA GA_Frac

below) to 5%.

In the formulation of the SAGA policy, we use the

following definitions,

SAGA _Frac
DBSzze(t)

Tot Garb(t)

Tot Coil(t) . .

Act Garb(t) . . .

Target Garb(t) . . .

GarbDtff(t)

CurrColl . . .

requested garbage percentage

total database size by time t

total garbage generated by time t

total garbage collected by time t

actual database garbage by time t

= Tot Garb(t) – Tot Coil(t)

target database garbage by time t

= DBSize(t) * SA GA_Frac

Act Garb(t) – Target Garb(t)

amount of garbage collected by the

current collection

380

If CurrColl amount of garbage is collected at time t,

the policy makes the assumption that approximately

the same amount of garbage will be collected during

the next collection. The policy also assumes that the

database size will not grow significantly between t and

t + At. Thus, TargetGarb(t) w TargetGarb(t + At).

Solving for At, we get the following.

Act Garb(t + At) = Tot Garb(t + At) – Tot Coll(t + At)

- Tot Garb(t + At) – (Tot Coil(t)—

+ CurrColl)

Tot Garb(t -F At) = Tot Garb(t) + Tot Garb’(t) * At

Act Garb(t+ At) = Tot Garb(t) + Tot Garb’(t) * At

- (TotColl (t) + CurrCoil)

– Act Garb(t) + (Tot Garb’(t) * At)—

– CurrColl

With the assumption of insignificant database growth

between successive collections, our goal is then the

following.

Act Garb(t + At) = Target Garb(t + At) z Target Garb(t)

We can then simplify and solve for At.

Target Garb(t) = Act Garb(i) + (Tot Garb’(t) * At)
– CurrColl

CurrColl = (Act Garb(t) - Target Garb(t))

+ (Tot Garb’(t) * At)

CurrColl = GarbDiff(t) + (Tot Garb’ (t) * At)

At =
(CurrColl- GarbDt~~(t))

TotGarb/(t)

To implement this policy, the ODBMS must estimate

Tot Garb’ (t), which is the slope of the Tot Garb function.

Thus, the collector must maintain some history infor-

mation about previous estimates of the total garbage in

order to estimate how much garbage will occur in the fu-

ture. We estimate Tot Garb’(t) using a simple formula.

Given a previous slope estimate, Tot Garb’ (tr~,~), a pre-

~,ious pair of data points (tprev, TotGarb(tp,,,,)), and a

current set of data points (t, Tot Garb(t)), we estimate:

Tot Garb\(t) = Weight * Tot Garb’ (tP,,u)

=+
(l– Wezght)(Tot Garb(t) –Tot Garb(tp...))

‘—t~,e,~

where Wezght is a controlling factor that buffers the

policy from rapid changes in slope. We currently set

Wetght = 0.7. Also note that in practice, At can become

very large if Target Garb’(t) approaches zero, or even

negative. As a result, we place a minimum (Atmin = 2)

and maximum (At~.Z = 1000) on the value of At. We

find that our policy works well in practice and that

At~*~ and At~~~ are rarely utilized by the policies (e.g.,

see Figure 7 in Section 4).

2.4 Garbage Estimation for the SAGA Policy

One major difference between the SAIO policy and the

SAGA policy is that the information needed to compute

At for SAGA is not readily available. In particular,

ActGarb(t) cannot be determined without scanning the

entire database. As a result, to implement the SAGA

policy practically, heuristics must be employed that

can estimate the current amount of garbage in the

database. We have invented and investigated several

such heuristics, two of which we describe below. To help

evaluate them, we have implemented in our simulator

a perfect garbage “estimator” that knows exactly how

much garbage exists in the database.

Garbage estimation can be split into two orthogonal

components.

1.

2.

In

State. Describes the potential amount of garbage

in each partition. Depending on the granularity,

we differentiate between coarse and fine grain state

descriptions. Coarse grain state (CGS) character-

izes the database simply as the number of allocated

partitions, whereas fine grain state (FGS) character-

izes the database in terms of the number of pointer

overwrites in each partition, which is based on the

observation that pointer overwrites highly correlate

with garbage creation. During a collection, the FGS

value of one single partition changes from ~ to O—

that is, all potential garbage in this partition is re-

claimed. During application operations, the FGS

values of partitions are increased when pointers into

those partitions are overwritten.

Behavior. Describes results of garbage collections.

After each collection, a performance metric for the

garbage collector is calculated. This metric is called

the current behavior (C B). To suppress excessive

noise on the behavior metric, it can be averaged

over recent collections, thus introducing some form

of history and deriving a history behavior (HB).

order to combine both state and behavior to the

desired metric of garbage amount, the state and

behavior metrics must match. From the above design

space, we derive the following heuristics.

2.4.1 Coarse Grain State / Current Behavior

To derive the amount of garbage in the system, this

heuristic combines CGS with a behavior metric that is

expressed as follows.

c... bytes reclaimed in last collection

With the number of partitions (CGS) expressed as p,

this results in the following equation.

ActGarb = C*p

381

2.4.2 Fine Grain State 1 History Behavior

In this heuristic, FGS is combined with a behavior

metric of bytes reclaimed per pointer overwrite. We

use the following definitions.

PO(p) . . . pointer overwrites of partition p

GPPO . . . garbage per pointer overwrite

GPPOh . . . garbage per pointer overwrite history

h . . . history factor

We use an exponential mean to derive the behavior

history from current behavior according to equation

GPPOh = h * GPPOh -t (1 – h)* GPPO

Combining state and history yields the final prediction

equation.

ActGarb = GPPOh * ~ PO(P)

p=l

By varying h from 1.0 to 0.0, the heuristic changes

from FGS/HB to FGS/CB. The FGS/HB heuristic is

very inexpensive to compute because all that is required

to implement it is a single value to record the history

and counters to maintain a count of the number of

pointer overwrites to each partition (also necessary for

the UPDATEDPOINTER partition selection policy).

3 Evaluation Method

In this section, we describe the lmethod we use to evalu-

ate the collection rate policies presented in the previous

section, In particular, we describe the complete garbage

collection algorithm into which the collection rate poli-

cies are fit, discuss the simulation techniques used in

comparing the policies, and detail the test database and

application used to drive the experiments.

3.1 Complete Garbage Collect ion Algorithm

The collection rate policies form just a part of a com-

plete garbage collection algorithm. The partitioned col-

lection algorithm used in our experiments is described

in our previous paper [CWZ94], so we refer the reader to

that paper for details. Here we give Just a brief review

of the important aspects of that algorithm.

We use a copying garbage collector [Che70] in which

objects are relocated as a result of collection. This

allows garbage collection to not only reclaim the space

occupied by garbage but also to compact the collected

partition’s live objects for improved reference locality.

Copying is done in a breadth-first traversal from the

partition’s roots. Copying is performed transitively

from the roots until all objects are reached. Pointers

leaving the collected partition are not traversed.

In our work, we decouple the issue of when to grow the

database from the issue of when to collect. In particular,

if an allocation is requested and there is insufficient free

space anywhere in the current set of partitions, a new

partition is simply added. Lack of free space never

causes a garbage collection to occur, as is often done

in programming language garbage collection.

We chose the 1/0 buffer size to be the same as

the size of the partitions. We did this because a

buffer significantly smaller than a partition may cause a

garbage collector to perform an excessive number of 1/0

operations, while a much larger buffer could overwhelm

any improved reference locality that resulted from the

collections. In our experiments, the buffer size was set

to 12 8-kilobyte pages.

3.2 Simulation Environment

Our simulation system mimics the physical and logical

structure of the database implementation being mea-

sured. Traces of database application events (e.g., ob-

ject creations, accesses, modifications) are used to drive

the simulations; details appear in [CWZ93]. For the

work described here, we use traces derived from the

007 benchmark database [CDN93]. Details of the test

database are provided in Section 3.3.

Because we are concerned with the relative perfor-

mance of collection rate polices, we assume simple mech-

anisms for concurrency control and recovery. In partic-

ular, we make the simplifying assumptions that the en-

tire database is locked while collection is performed, and

that logging for recovery is not supported. Clearly, more

sophisticated mechanisms must be provided in actual

implementations; proposals for such mechanisms are

discussed elsewhere [AFG95, KLW89, KW93, YNY94].

We evaluate the performance of the policies based on

multiple simulation runs that differ only in the initial

random number seed. In our results, we present the

mean of the values over time. Each simulation run

experiences a cold-start of the database. We do not,

however, want to include the cold-start behavior in

the calculation of means. Therefore, we isolate the

preamble to the significant part of a run, keeping the

preamble as short as possible by using exponentially

decreasing knowledge from an oracle. Mean values

are then only calculated for the significant part of

simulations. Preamble lengths range from 10 to 30

collections, depending on the simulation parameters,

but usually were closer to 10 than to 30. For the time-

varying results shown, preambles are 10 collections.

3.3 Test Database Structure

The test database used in our measurements is the 007

benchmark [CDN93], which was also used by Yong,

Naughton, and Yu in their work on garbage collec-

tion [YNY94]. Table 1 shows how the characteristics of

our Small’ 007 database that we measured compares

to the Small database used by Yong, Naughton, and

Yu, and described in [CDN93]. Given these parameters,

382

Parameter I Small’ I Small 1

NumAtomicPerComp 20 20
NumConnPerAtomi~ 3/6/9 I 3/6/9
DocumentSize (bytes) 2000 2000
ManualSize (kby~es) ‘ 100 100

NumCom~PerModule 150 500

NumAssmPerAssm 3 3

NumAssmLevels 6 7

F NumCompper&sm 3 31
NumMod~les 1 1

Figure 3: Example of the 007 Database Structure.

the test database ranges from approximately 3.7 to 7.9

megabytes in size. This range allows us to run the nu-

merous simulations required to understand the repeata-

bility of our results. We have also experimented with

applications running on a database up to 17 megabytes
in size and have observed behavior consistent with the

results reported in Section 4.

Figure 3 is a depiction of the structure of the

007 database as it appears at some point during

the execution of an example trace. The top level

of the database is a tree hierarchy that leads to a

number of composite part objects. Composite parts

are composed of atomic parts and their connections,

which are subordinate to the composite part. These

atomic parts are highly interconnected, with an average

connectivity of three. The connections highlighted in

the figure, together with their associated atomic part

and connection objects, form an object cluster that can

be detached from the rest of the graph by overwriting

just six pointers.

3.4 Test Application Behavior

Figure 2 shows the sequence of phases making up the

test application. These are essentially the same phases

used by Yong, Naughton, and Yu. The first phase,

Gen DB, generates an initial database of a particular

connectivity. The second phase, Reorgl, deletes half

the atomic parts and then reinserts them. The third

phase, Traverse, is a read-only, depth-first traversal over

all the atomic parts, Finally, the fourth phase, Reorg2,

again deletes half the atomic parts and then reinserts

them, Unlike the similar Reorgl, the atomic parts are

reinserted in such a way as to break any clustering of

atomic parts for a given composite part.

One difference from Yong, Naughton, and Yu in our

use of the application is that our second and third

phases are reversed. We did this in order to cause

more disruption in the behavior of the application, since

our goal is to test the accuracy and responsiveness to

changes in application behavior. By separating the

two reorganizations in our sequence, we create greater

differences in phase transition. Another difference in

our test application is that the original Reorg2 deleted

all, rather than half, of the atomic parts. We made this

change so that the two reorganizations would perform

approximately the same amount of work.

4 Results

We now present the simulation results for the SAIO and

SAGA collection rate policies, including the garbage

estimation heuristics needed by the SAGA policy. We

first investigate the effectiveness of the policies at

meeting a range of user-requested settings. We then

show that our collection rate policies work in databases

of varying connectivities.

4.1 Accuracy and Responsiveness

In the results presented, each data point shows the mean

of 10 runs, with the connectivity between atomic parts

(i.e., NumConnPerAtomic) set to 3. The means shown

are computed as the average sampled at each database

event (i.e., object creation, access, or modification).

Sampling at each event represents an approximation of

a uniform sample, given the assumption of an active

workload, The figures present error bars indicating the

minimum and maximum means over the 10 runs. In

many instances the error bars are hard to distinguish,

because the range of errors is negligible.

4.1.1 SAIO Policy

Figure 4 shows the accuracy of the SAIO policy over

a range of requested 1/0 percentages. By accuracy,

in this case, we mean how well the policy is able to

achieve the parameter setting SAIO.Frac provided by

the user. Clearly, the SAIO policy is very accurate at

controlling the garbage collection 1/0 percentage. This

high accuracy comes about for three reasons. First,

the control algorithm is correct, as our results show.
Second, it is very effective if the input data given to it
are accurate. In the case of 1/0 operations, the data are

exact because they can be measured directly, Third,

the assumptions made by the algorithm are valid. In

383

SAIO (~1,(=0)

30 I I 1 I I . . .
. . .

SAIO I++
,.. .

25 -

& 20

E

~
15 -

0G
z
: 10 -
<

5 -

...
0 .“’

I ! 1 I {

() 5 1() Is 20 25 30

Requested 1/0 Percenwge

Figure 4: Effectiveness of SAIO Policy as a Function of

the Requested 1/0 Percentage.

particular, for the SAIO policy, we assume that the

number of 1/0 operations from one collection to the

next remains fairly constant. While this assumption

breaks down occasionally (i.e., during phase changes in

the application), overall it appears to hold.

The figure shows that at the highest 1/0 percentages,

the policy results in slightly more 1/0 operations than

requested, and there is more variance among runs.

The extra 1/0 operations result when the primary

SAIO assumption breaks down. This breakdown

occurs more often at higher percentages because more

collections are performed, To understand why the

actual 1/0 percentage is higher than requested, consider

the following scenario. Suppose the first, second, and

third collections resulted in 100, 50, and 100 1/0

operations, respectively. After the first collection, the

assumption would lead us to predict that the next

collection would require 100 1/0 operations, which

would result in a 200910 error (100/50). For the third

collection, the policy would predict 50 1/0 operations,

and the error would be 50?Z0 (50/100). As a result,

the errors do not cancel ((200+50)/2=125), which

causes the actual 1/0 percentage to drift above the

requested percentage. Note that this happens only

in extreme cases—in practice, such a high percentage

would probably never be requested by the user.

In Figure 4 the ch~~~ parameter has been set to O,

which means that no history is used to compute the

next collection interval. As a result, the policy should

be highly responsive to changes in the application

behavior. In fact, we simulated the entire range of

1/0 percentages at both extremes (i.e., c~i$t = O and

ch~~t = co), and found that for the 007 application

the use of any amount of history makes little difference

with respect to the accuracy of the policy. However,

expanding the history does reduce the error seen at high

1/0 percentages because the error would be exposed

SAGA

35 ! $, I 1 I
. . . .

. . .

30 - macle w
.. ..

FGS/HB t-++

CGS/CB D I
~ 25

5

& 20

$,.*
; 15 ,.-
0
%
: 10 -
<

5 -

.,.
0 F 1 1 I 1 1

0 5 10 15 20 25 30 35

RequestedGarbagePercentage

Figure 5: Effectiveness of SAGA Policy as a Function

of the Requested Garbage Percentage.

to the control algorithm, which could then respond

to eliminate it. At ch~,~ = O, the control algorithm

does not use misprediction information from previous

collections, and thus cannot respond as accurately,

While the use of history information makes little

difference in the 007 application, if the assumption

that A GCIO = CurrGCIO is violated more often in

other applications, the history parameter can be used

to ameliorate the impact,

4.1.2 SAGA Policy

Figure 5 shows the accuracy of the SAGA policy over a

range of requested garbage percentages. Here accuracy

means how well the policy is able to achieve the pa-

rameter setting SA GA-Frac provided by the user. Re-

call that the SAGA policy, unlike the SAIO policy, uses

estimated information, and that these estimates come

from either the CGS/CB or the FGS/HB heuristics. To

evaluate the SAGA policy independent of the accuracy

of the heuristics, we include results obtained using an

impractical-to-implement oracle, which knows exactly

how much garbage is in the database at each collection.

The figure shows that the SAGA policy using the

oracle is extremely accurate, such that the line is

difficult to distinguish from perfect accuracy. This

result confirms two things. First, the control algorithm

is correct and, second, the assumptions made in the

algorithm are valid for this application. In particular,

the assumptions are that successive collections collect

approximately the same amount of garbage, and that

the database size does not change appreciably between

successive collections. The first assumption is further

confirmed by results presented below.

Figure 5 also shows the results for instances of the

SAGA policy using the CGS/CB and FGS/HB heuris-

tics. As the figure shows, the CGS/CB heuristic is

quite poor at achieving the requested garbage percent-

age, while the FGS/HB policy is much better. Note that

384

the error bars, especially for the FGS/HB heuristic, are

very narrow. The CGS/CB heuristic shows larger error

bars because the control algorithm in its case behaves

much more erratically.

We now examine in detail why these heuristics differ

in their accuracy and variance. In addition, we examine

why the FGS/HB policy shows a systematic variation

of a small amount of inaccuracy (i.e., a “bump”).

Figures 6a and 6b show the time-varying behavior of

CGS/CB and FGS/HB. In these figures, the requested

garbage percentage is fixed at 10’%. The figures show

the target, actual, and estimated garbage percentage in

the database as a function of the number of collections

performed. The number of collections performed when

using each heuristic differs because the heuristic controls

the rate of collection. Note that because the SAGA

policy measures time in pointer overwrites and Traverse

is a read-only phase, “time” does not progress between

the end of Reorgl and the beginning of Reorg2. This

makes sense because no garbage can be created during

a read-only phase.

As Figure 6a clearly shows, the CGS/CB heuristic

exhibits widely varying estimates of the garbage per-

centage, and a significant overestimation of the actual

amount of garbage in the database. This behavior re-

sults directly from the nature of the heuristic, which

assumes that information gained from the collection of

the current partition is representative of all the parti-

tions in the database. This assumption fails because

the partition selection policy employed (i.e., UPDATED-

POINTER [C WZ94]) is effective at finding a partition

with more than an average amount of garbage. If the

partition selection policy used was likely to find a par-

tition with only an average amount of garbage (e.g., it

piclied a random partition to collect), then the CGS/CB

heuristic would provide a more accurate estimate. Note

also that CGS/CB uses only the current behavior (i.e.,

information from the current collection) to estilmate

the garbage percent age in the database. As a result,

its garbage percentage estimates can vary dramatically

from collection to collection, as the figure clearly shows.

On the other hand, FGS/HB shows a consistently

accurate estimate of the percentage of garbage in the

database, even when the application behavior changes

(e.g., from Reorgl to Traverse to Reorg2 at the 25th

collection). This accuracy results from its use of

fine grain state in the form of the number of pointer

overwrites, which has been shown to be highly related

to garbage creation [CWZ94]. There is also significantly

less variation in the garbage estimation of the FGS/HB

heuristic because of its use of historical information.

Figure 7a shows the sensitivity of the FGS/HB

heuristic to changes in the history parameter, h,

discussed in Section 2.4. The responsiveness of the

heuristic is best understood in the context of changes

in the database application behavior. The figure

reflects two distinct behavior changes in the application.

These changes occur at the startup of the application,

when the database is generated, and at the transition

between the two database reorganizations (occurring at

collection number 9 in the top graph). How responsive

the heuristic is to changes depends on the amount of

history it uses. In the case of 95% history, we see

that the heuristic is very slow at adapting to changes

in the application behavior, resulting in large swings

in the estimated garbage percentage and significant

errors. By the 60th collection, however, the 95% history

shows relatively stable and accurate estimation. On

the other hand, with only 50% history, we see that the

heuristic is very responsive to the application changes,

but it develops systematic inaccuracies as a result. In

particular, note that after 40 collections the heuristic

develops an oscillation that results entirely from the

mathematics of the control algorithm. The specific

problem is caused by a breakdown in the SAGA policy

assumption that the computed derivative, Tot Garb’ (t),

is accurate. In practice, we have used 80~0 history with

success in this application.

Figure 7b shows different aspects of the FGS/HB

heuristic as a function of the number of collections. In

these graphs, the requested garbage percentage is 10%

and the history parameter in FGS/HB is set to 80Y0.

The figure shows how the collection rate, collection

yield, and garbage percentage vary over time. In all

of these graphs, the transition from Reorgl to Traverse

to Reorg2 occurs at the 25th collection.

Looking at the collection rate as a function of time in

the top graph of Figure 7b, we see that the cold-start

of the database causes initially high rates. After this

initial transient, the rate settles to approximately one

collection per 200 overwrites. Finally, at the Reorgl-

Traverse-Reorg2 transition, the rate becomes less stable,

but averages to an overall lower value.

The collection yield, shown in the middle graph of

Figure 7b, indicates how the amount of garbage col-

lected differs during different phases of the application.

In this graph, there are clear differences in the collection

yield caused by the two database reorganization phases.

In particular, Reorg2 produces less garbage per parti-

tion as it executes. Note that the transition between

reorganization phases occurs at the 25th collection, but

partitions containing garbage from Reorgl remain in the

database until approximately the 35th collection. This

behavior also indicates why the collection rate does not

immediately decrease after the 25th collection.

The bottom graph of Figure 7b indicates the effec-

tiveness of the garbage estimation heuristic during the

different phases of the application. (This graph dupli-

cates the middle graph of Figure 7a, but at a different

scale.) Note that based on this figure alone, one might

385

60 ~
CGS/CB

I 60,
FGS/HB

I

50

I

target —
actual . ..

40 estimated +-
1

*$

ok+’ , (,

0 20 40 60 80 100
Number of Collections

(a)

Number of Collections

(b)

Figure 6: Time-varying Behavior of Garbage Estimation in the CGS/CB (a) and FGS/HB (b) Heuristics.

FGS/HB History-parameter Study
30, 1

+’

Oof’
20 40 60 80 100 120

Number of Collections

30

25 -
target —

80% history actual ---

20 - estimated +-

15 -

?+
4
9+

o;
o 20 40 60 80 100 120

Number of Collections

; r

target —
5070 history actual . ..

20 estimated +-

oo~20
Number of Collections

(a)

FGS/HB (10% Garbage)
1000

800

600

400

200

0
0 20 40 60 80 100

Number of Collections

50<-

30 -

20 -

10 -

0.,
100

Number of Collections

20

$
~ 15 -

g

al
~ ‘,’
~ 5 <y target —

actual . ..
3< (: estimated +-

of’
o 20 40 60 80 100

Number of Collections

(b)

Figure 7: History Parameter Study of the FGS/HB Heuristic.

386

SAIO (q,,., = O)

Connectivity 6
30, 1

SAGA

Connectlv]ty 6
a 35
.%
= 30
~ 25

/

..e--.~

~ 20
.#”-’..

....’.
=% 15 ,,,,,~

../’g 10 ..,’ .
%J5 *“

4 00‘:;o &0253035
Requested Garbage Percentage

Connectivity 9
~ 3.5

!: ~!

$ 00.-”:l~
15 20 25 30 35

Requested Garbage Percentage

oracle -
FGSIHB A.

COnnectivlty 9
30 ~ 1

~// /

15 20 25 30
Requested 1/0 Percentage

SA1O _
I CGS/CB .

Figure 8: Sensitivity y of Policy Accuracy to Database Connectivity.

conclude that the average of the actual garbage in the

database was somewhat higher than the average pre-

sented in Figure 5. This observation also relates to the

systematic “bump” that can be observed in Figure 5.

The behavior results from the way in which the average

garbage percentage is computed. As mentioned, the

garbage percentage is sampled each time an applica-

tion event occurs. As a result, anumber of samples are

included that occur during the Traverse phase (at the

25th collection). Thus, theparticular garbage percent-

age during that period has an impact on the computed

average. As the requested garbage percentages changes,

there is a systematic shift in the startup curve shown in

the bottom graph, resulting in a different point in the

curve occurring during Traverse, This systematic error

is also present, to differing degrees, when we consider

databases with higher connectivity, as discussed below.

4.2 Sensitivity to Database Connectivity

Figure 8 shows the sensitivity of the SAIO and SAGA

policies to changes in the connectivity of the database.

In the graphs presented, each data point shows the re-

sults from one run of the 007 database with the connec-

tivity among atomic parts (i.e., NumConnPerAtomic)

set to 6 and 9. The results in the graphs are consistent

with those in figures 4 and 5, where the connectivity is

set to 3. This supports the assertion that the SAIO and

SAGA polices are effective across a variety of database

connectivities.

5 Summary

One important aspect of garbage collection in object

clatabases is determining how often to collect. Collect-

ing too often results in excessive garbage collection 1/0

overhead and collecting too infrequently results in large

amounts of garbage in the database. The proper col-

lection rate is a function of user preferences, database

structure, application behavior, and database size. Fur-

thermore, because applications can exhibit distinctly

different phases, no particular fixed collection rate can

provide the desired performance. No previous work has

concentrated on the problem of controlling the collec-

tion rate in object database garbage collection.

In this paper, we have proposed and evaluated two

semi-automatic, self-adaptive collection rate policies.

These policies are guided by user input about what

level of performance is desired. In particular, the semi-

automatic 1/0 (SAIO) policy attempts to achieve a

specified level of garbage collection 1/0 operations as

a percentage of total 1/0 operations, and the semi-

automatic garbage (SAGA) policy attempts to achieve a

specified percentage of garbage in the database. These

policies are self-adaptive in that they dynamically re-

spond to temporal changes in the application behavior.

The SAIO policy uses exact information about 1/0

operation counts that is typically gathered for other

purposes by the ODBMS. On the other hand, the SAGA

policy must use heuristics to estimate the amount of

garbage in the database because determining it exactly

is prohibitive. We have explored two simple and

practical heuristics for this purpose.

Using the 007 database and an application first

used by Yong, Naughton, and Yu, we show that our

policies are accurate at achieving a wide range of user-

specified 1/0 and garbage percentage settings. The

policies are also responsive to phase changes in the 007

387

application. We also show that one of our garbage

estimation heuristics, FGS/HB, was effective for this

application, Our current results suggest that pursuing

further investigations of these policies is worthwhile.

First, we intend to better understand the legitimacy

of our assumptions. In particular, it will be important

to find out whether commercial object databases and

applications violate these assumptions, and if so, what

impact this has on the effectiveness of the policies.

Another direction for future work is to more tightly

couple the two policies with respect to achieving a

global optimum. In particular, the SAIO policy could

use information provided by the SAGA heuristics to

determine the cost-effectiveness of the 1/0 operations

being performed, and adjusting itself accordingly.

We also intend to place our policies in a broader

context. In the current studies, we have assumed

an active database workload. Our policies define a

particular interval at which to do the next collection.

If it appears advantageous to perform collection before

the interval expires (e.g., the application workload drops

to a quiescent state), then such opportunism can be

considered. Semi-automatic, self-adaptive policies are

well equipped to take advantage of such opportunism.

References

[AFG95]

[Bjo93]

[But87]

[CA86]

[Cat93]

[CDN93]

L. Amsaleg, M. Franklin, and O. Gruber. Ef-

ficient incremental garbage collection for client-

server object database systems. In Proceedings

of the 2ist VLDB Conference, Zurich, Switzer-

land, September 1995.

Anders Bjornerstedt. Secondary Storage

Garbage Collcctton for Decentralwed Ob~ect-

Based Systems. PhD thesis, Stockholm Univer-

sity, Dept. of Comp. Sys. Sciences, Royal Inst.

of Tech. and Stockholm Univ., Kistaj Sweden,

1993. Also appears as Systems Dev. and AI Lab.

Report No. 77.

Margaret H. Butler. Storage reclamation in

object-oriented database systems. In Proceed-

ings of the ACM SIGMOD International Con-

ference on the Management of Data, pages -110-

423, San Francisco, CA, 1987.

Jack Campin and Malcolm Atkinson. A per-

sistent store garbage collector with statistical

facilities. Persistent Programming Reserarch

Report 29, Department of Computing Science,

University of Glasgow, Glasgow, Scotland, 1986.

R.G. G. Cattell, editor. The Object Database

Standard: ODMG-W. Morgan Kaufrnann,

1993.

Michael J. Carey, David J. DeWitt, and Jef-

frey F. Naughton. The 007 benchmark. In

Proceed~ngs of the ACM SIGMOD International

Conference on the Management of Data, pages

12–21, Washington, DC, June 1993.

[Che70]

[Cor94]

[CWZ93]

[CWZ94]

[KLW89]

[KW93]

[Mat85]

[ML94]

[Wi192]

C. J. Cheney. A nonrecursive list compacting

algorithm. Comm. of the ACM, 13(11):677–678,

November 1970.

Servio Corporation. Announcing GemStone

version 4.o. Product literature, 1994.

Jonathan Cook, Alexander Wolf, and Benjamin

Zorn. The design of a simulation system for

persistent object storage management. Techni-

cal Report CU-CS-647-93, Department of Com-

puter Science, University of Colorado, Boulder,

CO, March 1993.

Jonathan Cook, Alexander Wolf, and Benjamin

Zorn. Partition selection policies in object

database garbage collection. In Proceedings of

the ACM SIGMOD International Conference

on the Management of Data, pages 371–382,

Minneapolis, MN, March 1994.

Elliot Kolodner, Barbara Liskov, and William

Weihl. Atomic garbage collection: Managing a

stable heap. In Proceedings of the ACM SIG-

MOD Internahonai Conference on the Manage-

ment of Data, pages 15–25, Portland, OR, June

1989.

Elliot Kolodner and William Weihl. At omit

incremental garbage collection and recovery

for a large stable heap. In Proceedings of

the ACM SIGMOD International Conference

on the Management of Data, pages 177–186,

Washington, DC, June 1993.

David C. J. Matthews. Poly manual. SIGPLAN

Noihces, 20(9), September 1985.

Umesh Maheshwari and Barbara Liskov. Fault-

tolerant distributed garbage collection in a

client-server, object-oriented database. In Pro-

ceedings of the Parallel and Distributed Infor-

mation Systems, pages 239–248, Austin, TX,

September 1994.

Paul R. Wilson. Uniprocessor garbage collection

techniques. In Proceedings of the International

Workshop on Memory Management, St. Malo,

France, September 1992.

[WJMK94] Jr. William J. McIver and Roger King. Self-

adaptive, on-line reclustering of complex object

data. In Proceedings of the ACM SIGMOD

International Conference on the Management of

Data, pages 407-418, Minneapolis, MN, March

1994.

[YNY94] Voon-Fee Yong, Jeffrey Naughton, and Jie-Bing

Yu. Storage reclamation and reorganization in

client-server persistent object stores. In Proc,

of the 10th International Conference on Data

Eng!neerzng, pages 120-131, February 1994.

388

