
An Open Abstract-Object Storage System

Stephen Blott Lukas Relly Hans-Jorg Schek

Institute for Information Systems, ETH-Zentrum, 8092-Zurich, Switzerland

E-mail: {blott,relly,schek} r@inf.ethz.ch

Abstract

Database systems must become more open to retain their

relevance as a technology of choice and necessity. Openness

implies not ordy databases exporting their data, but also

exporting their services. This is as true in classical

application areas as in non-classical (G IS, multimedia,

design, etc).

This paper addresses the problem of exporting storage-

management services of indexing, replication and basic query

processing. We describe an abstract-object storage model

which provides the basic mechanism, ‘liken ess’, through

which these services are applied uniformly to internally-

stored, internally-defied data, and to externally-stored,

externally-defined data. Managing external data requires

the coupling of external operations to the database system.

We discuss the interfaces and protocols required of these

to achieve correct resource management and admit efficient

realisation. Throughout, we demonstrate our solutions in

the area of semi-structured file management; in our case,

geospatial met adata files.

1 Introduction

Database systems must evolve from closed data vaults

to open data services. Today’s systems require all

data to be owned by the DBMS. Data is accessed only

through query-language and programming interfaces.

Functionality not supported through these must be

implemented at the application level. Much work

on extensible database systems aims to extend the

functionality of these interfaces.

We make here, however, also a complementary ob-

servation: that the functionality of a database system is

only available over objects owned by the database sys-

tem. This motivates us to consider how that function-

ality can be exported, and a database system provide

database services over data of external repositories. For

Permission to make digital~ard mpy of part or all of this work for personal
or classroom use IS granted without fee provided that capies are not made
or distributed for profit or commercial advantage, the cmpyright notiea, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGMOD ’966196 Montreal, Canada
0 1996 ACM 0-89791 -794 -4/96/0006.. .$3.50

the future, we conceive even of database systems not

necessarily owning data, but rather providing only these

database services.

We believe that database systems must become more

flexible, coexisting cohesively with other repositories.

Database management systems should become bro-

kers of information, coordinators of dependencies, and

providers of database services. These services then

become the tools of software engineers in developing

(distributed) applications over heterogeneous (existing)

components.

By database functionality we mean primarily the fol-

lowing key services: query processing, query optimisa-

tion, indexing and replication for improved query and

update performance, and transactions for the manage-

ment of concurrent usage and recovery. In the extreme,

we envisage a database system exporting only these ser-

vices, and managing only metadata about the reposito-

ries it serves: how to manipulate their objects, who is

authorised to access them, and what dependencies exist

among them.

We feel our vision is consistent with research and

commercial directions in general. Object exchange

environments such as Corba and Ole/Com [Obj95,

Ber95] provide basic mechanisms for passing data

and operations between repositories and applications.

IBM’s Garlic [CHP+ 95] provides access to data, the

individual parts of which are distributed across a

number of other repositories. TP-monitors and other

middleware products [Obe94] provide coordination and

transaction management without the data-management

functionality of a fully-fledged database system. An

earth-science database manages relationships between

objects (satellite images) and schedules their processing,

without itself owning the images [B S95].

In this paper we focus on the storage-management

aspects of a ‘data-less’ DBMS. The functionality we

consider is indexing, partitioning, replication, and basic

query-processing. Figure 1 illustrates our approach in

the case of the external repository being a file system.

Key points are the following. Forward Compatibil-

ity: existing, external applications continue to access

330



I!!!!zJ
Read

Emling

,,:, “...+..
-

‘2&*
9: New

Cbpls

External Repository Database Storage System

(File System) (Concert)

Figure 1: Overall Architectural Solution

existing, external data. Querying External Data:

new applications exploit the ‘value-added’ functionality

of the database system to query external data. For effi-

ciency, this requires indexes and replication of key data

parts within the database system, External Physi-

cal Design: physical-design strategies of the database

system are applied to external data within their ex-

ternal repositories. This is illustrated by the newly-

created small ‘files’ in Figure 1. We also consider using

external services to augment the functionality of the

database system, although this is not discussed further

here [SW93].

The current approach extends our earlier DASDBS

work [SPSW90]. We combine the techniques of com-

plex objects and externally-defined types to develop a

storage model for structured, abstract objects. This is

embodied in our newer CONCERT prototype, a short

report on which has been published previously in Ger-

man [RB95]. Our work also has similarities with other

ADT approaches, and comparison with that of Illustra

is provided below [Sto86, 11195].

Our contribution is the following:

● We introduce mechanisms for indexing and querying

external data, and for external physical design over

the data of external repositories.

● We int reduce a simple mechanism, likeness to known
types, which provides a more uniform treatment

of ADTs in databases through a surprisingly small

number of concepts.

● We discuss the impact on internal database archi-

tecture, and give a practical demonstration of our

approach through an extended example.

We do not address here the important issue of trans-

action management, but refer rather to our related

work on coordination through agents in CIM environ-

ments [N WM+ 94], and also on transaction management

in layered systems [WS92]. We also do not address join

queries.

This paper is structured as follows. The next section

describes our extended example in some detail. Sec-

tion 3 presents our abstract-object storage model, and

Section 4 discusses the realisation of our example and

the new functionality. Section 5 investigates the im-

pact of our storage model on the internal architecture of

CONCERT, our prototype system. Section 6 concludes.

2 Example: Geospatial Metadata Files

Our extended example is based on semi-structured files.

Examples of such are electronic mail, network news,

14m and HTML; in our case we chose geospatial meta-

data files [FGD94]. While such semi-structured data is

well-suited to database processing, there are only a few

examples of this technology being applied or applica-

ble. Rufus [SLS+93] addresses document management

only, emphasizing an object-oriented data model for

heterogeneous document collections. SHORE [CDF+94]

and OdeFS [GJR94] propose mechanisms for export-

ing object-oriented data through file-system interfaces

only, but not services. The approach of Abiteboul et

ai [ACM93] is more closely related to our own. They

also restrict themselves, however, to querying and up-

dating files, addressing neither the more general context

of other repositories, nor physical design.

An adapted extract of an FGDC metadata file is

given in Figure 2. It is semi-structured data includ-

ing textual representations of scalar and spatial val-

ues. It is of complex, nested structure. The compos-

ite cit at ion~nf ormat ion occurs firstly for the data

set at hand, and recurs for the Lineage of that data

set; similarly, the composite Browse_Graphic is a list of

components. Some composites, however, have a higher

meaning; for example, the Bounding-Coordinates rep

resent a single spatial object. In full generality, arbi-

trary polygons can be represented.

We developed a metadata extension for our storage

system CONCERT. As illustrated in Figure 1, a

prerequisite was forward compatibility; that is, that

existing applications, scripts and browsers can be

ret ained. This implies that the file-system interface and

data representation must be retained. Our approach is

like Abiteboul et al [ACM93] and Rufus [SLS+93], and

unlike others [CDF+94, GJR94], in that the primary

repository remains the external repository.

We show how structured querying mechanisms can be

applied to such external data. A prerequisite to eficient

processing is that indexes and replication of key data

parts be maintained within the database system.

Example queries are illustrated in Figure 3. We use

an extended SQL-like syntax for explanation purposes;

the actual CONCERT internal syntax is different. The

first example illustrates selection and projection; it re-

331



Identification_Information:

Citation:

Citation-Information:

Originator: Schweitzer, Peter N.

Publication-Date: 1993

Title: Modern Average Global Sea-Surface Temperature

Online.Linkage: http://geochange.er.usgs.gov/pub/magsst/magsst .html

Description:

Abstract:

The data contained in this data set are derived from NDAA Advanced

High Resolution Radiometer Multichannel Sea Surface Temperature

data (AVHRR MCSST), which are obtainable from the Distributed Active

Archive Center at the Jet Propulsion Laboratory (JPL) . . .

Spatial_Domain:

Bounding_Coordinates:

West-Bounding.Coordinate: -180.0

East_Bounding_Coordinate: 180.0

North.Bounding_Coordinate: 72.0

South-Bounding-Coordinate: -66.0

Browse_Graphic:

Browse-Graphic-File_Name: m-augna.gif

Browse.Graphic-File_Type: GIF

Browse-Graphic:

Browse-Graphic_File_Name: m-augnae.gif

Browse-Graphic-File_Type: GIF

Data.Quality_Information:

Completeness-Report:

Included in the data set is a table enumerating the days for which

sea-surface temperature data were available in the source material.

In general, images were available every week during the time period

from 811001 through 891231.

Lineage:

Source-Information:

Source-Citation:

Citation_Informat ion:

Originator: Jet Propulsion Laboratory

Publication_Date: 1991

Title:

NOAA Advanced Very High Resolution Radiometer Multichannel

Sea Surface Temperature data set producedby the University

of Miami/Rosenstiel School of Marine and Atmospheric Science:

Spatial-Reference-Information:

Horizontal_Coordinate_System_Definition:

Geographic:

Latitude-Resolution: 0.01757812

Longitude-Resolution: 0.01757812

Geographic_Coordinate-Units: Decimal degrees

Figure2: An Adapted Extract from anFGDC Geospatial Metadata File

332



SELECT

Ident if icat ion. Informat ion

.Citation

. Citat ion.Inf ormat ion

. (Originator, Title)

FROM

Metadata-Collection MC

WHERE

MC

.Identification-Information

.Citation

.Citation-Information

.Publication-Date = ‘1993’;

SELECT

Identification-Informat ion

.Citation

.Citation-Informat ion

.Online_Lirdcage

FROM

Metadata.Collection MC

WHERE

MC

.All-Textual

LIKE ‘Xsea%temperature%’;

SELECT

Identification-Information

.Citation

.Citation-Information

.Online-Linkage

FROM

Metadata-Collection MC

WHERE

MC

.Identification-Information

.Spatial_Domain

.Bounding_Coordinates

CONTAIN ‘(5.7, 56.5)’;

Figure3: Example Geospatial Metadata Queries in an SQL-like Syntax

trieves the originators and titles of all data sets pub-

lishedin 1993. The second illustrates the useof textual

components for retrieval. A requirement forthis data is

textual search over all textual components; in Figure2,

over the Title, Abstract and CompletenessReport

components, and the recurrent Title of the Lineage,

All_Textualis a computed attribute aggregating these

components. The third query illustrates aspatialselec-

tion, which might be well supported by a spatial index.

We show also how materialised views can be main-

tained by the database system in external repositories.

For example, consider the materialised view containing

the Originator and Title of data sets published in

1993 (Figure 3,1eft). We show how such a materialised

view can be maintained in the external repository and

in the external representation. That is, the view is ac-

cessible to existing applications, scripts and browsers.

This is illustrated by the small ‘files’ in the external

repository of Figure 1.

3 Approach: Abstract Objects

As a vehicle for the investigation of open storage
systems, we have developed a prototype system named

CONCERT. We now describe CONCERT’S abstract-

object model. CONCERT’S key mechanism for coupling

knowledge about external objects to the database

system is ‘likeness to known types’.

CONcERTsupports exactlysixbuilt-in, basicandcon-

structed types: UNKNOWN,SCALAR, RECORD,LIST, UNION

and CONTINUUM. A summaryof the basic operations over

these types is given in Figure5.

3.1 Unknown Types

UNKNOWN is a binary, uninterpreted-object type. The

only operations are those for copying. These are

discussed in Section 5.

3.2 Scalar Types

Almost all database systems provide built-in scalar

types including integers, floats, dates and times. We

now show, as others have before [Sto86, WSSH88, 11195],

hownew scalar types are accommodated.

Consider the value ‘1993’, a textual representation of
a scalar value. If compare and hashable operations are

available over such objects, then existing access struc-

tures can be applied, aa can basic query-optimisation

and -evaluation techniques. Wecanexpress this another

way. Given scalar operations over anew scalar type, its

objects can be managed like those of the known type

SCALAR. Wedeclare this asgivenin Figure4, (a). With

this declaration and appropriate functions implement-

ing the required operations, textual year values such as

‘i993’are managed exactly as internal scalars are. For

example, they can form the basis of selections, or be

the keys of hash-based or tree-based access structures.

TEXT_YEAR_COMPAREand TEXT.YEARHASH are the names

ofexternally-implemented functions; detailed discussion

of which is the topic of Section 5.

3.3 Record Types

CONCERT provides a built-in record type for storing and

manipulating structured objects. Our implementation

is standard. The basic operations are given in Figure 5.

We now repeat the argumentation used above for

scalars, this time for records. CONCERT knows how to

manage record values, but itself provides only a single

implementation. However, given record operations over

a new record type, its objects can be managed like those
of the known type RECORD. We illustrate this with our
metadata example. At the top level, our file consists of
the three components:

Ident if i cat ion_Inf ormat ion,

Data-Qual ity-Inf ormat ion,

Spat ial-Ref erence_Inf ormation

These we consider to be the three components of an

333



create type TEXT.YEAR create type META_DATA create type META.DATA.FILE

like SCALAR like RECORD()

with ( with (

compare = TEXT_YEAR_COMPARE extract = MD_EXTRACT

hashable = TEXT-YEAR-HASH create = MD-CREATE

); project = MD-PROJECT

compose = MD-COMPOSE

(a)
);

(b)

Figure4: Declarations ofNew Types for Geospatial Metadata

abstract record. In turn, the first of these itself consists

ofthe four sub-components:

Citation, Description, Spatial-Domain,

Bronse.Graphics

These we also considerto be the four components ofa

(nested) abstract record. The full version has seven and

fourteen components to these types, respectively.

Our approach, therefore, is to apply the standard

techniques ofrecord storage and processing toour meta-

data files by treating these as abstract, externally-

defined records. In Concert, the operations required

over record types are: extract and create to manip-

ulate records’ components, and project and compose

to generate new records from old. We declare our new

type as given in Figure4, (b), Weassume also similar

RECORD-like types for all the composite componentsof

met ad at a files.

3.4 List Types

CONCERT provides a list type for variable-sized collec-

tions of homogeneous objects. Together, records and

lists provide astorage model as expressive as a nested-

relational model [SPSW90, DKA+86]. We support op-

erations for both element-at-a-time and list-at-a-time

processing; see Figure5.

Ourargumentation is the same: our database system

knows how to manage lists, and therefore knows

how to manage abstract lists. The Browse_Graphic

components of Figure 2 provide an example of this.

Such lists consist of a variable number of uniformly-

typed objects. Their objects are managed like those

of the known type LIST. LIST-like types also allow the

incorporation of external repositories with set-oriented

data and interfaces.

3.5 Union Types

Union types support variants. Their operations allow

determination, extraction and creation of variants.

The Graphical Xoordinate_Units component of Fig-

ure 2 illustrates an abstract union. A restricted num-

ber of values are valid for this component: ‘Decimal

degrees’, ’Deci.mal minutes’, ’Decimal seconds’, etc.

These are managed

like RECORD(META-DATA)

with (

extract = MDF_EXTRACT

create = MDF-CREATE

project = MDF-PROJECT

compose = MDF-COMPOSE
\.
),

(c)

within CONCERT

like the objects of the known type

UNION. The necessary operations are summarised in Fig-

ure 5. In an earlier CONCERT extension [BV95], unions

were used to accommodate syntactically-incorrect files.

3.6 Continuum Types

Our treatment of extended objects—for example, poly-

gons, raster images, 3D models and time intervals—is

somewhat novel and deserves more detailed discussion.

The types RECORDand LIST, while they are adequate for

the represent ation of extended objects, are inadequate

for expressing the semantically-important properties of

those objects. For example, while a circle positioned in

2D space can be represented as a record of two coordi-

nate values and a radius, record operations are inade-

quate for expressing semantically-important properties

such as whether two circles intersect.

We identified a minimal set of spatial operations

which suffice for many important storage and process-

ing tasks for extended data. This led us to introduce

a new abstraction for the management of such objects,

which we name CONTINUUM. Continua provide a single

abstraction for extended objects, independent of dimen-

sionalit y. The required operations are given in Figure 5.

The abstraction is based on considering extended

objects to be point sets, abstractly, in n-dimensional

space. The part it ion operation decomposes objects

into two sup-parts: those ‘points’ satisfying a predicate,

and those not. The result is two new objects of the

same type as the original. The compose operation

is the inverse. The bound-box operation returns a

predicate which is true of all the points in the region.
If an object is entirely in one half of a partition, then

the other half will be empty. This important case,

which is necessary to trim search spaces, is detected

through the bound-box returning the predicate ‘false’.

The overlaps and contains operations are standard.

The compound component Bound ing_Coordinat es is

CONTINUUM-like in our example; more generally, these

can represent arbitrary polygons.

Our predicate language allows intersection or contain-

ment in arbitrary-dimensional, axes-aligned boxes to be



T

T

T

T

T

T

like UNKNOWN:

(Copying operations only, see Section5)

like SCALAR:

compare :T,T -> int /+ strcmp *I

hashable : T -> int

like RECORD:

extract : TIT_l, . . . . T-n],

int-i -> T-i

create : T-i -> T[T-i]

project : T[T-1, . . . . T-n],

projection -> T[T_j, . . . . T-k]

compose : T[T-1, . . . . T-j],

T[T-j+l, . . . . T-n] -> T[T-1, . . . . T-n]

like LIST: -

is-empty : T[T~]

query : T[T’],

predicate,

projection

head : T[T’]

tail : T[T’]

ink-empty : (none)

cons : T[T’], T’

update : T[T’], int, T’
like UNION:

which : T[T-1, . . . . T_n]

extract : T[T-1, . . . . T-j]

cons T-i, int-i

like CONTINUUN:

partition : T, predicate
compose :T,T

bound-box : T

overlaps : T, predicate

contains : T, predicate

-> int /* bool */

-> T[T”]

-> T)

-> T[T’]

-> T[T’]

-> T[T’]

-> T[T’]

-> int-i

-> T-i

-> T[T-1, . . . . T-j]

-> T, T

-> T

-> predicate

-> int /* bool */

-> int /* bool */

Figure5: Operations Required over in CONCERT Types

specified. Dimensionality of objects is encoded in the

data structures of predicates. While axes alignment

is a restriction, we find it is adequate for many spa-

tial access structures and queries; for example, R-trees

are supported through bounding boxes and contain-

ment [BKSS90], clipping grid files through those and

ahso partition and compose [DS93]. The CONTINUUM

abstraction has similarities with the point-set type of

Probe [OM88] and others. It was developed, how-

ever, primarily as a generalisation of our earlier ap-

proach [DSW90, DS93]. The Illustra 2D Spatial Dat-

aBlade defines a similar interface to its 2D R-tree,

though without object de- and re-composition opera-

tions[Il194].

3.7 Summary

Our approach is to manage externally-stored, externally-

defined objects interms oftheir likeness to the known
types ofour database system. We have shown how,ab-

stractly, the structure of metadata files is equivalent to

adatabase type structure. We show, therefore, how the

internal techniques of physical design and query pro-

cessing can be applied to this external data. This re-

quires externally-implemented functions to be available

over external types, whenever internal functions would

be used for internal types. We show below how these

mechanisms allow querying of external data, and exter-

nal physical design.

4 Realisation and New Functionality

This section describes how the necessary functions were

realised in the case of our metadata example. It also

illustrates by example the new functionality of our

database extension.

4.1 Realisation with a Metadata ‘Compiler’

In general, external functions maybe realised through

those at the interface of an external repository, or

through an external library. In either case, well-defined

and typically stable interfaces are available. In our

metadata case, we had a ‘compiler’ for FGDC meta-

data available [Sch95], andthis formed the basis of our

metadata extension. Discussion of this illustrates diffi-

culties and solutions when coupling external functions

to database systems.

The metadata compiler is written in C, and the

source code is available on-line [Sch95]. It provides

functions for parsing a metadata file, building a syntax

tree over that file, and also subsequently unparsing that

syntax tree back into a file. The functions CONCERT

requires were implemented with those provided by the

‘compiler’, and also by manipulation of and navigation

within the syntax tree.

Two tasks had to be achieved for our metadata ex-

tension: firstly generating the necessary types, and sec-

ondly the necessary operations. The first was relatively

straight-forward since internal tables of the metadata

‘compiler’ described the abstract structure of a meta-

data file, The functions we then implemented fell into

three classes: those concerning the file system, those

concerning composite structure, and those concerning

attribute values.

4.1.1 File-System Functions

At the top level, we modelled a metadata file through

the type METADATAIILE, Figure 4, (c). As it has

only a single component, the important operations are

extract and create. CONCERT’S internal representa-

tion of metadata files is simply the file name, stored

as a string. The extract operation over this new type

loads the file itself into memory, and then calls a func-

tion of the metadata compiler to generate a syntax tree

over that in-memory file. The leaves of the syntax tree
reference the in-memory file.

This is illustrated in Figure 6. When evaluating the

a predicate on Publi.cationDate, CONCERT manipu-

lates objects object only through known ADT opera-

335



Figure 6: Evaluation of Predicates

tions (extract and compare, in this case). The im-

plementation of the first extraction function loads the

data from the file, and generates the syntax tree. The

create operation (when its result is flattened, see Sec-

tion 5) is the reverse: a syntax tree is unparsed into a

file.

4.1.2 Composite-Structure Functions

The operations on RECORD- and LIST-like composite

types were implemented by manipulation of and nav-

igation within the syntax tree. Because the metadat a

‘compiler’ provided tables describing valid composites

and their components, their implement ation was sur-

prisingly straight-forward.

An example is the RECORD-like METADATA type de-

scribed earlier (Figure 4, (b)). The extract operation

was implemented by navigating one-level down to the

appropriate child node in the syntax tree. The project

operation was implemented by generating a new root to

the syntax tree, whose children then reference the exist-

ing sub-trees being projected. The create and project

operations were implemented by similar manipulation of

the syntax tree.

These functions were actually implemented only once.

The same implementations were re-used for the opera-

tions over other composite types. This was possible be-

cause internal tables of the metadata compiler described

valid sub-components to each component.

4.1.3 Attribut*Values Functions

Except for UNION-like types, the functions for leaf-

nodes were generated by hand. These included scalar

types, text types and spatial types. Union types were
generated from appropriate tables of variant values
within the metadata compiler.

4.1.4 Discussion

We were lucky to have such well-structured, application-

area specific code available to us. A more elaborate ap-

proach would have been required had this not been the

case [BV95]. It is clear that only well-structured code

and interfaces can be used as shown here. Commer-

cial libraries and network services typically have such

clearly-defined interfaces.

While we implemented extract on metadata files by

loading external data into local memory, more generally

this need not be the case. Alternatives include opening

a connection to an external repository, or simply to an

external operation service. The result may be a session

identifier, and subsequent operations use this identifier

to manipulate objects remotely.

4.2 New Functionality: Querying

We now illustrate how structured queries are sup-

ported against external data. Consider again the se-

lection/projection query from Figure 3, left. For each

met adat a file, the evaluation of this query proceeds as

follows: firstly the predicate is evaluated, and if that

holds then the projection is evaluated. The predicate

is evaluated by successively applying the extract func-

tions of the five relevant RECORD-like types. For the first

type, METADATA-PILE, this loads the file and builds the

syntax tree. For subsequent types this navigates within

the syntax tree. The result is a date value, for which the

compare operation of the SCALAR-like TEXT.YEAR deter-

mines the truth of the predicate. This is all shown in

Figure 6.

The projection is evaluated by re-using the interme-

diate value of the predicate evaluation at the level of

the Cit at ion~nf ormat ion, applying the two relevant

extract operations, then the compose operation of the

cit at ion~nf ormat ion type, and finally the crest e

operations of the enclosing types in inner-most to outer-

most order. The unflattered result is a new syntax tree

with references into the Originator and Title sub-

trees of the original syntax tree. This, for each object,

is returned to higher-level software through a cursor for

further processing.

Let us now consider the case that a physical design is

applied to better support such queries. We consider the

case that each of the Originator, Public at ionDat e

and Tit le components of the Cit at ion~nf ormat ion

are separately replicated as vertical partitions within

CONCERT. Evaluation of the query need not, un-

der these circumstances, visit the external repository

at all. The predicate is evaluated by visiting the

Publicat ionDat e partition and applying the relevant

compare operation to each entry in turn. The projection

is evaluated by applying the crest e operations to the

corresponding objects of the other two partitions, then
the compose operation of the cit at ion~nf ormat ion

type, and finally the crest e operations of enclosing

types, again in inner-most to outer-most order.

We now compare this with the services of the Illustra

database system [11195]. Illustra admits new ADTs by

attaching new functions to new types. We assume

appropriate functions, similar to the extract functions

described above, have been added to Illustra. In this

case, predicate evaluation would proceed very much

as described above. While some differences exist in

336



the details of resource management, these we discuss

subsequently.

The result of an Illustra query is always an Illustra

record. There is no mechanism for generating new

objects of external representations using the internal

mechanisms of Illustra. This implies that the results

of the projection considered above cannot be handled.

Similarly, with respect to physical design, the vertical

partition supporting predicate evaluation could be

managed similarly in Illustra, however those supporting

projection evaluation cannot.

4.3 New Functionality: Physical Design

We now describe how CONCERT maintains materialised
views in external repositories. Consider again the result
of the query of the previous section (Figure 3, left). If
this, for the file in Figure 2, is flattened, then a new

metadata file is generated, containing exactly the lines:

Ident if icat ion-Inf ormat ion:

Citation:

Citation_ Information:

Originator: Schweitzer, Peter N.

Title: Modern Average Global Sea-. . .

This is the external representation of the query at

hand, in the external repository. Hence: the result of

a database query is accessible to existing applications,

scripts and browsers, which themselves know nothing of

the database’s involvement. This functionality can be

used to maintain extracts of important data subsets for

convenient browsing, or preparing metadata sets to be

shipped in the standard format, CONCERT can also use

such materialised views to process queries, if these are

to hand and likely to require less work.

We know of no other attempt to develop such func-

tionality; and we are somewhat uncertain of its applica-

bility. However, we feel it offers many opportunities.

Examples include: automatic replication of data be-

tween repositories, extending classical databases with,

say, spatial or textual functionality which they other-

wise lack, or automatically maintaining historical data

for repositories without that functionality.

5 Internals: Managing Abstract Objects

The management of abstract objects has considerable

impact on the design and internal protocols of our

abstract-object manager. We describe now some of

these issues and their solutions within CONCERT. Once

again, we illustrate this with our met adata example.

The in-memory representation of all CONCERT ob-

jects is contiguous, consisting of a memory reference,

a length, and a number of flags; we refer to such as a
memory object. The flags and their role are discussed

below. Their purpose is to allow CONCERT to control

resource usage, allocation and deallocation in the con-

text of externally-implemented functions.

A buffer manager supporting uniform addressabil-

ity across page boundaries [BKRS94] provides a uni-

form memory-object model independent of whether the

target is in normal virtual memory, or the database

buffer; it retains, however, the advantages of a tradi-

tional buffer with respect to paging decisions and coor-

dination with the recovery subsystem.

5.1 Side Effects and Auxiliary Resources

The first problem we address is that of managing aux-

iliary resources allocated as a side-effect of an external

function’s invocation, but unknown to CONCERT. The

metadata compiler generates a syntax tree as the result

of the extract operation over the METADATA-FILE type.

Only the root of the tree is known as a memory object

to CONCERT, the body of the tree is unknown, In gen-

eral, arbitrary resources may be attached to a memory

object; for example, file descriptors, open connect ions,

memory, temporary files or processes. While not all

classes of side effects can be accommodated, CONCERT

provides a protocol for the timely deallocation of such

auxiliary resources.

CONCERT knows when memory objects are created

and deleted. Auxiliary resources can only be allocated

through a function invocation; they must be deallocated

when the corresponding memory object is deleted.

To ensure resources are deallocated, all new types

must provide a special operation (deleteAuxlllary)

which is called immediately prior to a memory object’s

deletion. In many cases, such as that of TEXT-YEAR,

no action is required. However, in cases such as

that of METADATA_FILE, an entire syntax tree must

be deallocated. A similar approach was adopted

in [DSW90].

CONCERT is informed that auxiliary resources are

associated with an object by a flag (HasAuxili.ary)

associated with new memory objects.

The solution to this problem in Illustra is to provide

new implementations of standard system calls, such as

those for memory and file management (for example,

mi=lloc instead of malloc, etc). Illustra guarantees

correct resource management only if these Illustra

functions are used. This implies that other auxiliary

resources must be deallocated prior to a function

invocation’s completion, and cannot persist between

invocations. This, in turn, rules out the implementation

technique described above, and also the retention is

session identifiers bet ween invocations.

The Illustra memory manager provides mechanisms

whereby memory persists until the end of either the

current function’s invocation, or the enclosing Illustra-

SQL statement. The latter would be correct but

unnecessarily y conservative for the case above. The

CONCERT mechanism provides more control over when

resources are deallocated.

337



5.2 Query Evaluation and Shallow Copying

We now further address the allocation and deallocation

of resources during query processing. Having generated

the syntax tree, the evaluation of the query in Fig-

ure 3, left, proceeds as follows. The extract operations

for the nested RECORD-like types receive pointers to the

syntax tree as their inputs, and generate new syntax

trees as their outputs. Clearly, generating entirely new

syntax trees is redundant, as the necessary tree already

exists as a sub-part of the original tree. Therefore, these

operation return references into the syntax trees of their

arguments. This situation is illustrated in Figure 6.

Shallow copying requires that an invocation’s argu-

ment must be retained until that invocation’s result is

no longer required. This is the case both if the result is

a reference to auxiliary data reachable from the argu-

ment, or if the result is a reference into the argument

memory object itself. 1 The former case is illustrated in

Figure 6; the latter arises, for example, with the built-in

record implementation and also in our previous meta-

data prototype [BV95].

CONCERT is informed that an argument must be
preserved by a flag (ReferencesOrlginal) associated

with memory objects.

5.3 Moving Objects Around, Deep Copying

There are circumstances in which memory objects must

not contain references to auxiliary resources, nor to

sub-parts of other memory objects. This arises, for

example, when an object or object part is to be moved to

persistent storage, or when results are to be delivered in

a client-server environment. Under these circumst antes,

CONCERT must be able to ensure a new memory object

is flat, and interpretable as a byte sequences.

This requirement is contrary to both the need to ac-

commodate auxiliary resources, and the desire to admit

shallow copying. Our solution is to allow the caller of

a function to specify requirements of the results. In

particular, the caller specifies the HasAuxiliary and

ReferencesOriginal flags according to their require-

ments, and the function resets these flags according

to how it behaved. The protocol is that a function

may swap a true flag to false, but not the other way

around. For example, the caller may specify that aux-

iliary resources may be allocated, but no such may be
required by the function. In this case, the function’s

implement ation swaps the relevant flag. However, if the

caller specifies that no auxiliary resources may be al-

located, then the function’s implementation is not at

liberty to swap the flag.

This places a basic minimum requirement on the

object’s managed by CONCERT: they must be able to

generate flat results. This does not imply that they

must always do so; but must when forced to do so.

1This latter case is explicitly disallowed in Illustra.

5.4 Caller Allocates Space

The final issue we address is that of efficiently moving

data around when abstract objects’ sizes may be

unknown. We abandon our metadata example, and

consider instead the problem of raster-data management

which better illustrates the problem at hand. Assume

a tile of a raster image is to be moved to CONCERT’S

persistent storage. We consider a raster image to be

a CONTINUUM-like object, and hence have a part it ion

operation for achieving this. However, under the

protocol described thus far, the procedure would be the

following: first we extract the tile, we then know its

length and can allocate space (in the buffer, say), and

finally we copy the object to its target location. This

results in one unnecessary copy and one unnecessary

scan of a potential y very-large object.

However, for many raster representations it is straight-

forward to establish the size of such a function’s results

before applying the function. In principle, the tile can

be copied directly from the original to the target.

To overcome this problem, CONCERT implements a

protocol based on ccdler allocates space. The intuition is

simple: the caller of an operation knows what is required

oft he results, and therefore should be the one managing

the space of those results. The app;oach is that copy

operations are done in two phases. Firstly the necessary

size is established; this information allows the caller,

who knows the requirements, to allocate appropriate

space. And secondly the copy is performed directly form

the original to the target.

A further example of such functionality is that of

gathering query results prior to shipping those results

to a client for further processing. The results should be

gathered in a form appropriate for the network interface

being used. Typically, this means that they must be

gathered in contiguous virtual memory. The protocol of

‘caller allocates space’ allows an object buffer to gather

partial query results for a number of objects before

shipping them in a single step to a client. This can

be done by moving objects directly from the database

buffer to a transfer buffer in a single step.

6 Conclusions and On-Going Work

Our vision is of database systems exporting not only

their data, but also their services. Databases sys-
tems should become brokers of information, coordina-

tors of dependencies, and providers of dat abase services.

These are the goals of the COSMOS project investigat-

ing openness, cooperation and database services at var-

ious architectural levels: workflows [BDS+ 93], multi-

databases [SWS9 1], and coordination for CIM environ-

ments [NWM+94].

In this paper we have focused on open storage-

management services: indexing, partitioning, replica-
tion, and basic query-processing. We introduced the

338



simple mechanism of likeness to known types, and

showed how a surprisingly small number of concepts

can provide the basis for applying database services to

external repositories. We showed both how queries are

processed against external data, and how external mate-

rialised views can be maintained within external repos-

itories. Furthermore, we showed how forward compati-

bility allows existing applications, scripts and browsers

to be retained.

We discussed also the impact of abstract-object man-

agement on the internal architecture of our prototype

system CONCERT. External objects require the cou-

pling of external functions to the database system. In

the context of these, we have developed protocols for re-

source management, and also the ‘caller allocates space’

protocol for efficiently moving potentially-large objects

around.

We have on-going work in the areas of transaction

management and external access structures. We are
also applying the ideas described here in the context of

multimedia and geospatial cooperative projects, includ-

ing in particular raster data management, image index-

ing, and continuous media. These problem domains are

archetypical of those for which open database solutions

are attractive.

Acknowledgements

We are very grateful to those who have helped in the de-
velopment of this work; these include Gustavo Alonso, Gis-
bert Droge, Thomas Etter, Armin Fessler, Christof Hasse,
Andrej Vckovski and Andreas Wolf.

References

1ACM931

[BDS+93]

[Ber95]

[BKRS94]

[BKSS90]

S. Abit eboul, S. Cluet, and T. Mile. Querying

and updating the file. In Proceedings of the 19th

Conference on Very Large Database Systems,

Dublin, Ireland, 1993.

Y. Breitbart, A. Deacon, H.-J. Schek, A. Shet,

and G. Weikum. Merging application-

centric and data-centric approaches to sup-

port transaction-oriented multi-system work-

flows, ACM SIGMOD Record, 22(3):23-30,

September 1993.

Philip A. Bernstein. Repository internals.

VLDB95 Tutorial Notes, September 1995.

Stephen Blott, Helmut Kaufmann, Lukas Relly,

and Hans-Jorg Schek. Buffering long externally-

defined objects. In Proceedings of the Inter-

national Workshop on Persistent Object Sys-

tems, pages 40–53, Tarascon, France, Septem-

ber 1994.

N. Beckmann, H.-P. Knegel, R. Schneider, and

B. Seeger. The R*-tree: An efficient and robust

access method for points and rectangles. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 322–

331, Atlantic City, NJ, USA, 1990.

[BS95]

[BV95]

[CDF+94]

[CHP+95]

[DKA+86]

[DS93]

[DSW90]

[FGD94]

[GJR94]

Paul Brown and Michael Stonebraker. BigSur:

A system for the management of earth science

data. In Proceedings of the International

Conference on Very Large Databases, pages

720–728, Zurich, Switzerland, 1995.

Stephen Blott and Andrej Vckovski. Extend-

ing a database storage system for geographi-

cal metadata. In Proceedings of the Fourth In-

ternational Symposium on Advances an Spatta[

Database Systems (SSD95), number 951 in Lec-

ture Notes in Computer Science, pages 117-131,

Portland, Maine, August 1995. Springer Verlag,

Michael J. Carey, David J. DeWitt, Michael J.

Fanklin, Nancy E. Hall, Mark L. McAuliffe,

Jeffre F. Naughton, Daniel T. Schuh, Marvin H.

Solomon, C. K. Tan, Odysseas G. Tsatalos,

Seth J. White, and Michael J. Zwilling. Shoring

up persistent applications. In Proceedings of the

ACM SIGMOD International Conference on

Management of Data, Minneapolis, Minnesota,

USA, 1994.

M.J. Carey, L.M. Haas, P. M. Schwarz, M. Arya,

W.F. Cody, R. Fagin, M. Flickner, A.W. Lu-

niewski, W. Niblack, D. Pet kovic, J. Thomas,

J.H. Williams, and E.L. Wimmers. To-

wards heterogeneous multimedia information

systems: The Garlic approach. In Pro-

ceedings of the Workshop Research Issues in

Data Engineering-Distributed Object Manage-

ment (RIDE- D 0M95), Taipei, Taiwan, March

1995.

P. Dadam, K. Kuspert, F. Ander-

son, H. Blankel, R. Erbe, J. Guenauer, V. Lure,

P. Pistor, and G. Walch. A DBMS prototype to

support extended NF2 relations: An integrated

view on flat tables and hierarchies. In Proceed-

ings of the ACM SIG MOD International Con-

ference on Management of Data, pages 356-367,

1986.

Gisbert Droge and Hans-Jorg Schek. Query-

adaptive data space partitioning using variable-

sized storage clusters. In Advances tn Spatial

Databases: Proceedings of the %-d International

Symposium, SSD ’93, pages 337-356, Singa-

pore, June 1993.

Gisbert Droge, Hans-Jorg Schek, and Andreas

Wolf. Erweiterbarkeit in DASDBS. Informatik

Forschung and Entwicklung, 5:162-176, 1990.

In German.

Content Standard for Digital Geospatial Meta-

data. USGS/FGDC, Federal Geographic Com-

mit tee, U.S. Geological Survey, 590 National

Centre, Reston, Virginia 22092, USA, 1994.

Anonymous ftp: f gdc. er. usgs. gov.

N. H. Gehani, H. V. Jagadish, and W. D,

Roome. OdeFS: A file-system interface to

an object-oriented database. In Proceedings

of the International Conference on Very Large

339



Databases, pages 249–260, Santiago, Chile,

September 1994.

[11194] Illustra Information Technologies (Inc), 1111

Broadway, Suite 2000, Oakland, CA 94607. 2D

Spatial DataBlade Guide, October 1994. Illustra

2D Spatial DataBlade Release 1.3.

[11195] Illustra Information Technologies (Inc), 1111

Broadway, Suite 2000, Oakland, CA 94607. Ap-

plication Programming Interface Guide, March

1995. Illustra Server Release 2.4.1.

[NWM+94] M. C. Norrie, M. Wunderli, R. Montau,

U. Leonhardt, W. Schaad, and H-J. Schek. Co-

ordination approaches for CIM. In Proceedings

of the European Workshop on Integrated Manu-

facturing Systems Engineering, pages 223-232,

Grenoble, France, December 1994.

[Obe94] Special issue on TP-monitors and distributed

transaction management. In Ron Obermarck,

editor, Bulletin of the Technical Committee on

Data Engineering, IEEE, volume 17, March

1994.

[Obj95] Object Management Group. CORBA: The

Common Object Request Broker: Architecture

and Specification, July 1995. Release 2.0.

[OM88] Jack A. Orenstein and Frank A. Manola.

PROBE: Spatial data modelling and query

processing in an image database application.

IEEE Transactions on Software Engineering,

14(5):611-629, 1988.

[RB95] Lukas Relly and Stephen Blott. Ein Speich-

ersystem fiir abstrakte Objekte. In Proceed-

ings of the 1995 Conference Datenbanksysteme

in Btiro, Teclmik, und Wissenshaft (BTW95),

pages 338–347, March 1995. In German, short

paper.

[sch95] Peter Schweitzer. A Compiler for Formal

Metadata. U.S. Department of the Interior, U.S.

Geological Survey, Geologic Division, Mail Stop

955, National Center, Reston, VA22092, USA,

1995. As of March 1996, available electronically

at:

http: //geochange. er. usgs. gov/pub/. . .

. . . /tools/rnetadata/compiler/README. html.

[SLS+93] K. Sheens, A. Luniewski, P. Schwarz, J. Sta-

mos, and J. Thomas. The Rufus system: Infor-

mation organisation for semi-structured data.

In Proceedings of the International Conference

on Very Large Databases, pages 97-107, Dublin,

Ireland, August 1993.

[SPSW90] H-J. Schek, H-B. Paul, M.H. Scholl, and

G. Weikum. The DASDBS project: Objectives,

experiences, and future prospects. IEEE Trans-

actions on Knowledge and Data Engineering,

2(1):25–43, March 1990.

of the International Conference on Data Engi-

neering, Los Angeles, CA, February 1986. IEEE

Computer Society Press.

[SW93] Hans-J. Schek and Andreas Wolf. From exten-

sible databases to interoperability between mul-

tiple databases and GIS applications. In l%o-

ceedings of the 3rd International Symposium on

Aduances in Spatial Databases (SSD93), pages

207-238, Singapore, June 1993.

[SWS91] H.-J. Schek, G. Weikum, and W. Schaad. A
multi-level transaction approach to federated
transaction management. In Proceedings of the

International Workshop on Interoperability in

Multi-database Systems, Kyoto, 1991.

[WS92] Gerhard Weikum and Hans-Jorg Schek. Con-

cepts and applications of multilevel transactions

and open nested transactions. In Ahmed K. El-

magarmid, editor, Database Transaction Models

for Advanced Applications, chapter 13. Morgan

Kaufmarm, 1992.

[WSSH88] P.F. Wilms, P.M. Schwarz, H.-J. Schek, and

L.M. Haas. Incorporating data types in an

extensible database architecture. In Proceedings

of the 3rd International Conference on Data and

Knowiedge Bases, Jerusalem, June 1988.

[Sto86] Michael Stonebraker. Inclusion of new types

in relational database systems. In Proceedings

340


