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Abstract 

While much recent work has focussed on the perfor- 
mance of transaction systems where individual trans- 
actions have deadlines, our research addresses the se- 
mantics of data usage in real-time applications and 
its integration with real-time resource management, in 
particular, the timeliness value of real-time data and 
the inherent path and not state-based constraints on 
concurrency control. Central to our research is the 
idea of similarity which is a reflexive, symmetric rela- 
tion over the domain of a data object. By exploiting 
the similarity relation, we propose a class of efficient 
data-access policies for real-time data objects. We 
shall also discuss the design of a distributed real-time 
data-access interface. Our goal is to build a database 
facility which can support predictable real-time appli- 
cations involving high-speed communication, informa- 
tion access, and multimedia. 

1 I n t r o d u c t i o n  

In recent years, a number of researchers have stud- 
ied the problem of meeting the timing requirements 
of applications while preserving database consistency. 
However, most of extant  work has focussed on the per- 
formance of transaction systems to meet individual 
transaction deadlines. Overly strict criteria such as 
serializability are often used to ensure the correctness 
of such applications. Such a brute-force approach may 
commit  a significant amount  of resources for no real 
gains. 
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This paper examines the time-volatility of real-time 
databases which set them apart from conventional 
databases and provides new correctness criteria for 
concurrency control which are germane to real-time 
applications. We discuss some efficient real-time data- 
access policies which exploit a similarity relation over 
real-time data  objects. Based on these ideas, we have 
also designed a distributed real-time data-access inter- 
face which integrates real-time resource management 
and object-oriented design methodologies. 

The rest of the paper is organized as follows. Sec- 
tion 2 describes our real-time data  model. Section 
3 explores a weaker correctness criterion for concur- 
rency control in real-time transactiops, by investigat- 
ing the notion of similarity. Section 4 proposes a class 
of real-time data-access protocols called SSP (Similar- 
ity Stack Protocols) based on the concept of similarity. 
Section 5 describes a distributed real-time data  access 
package which can be run on a mu!tiprocessor plat- 
form. Section 6 is the conclusion. 

2 A R e a l - T i m e  D a t a b a s e  M o d e l  

2 .1  R e a l - T i m e  D a t a  O b j e c t s  

A real-time database is a collection of data  objects 
which are used to model a time-critical dynamic sys- 
tem in the real world. Each data  object takes its value 
from its domain. We define a database state as an el- 
ement of the Cartesian product of the domains[10] of 
its data  objects. A database state may be represented 
by a vector of data values such that  every data  object 
is a component of this vector. 

Because of the dynamic nature of the real world, the 
useful lifespan of real-time data  is usually relatively 
short. For the purpose of measuring the timeliness of 

18 S I G M O D  R e c o r d ,  Vol. 26. No.  1, M a r c h  1996 



real- t ime data, we assign each real-time data  object  
a parameter ,  age which measures the recency of its 
value. In general, the age of a data  object is given by 
an application-defined procedure which assigns times- 
t amps  to its values. Whether  the age of a da ta  object 
is up- to-date  may depend on two or more t iming con- 
straints  in the application. For example,  suppose the 
value of a data  object x depends on a data object y, 
the update  transaction of z never misses its deadline, 
but the update  transaction of y often misses its dead- 
line. Then we cannot say that  the x value is up- to-date  
s imply because the transaction updating z is always 
timely. 

2 .2  E v e n t s ,  T r a n s a c t i o n s ,  a n d  S c h e d u l e s  

Events  are primitive database read or write opera- 
tions. A transaction is the templa te  of its instances; 
a t ransact ion instance is a partial  order of events. An 
instance of a transaction is scheduled for every request 
of the transaction. An interpretation of a set of trans- 
actions is a collection of transaction definitions and 
da ta  domain definitions[10]. 

A schedule for a set of transactions is a partial  order 
of  events issued by instances of the transaction set. 
Each event in a schedule is issued by one transaction 
instance. The ordering of events in a schedule must  
be consistent with the event ordering as specified by 
the transaction set. A serial schedule is a sequence 
of t ransact ion instances, i.e., a schedule in which the 
t ransact ion instances are totally ordered. 

A real-t ime computat ion may be represented as a 
collection of events with t ime stamps.  The t ime s t amp  
of an event in the computat ion indicates the t ime it oc- 
curs. Events with such time s tamps  are t imed events; a 
real- t ime computat ion is a collection of t imed events. 
Let a t imed schedule for a set of transactions be a 
collection of t imed events issued by instances of the 
t ransact ion set. It  is clear that  corresponding to each 
t imed schedule is a unique, untimed schedule which 
preserves the t ime s tamp order of events in the t imed 
schedule. 

3 C o r r e c t n e s s  C r i t e r i a  

In this section, we propose a weaker correctness 
criterion for concurrency control in real-time trans- 
actions, by introducing the notion of similarity[3]. 

3.1 D a t a  S i m i l a r i t y  

A similarity relation is a binary relation on the do- 
main of a da ta  object. Every similarity relation is 
reflexive and symmetr ic ,  but not necessarily transi- 
tive. Different transactions may induce different simi- 
larity relations on the same data  object domain. Two 
views of  a transaction are similar iff every read event 
in both views uses similar values with respect to the 
transaction. We say that  two values of  a data object 
are similar if all transactions which may read them 
consider them as similar. 

In a schedule, we say that  two event instances are 
similar if they are of the same type and access simi- 
lar values of the same data  object. We say that  two 
database states are similar if the corresponding values 
of every data  object in the two states are similar. 

A minimal restriction on the similarity relation that  
makes it interesting for concurrency control is the re- 
quirement that  it is preserved by every transaction, 
i.e., if a transaction T maps database state s to state 
t and state s ~ to t ~, then t and t ~ are similar if s and 
s I are similar. We say that  a similarity relation is reg- 
ular if it is preserved by all transactions. From now 
on, we shall be concerned with regular similarity rela- 
tions only. Further restrictions on the similarity pred- 
icate will yield a correctness criterion for transaction 
scheduling that  can be checked efficiently. 

3 .2  V i e w  A - S e r i a l i z a b i l i t y  

Our proposed criteria can be viewed as exten- 
sions of the s tandard serializability-based correctness 
criteria[10] to exploit the concept of similarity. Three 
correctness criteria defined in [3] are final-state, view 
and conflict A-seriaiizability. Other different correct- 
ness criteria have been proposed for different purposes 
and application areas[2, 8, 11]. Because of space lim- 
itation, only the definition of view A-serializability is 
included in this paper. 

The transaction view of a transaction instance is 
a vector of da ta  object values such that  the ith com- 

ponent is the value read by the ith read event of the 
transaction instance[10]. 

D e f i n i t i o n  1 [3] V i e w  S imi l a r :  
A schedule is view-similar to another schedule iff 

1. They are over the same set of transactions (trans- 
action instances). 

2. For any initial s tate and under any interpre- 
tation, they transform similar initial database 
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states into similar database  states with respect 
to their t ransact ion se.ts, respectively. 

3. Every t ransact ion instance has similar views in 
both schedules for any initial state and under any 
interpretation. 

It is clear that ,  if a schedule is view-equivalent to 
another schedule, then it is view-similar to that  sched- 
ule, but the converse may not hold. Note that  the 
view-similarity relation between schedules is reflexive 
and symmetr ic  but  not necessarily transitive. A sched- 
ule is view A-serializable iff it is view-similar to a serial 
schedule. 

E x a m p l e  1 view similarity and view A- serializebil- 
ity 

Consider the following two schedules r l  and r2 in 
which events are listed in their order of occurrence. 
(The symbol  ---, denotes "to be continued on the next 
line".) Events R(ri,j, X) and W(r i j ,  X )  are read and 
write operations issued by transaction instance r i j  on 
da ta  object X,  respectively. 

A schedule 

~ ,  = W(r3,1, x), R(rl,1, X), W(TI,~, X), R(~,~, X), - - .  

n(r2,1, Y), W(r2,1, Y), W(n,1, Y) 

is view similar to another  schedule 

71- 2 - -  T3,1, T2,1, TI,1 
wo3,~, x ) ,  R(~-~,~, X), R( T2,~, ~"), - 
w(T2,1, Y), R(TI,~, X), W(~,x, X), W(~,l, Y) 

if W(r3,1, X)  and W(rl,1,  X)  are similar. Since 7r2 is 
a serial schedule, 7rl is view A-serializable. [] 

T h e o r e m  1 [3] The problem of deciding whether a 
schedule is view A-serializable is NP-Hard. 

4 Similarity-Based Concurrency Con- 
trol 

The idea of similari ty is certainly not new in prac- 
tice. In avionic systems, the dynamics of a sensor or 
the environment may  impose an upper bound on the 
variation of a sensor value over a short t ime interval. 
For certain computat ions ,  avionic engineers often con- 
sider the change in sensor reading over a few consecu- 
tive cycles to be insignificant. I t  is sometimes accept- 
able to use a sensor value tha t  is not the most recent 
update  in a transaction.  Our contribution is to pro- 
vide a justification for this ad hoc engineering practice. 
More important ly ,  the similari ty relation provides a 

formal interface for the application engineer to cap- 
ture the real-t ime characteristics of his data,  so that  
concurrency control theory can be applied. In the fol- 
lowing we describe a class of scheduling policies based 
on the concept of similarity to provide application en- 
gineers more flexibility in concurrency control. 

4 .1  S t r o n g  S i m i l a r i t y  

Our definition of regular similarity only requires a 
similarity relation to be preserved by every transac- 
tion, so tha t  the input value of a t ransact ion can be 
swapped with another in a schedule if the two values 
are related by a regular similarity relation. Unless a 
similarity relation is also transitive, it is in general in- 
correct to swap events an arbi t rary number  of times in 
a schedule. For example, let vl, v2, v3 be three values 
of a da ta  object such that  vl and v2 are similar, as 
are v2 and v3. A transaction instance reading vl as 
input will produce similar output  as one tha t  reads v~ 
as input. Likewise, the same transact ion reading v2 
as input will produce similar ou tput  as one tha t  reads 
v3 as input. However, there is no guarantee tha t  the 
output  of the transaction reading vl as input will be 
similar to one reading v3 as input, since vl and v3 
may not be related under the regular similarity rela- 
tion. Swapping events two or more times may  result in 
a transaction reading a value tha t  is not similar to the 
input value before event swapping, and is hence unac- 
ceptable. To overcome this problem, we add another 
restriction to the similarity relation such tha t  swap- 
ping similar events in a schedule will always preserve 
similarity in the output.  

This restriction is mot ivated by the observation 
that  the state information of many  real-t ime systems 
is "volatile", i.e., these systems are designed in such a 
way that  system state is determined completely by the 
history of the recent past, e.g., the velocity and accel- 
eration of a vehicle are computed from the last several 
values of the vehicle's position from the position sen- 
sor. Unless events in a schedule may be swapped in 
such a way that  a transaction reads a value that  is 
derived from the composition of a long chain of trans- 
actions tha t  extends way into the past,  a suitable sim- 
ilarity relation may be chosen such that  ou tput  simi- 
larity is preserved by limiting the "distance" between 
inputs that  may  be read by a t ransact ion before and 
after swapping similar events in a schedule. Thus if 
two events in a schedule are strongly similar (i.e., they 
are either both  writes or both reads, and the two data  
values involved are strongly similar), then they can al- 
ways be swapped in a schedule without violating data  
consistency requirements. Strong similarity is estab- 
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lished by the "write-length" of the data  dependency 
graph, which in turn can be related to update frequen- 
cies in practice. 

4 .2  S i m i l a r i t y  S t a c k  P r o t o c o l s  ( S S P )  

We assume that the application semantics allows 
us to derive a similarity bound for each data  object 
such that  two write events on the data  object must 
be strongly similar if their t ime-stamps differ by an 

amount  no greater than the similarity bound. 
The  basic strategy of the SSP protocols can be 

summarized as follows: Transactions are normally 
scheduled according to their priorities which can be 
dynamic (e.g., earliest-deadline-first) or static (e.g., 
as determined by the rate monotonic assignment)[9], 
with the provision that  transaction execution follows 
the stack discipline, i.e., if transaction B starts after 
transaction A, then A cannot resume until after B 
finishes. However, no transaction is allowed to start  
execution if it conflicts with another transaction which 
has already started but not committed such that  the 
conflicting read/write events may not be arbitrarily 
swapped under the similarity relation in the following 
way: 

no larger than similarity bound 
9 P 

W l  R W 2  W 3  
I I I - 

~- = Time 

Done  no larger than similarity bound  

Figure 1: Similarity of conflicting events 

Suppose two events el and e~ conflict with each 
other. Let el and e2 be the write events w2 and w3, 
respectively. If their write values are similar under 
the similarity bound as shown in Figure 1, these two 
events are similar and it does not mat ter  the result of 
which write is read by subsequent read events. Sup- 
pose el and e~ are respectively, the write event w2 
a n d  the read event r in Figure 1. For their relative or- 
dering to be unimportant ,  there must exist an earlier 
write event whose write value is similar to the write 
value of w2 under the similarity bound. If this is the 
case, as is shown in Figure 1, then it does not mat ter  
which write value the read event r reads. The same 
argument applies to the case where ex and e~ are a 
read event and a write event, respectively. 

It can be shown that the SSP protocols are 
deadlock-free, subject to limited blocking and satisfy 
view A-serializability. This class of protocols offer bet- 
ter performance, especially on multiprocessor systems, 

for managing real-time data access. Intuitiwly, this is 
what one would expect since many lock-based proto- 
cols tend to artificially serialize computation whereas 
SSP uses no locks at all! We refer readers to [4, 5, 6] 
for details. 

5 Real-Time Object Management In- 
terface (RTOMI) 

We have designed RTOMI (Real-Time Object Man- 
agement Interface) to evaluate algorithms for l~rocess 
scheduling and data  distribution based on the similar- 
ity concept[7]. RTOMI supports various data-access 
services ranging from data  acquisition to high-leveled 
data-access commands.1 It provides the necessary sys- 
tem calls, manages data  across processors, and sched- 
ules transactions preemptively by various real-time 
resource-scheduling techniques. Although RTOM! is 
currently being implemented only on an Intel multi- 
board computer, its design is entirely architecture- 
independent. 

5.1 O b j e c t s  A t t r i b u t e s  a n d  C o h e r e n c e  

Data objects in RTOMI are virtually/physically 
continuous blocks of memory space. They may be 
associated with a set of user-defined procedures that 
detect violations of the consistency constraints which 
can be internal, temporal,  external, or dynamic[3, 6]. 
By hiding implementation details, RTOMI not only 
provides a clean and efficient intcrface for data ac- 
cesse but also avoids complicated object declarations 
and the usual enormous number of associated data- 
manipulation routines. 

Real-time data objects in RTOMI can be dupl;- 
cated and distributed over network hosts. Data co- 
herence is justified by the similarity relation. For tra- 
ditional non-real-time data objects, the similarity re- 
lation degenerates into the "identity" relation. 

5.2 C o n c u r r e n c y  C o n t r o l  

Users may use real-time resource scheduling al- 
gorithms provided by RTOMI which consider both 
data synchronization and real-time process schedul- 
ing. RTOMI allows users to program their data 
synchronization protocols (through rtomi_lock 0 a n d  

1 Providing the best data-access services depends on the con- 
text of individual applications. RTOMI aims at idem ;fying "es- 
sential" data-access services in distributed real-time database 
systems. 
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rtomi_unlock 0 system calls), such as the two-phase 
locking protocol, in a process code. For now, only 
independent real-time resource scheduling algorithms 
such as earliest-deadline-first or fixed priority[9] are al- 
lowed. Otherwise, conflicts between data synchroniza- 
tion protocols and other real-time resource scheduling 
algorithms in handling data  synchronization may leave 
the system in an undefined state. 

5.3 R e a d  a n d  W r i t e  

RTOMI not only supports primitive data-access op- 
erations such as read or write but  also provides some 
advanced data-access operations such as "periodic- 
read" requests. Note that  many real-time applications 
such as a Video-On-Demand system need to provide 
"periodic" presentation services for continuous media 
streams. The  ordinary read and write operations are 
called value reads and value writes, respectively. The 
advanced read and write operations are called action 
reads or action writes. 

6 S u m m a r y  

Our research provides a framework for understand- 
ing and exploiting an impor tant  aspect of real-time 
applications. We have introduced the concept of simi- 
larity which has been used on an ad hoc basis by appli- 
cation engineers to provide more flexibility in concur- 
rency control. We have proposed weaker consistency 
requirements and a class of real-time, data-access pro- 
tocols, all based on the similarity concept. We have 
also obtained encouraging experimental performance 
results. We have also proposed a real-time object man- 
agement interface to provide low-level mechanisms 
to facilitate the implementat ion of real-time, data- 
intensive applications. 

Tailoring a real-time database system to cater to 
the needs of a wide variety of applications and to 
achieve good utilization of resources is very important  
in many real-time applications. An interesting direc- 
tion of this work is to characterize the domain-specific 
similarity relation of data  in applications such as mul- 
timedia, real-time knowledge base, advanced commu- 
nication and control systems, and to provide a facility 
for application engineers to specify similarity relations 
for complex objects. The architecture of the real-time 
database can then be optimized for efficient similarity- 
based data  access. 
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