
R e a l - T i m e D a t a b a s e - - S i m i l a r i t y S e m a n t i c s and
R e s o u r c e S c h e d u l i n g

T e i - W e i Kuo"

D e p a r t m e n t of C o m p u t e r S c i e n c e a n d

I n f o r m a t i o n E n g i n e e r i n g

N a t i o n a l C h u n g C h e n g U n i v e r s i t y

C h i a y i , T a i w a n 621

R.O.C.

Aloys ius K. M o k t

D e p a r t m e n t of C o m p u t e r S c i e n c e s

U n i v e r s i t y of T e x a s a t A u s t i n

A u s t i n , T e x a s 78712

U.S.A.

Abstract

While much recent work has focussed on the perfor-
mance of transaction systems where individual trans-
actions have deadlines, our research addresses the se-
mantics of data usage in real-time applications and
its integration with real-time resource management, in
particular, the timeliness value of real-time data and
the inherent path and not state-based constraints on
concurrency control. Central to our research is the
idea of similarity which is a reflexive, symmetric rela-
tion over the domain of a data object. By exploiting
the similarity relation, we propose a class of efficient
data-access policies for real-time data objects. We
shall also discuss the design of a distributed real-time
data-access interface. Our goal is to build a database
facility which can support predictable real-time appli-
cations involving high-speed communication, informa-
tion access, and multimedia.

1 I n t r o d u c t i o n

In recent years, a number of researchers have stud-
ied the problem of meeting the timing requirements
of applications while preserving database consistency.
However, most of extant work has focussed on the per-
formance of transaction systems to meet individual
transaction deadlines. Overly strict criteria such as
serializability are often used to ensure the correctness
of such applications. Such a brute-force approach may
commit a significant amount of resources for no real
gains.

*Supported in part by a research grant from the National
Science Council under Grant NSC85-2213-E-194-008

?Supported in part by a research grant from the Ol~ce of
Naval Research under ONR contract number N00014-8INJ-1472

This paper examines the time-volatility of real-time
databases which set them apart from conventional
databases and provides new correctness criteria for
concurrency control which are germane to real-time
applications. We discuss some efficient real-time data-
access policies which exploit a similarity relation over
real-time data objects. Based on these ideas, we have
also designed a distributed real-time data-access inter-
face which integrates real-time resource management
and object-oriented design methodologies.

The rest of the paper is organized as follows. Sec-
tion 2 describes our real-time data model. Section
3 explores a weaker correctness criterion for concur-
rency control in real-time transactiops, by investigat-
ing the notion of similarity. Section 4 proposes a class
of real-time data-access protocols called SSP (Similar-
ity Stack Protocols) based on the concept of similarity.
Section 5 describes a distributed real-time data access
package which can be run on a mu!tiprocessor plat-
form. Section 6 is the conclusion.

2 A R e a l - T i m e D a t a b a s e M o d e l

2 .1 R e a l - T i m e D a t a O b j e c t s

A real-time database is a collection of data objects
which are used to model a time-critical dynamic sys-
tem in the real world. Each data object takes its value
from its domain. We define a database state as an el-
ement of the Cartesian product of the domains[10] of
its data objects. A database state may be represented
by a vector of data values such that every data object
is a component of this vector.

Because of the dynamic nature of the real world, the
useful lifespan of real-time data is usually relatively
short. For the purpose of measuring the timeliness of

18 S I G M O D R e c o r d , Vol. 26. No. 1, M a r c h 1996

real- t ime data, we assign each real-time data object
a parameter , age which measures the recency of its
value. In general, the age of a data object is given by
an application-defined procedure which assigns times-
t amps to its values. Whether the age of a da ta object
is up- to-date may depend on two or more t iming con-
straints in the application. For example, suppose the
value of a data object x depends on a data object y,
the update transaction of z never misses its deadline,
but the update transaction of y often misses its dead-
line. Then we cannot say that the x value is up- to-date
s imply because the transaction updating z is always
timely.

2 .2 E v e n t s , T r a n s a c t i o n s , a n d S c h e d u l e s

Events are primitive database read or write opera-
tions. A transaction is the templa te of its instances;
a t ransact ion instance is a partial order of events. An
instance of a transaction is scheduled for every request
of the transaction. An interpretation of a set of trans-
actions is a collection of transaction definitions and
da ta domain definitions[10].

A schedule for a set of transactions is a partial order
of events issued by instances of the transaction set.
Each event in a schedule is issued by one transaction
instance. The ordering of events in a schedule must
be consistent with the event ordering as specified by
the transaction set. A serial schedule is a sequence
of t ransact ion instances, i.e., a schedule in which the
t ransact ion instances are totally ordered.

A real-t ime computat ion may be represented as a
collection of events with t ime stamps. The t ime s t amp
of an event in the computat ion indicates the t ime it oc-
curs. Events with such time s tamps are t imed events; a
real- t ime computat ion is a collection of t imed events.
Let a t imed schedule for a set of transactions be a
collection of t imed events issued by instances of the
t ransact ion set. It is clear that corresponding to each
t imed schedule is a unique, untimed schedule which
preserves the t ime s tamp order of events in the t imed
schedule.

3 C o r r e c t n e s s C r i t e r i a

In this section, we propose a weaker correctness
criterion for concurrency control in real-time trans-
actions, by introducing the notion of similarity[3].

3.1 D a t a S i m i l a r i t y

A similarity relation is a binary relation on the do-
main of a da ta object. Every similarity relation is
reflexive and symmetr ic , but not necessarily transi-
tive. Different transactions may induce different simi-
larity relations on the same data object domain. Two
views of a transaction are similar iff every read event
in both views uses similar values with respect to the
transaction. We say that two values of a data object
are similar if all transactions which may read them
consider them as similar.

In a schedule, we say that two event instances are
similar if they are of the same type and access simi-
lar values of the same data object. We say that two
database states are similar if the corresponding values
of every data object in the two states are similar.

A minimal restriction on the similarity relation that
makes it interesting for concurrency control is the re-
quirement that it is preserved by every transaction,
i.e., if a transaction T maps database state s to state
t and state s ~ to t ~, then t and t ~ are similar if s and
s I are similar. We say that a similarity relation is reg-
ular if it is preserved by all transactions. From now
on, we shall be concerned with regular similarity rela-
tions only. Further restrictions on the similarity pred-
icate will yield a correctness criterion for transaction
scheduling that can be checked efficiently.

3 .2 V i e w A - S e r i a l i z a b i l i t y

Our proposed criteria can be viewed as exten-
sions of the s tandard serializability-based correctness
criteria[10] to exploit the concept of similarity. Three
correctness criteria defined in [3] are final-state, view
and conflict A-seriaiizability. Other different correct-
ness criteria have been proposed for different purposes
and application areas[2, 8, 11]. Because of space lim-
itation, only the definition of view A-serializability is
included in this paper.

The transaction view of a transaction instance is
a vector of da ta object values such that the ith com-

ponent is the value read by the ith read event of the
transaction instance[10].

D e f i n i t i o n 1 [3] V i e w S imi l a r :
A schedule is view-similar to another schedule iff

1. They are over the same set of transactions (trans-
action instances).

2. For any initial s tate and under any interpre-
tation, they transform similar initial database

S I G M O D R e c o r d , Vol . 25, No . 1, M a r c h 1996 19

states into similar database states with respect
to their t ransact ion se.ts, respectively.

3. Every t ransact ion instance has similar views in
both schedules for any initial state and under any
interpretation.

It is clear that , if a schedule is view-equivalent to
another schedule, then it is view-similar to that sched-
ule, but the converse may not hold. Note that the
view-similarity relation between schedules is reflexive
and symmetr ic but not necessarily transitive. A sched-
ule is view A-serializable iff it is view-similar to a serial
schedule.

E x a m p l e 1 view similarity and view A- serializebil-
ity

Consider the following two schedules r l and r2 in
which events are listed in their order of occurrence.
(The symbol ---, denotes "to be continued on the next
line".) Events R(ri,j, X) and W(r i j , X) are read and
write operations issued by transaction instance r i j on
da ta object X, respectively.

A schedule

~ , = W(r3,1, x), R(rl,1, X), W(TI,~, X), R(~,~, X), - - .

n(r2,1, Y), W(r2,1, Y), W(n,1, Y)

is view similar to another schedule

71- 2 - - T3,1, T2,1, TI,1
wo3,~, x) , R(~-~,~, X), R(T2,~, ~"), -
w(T2,1, Y), R(TI,~, X), W(~,x, X), W(~,l, Y)

if W(r3,1, X) and W(rl,1, X) are similar. Since 7r2 is
a serial schedule, 7rl is view A-serializable. []

T h e o r e m 1 [3] The problem of deciding whether a
schedule is view A-serializable is NP-Hard.

4 Similarity-Based Concurrency Con-
trol

The idea of similari ty is certainly not new in prac-
tice. In avionic systems, the dynamics of a sensor or
the environment may impose an upper bound on the
variation of a sensor value over a short t ime interval.
For certain computat ions , avionic engineers often con-
sider the change in sensor reading over a few consecu-
tive cycles to be insignificant. I t is sometimes accept-
able to use a sensor value tha t is not the most recent
update in a transaction. Our contribution is to pro-
vide a justification for this ad hoc engineering practice.
More important ly , the similari ty relation provides a

formal interface for the application engineer to cap-
ture the real-t ime characteristics of his data, so that
concurrency control theory can be applied. In the fol-
lowing we describe a class of scheduling policies based
on the concept of similarity to provide application en-
gineers more flexibility in concurrency control.

4 .1 S t r o n g S i m i l a r i t y

Our definition of regular similarity only requires a
similarity relation to be preserved by every transac-
tion, so tha t the input value of a t ransact ion can be
swapped with another in a schedule if the two values
are related by a regular similarity relation. Unless a
similarity relation is also transitive, it is in general in-
correct to swap events an arbi t rary number of times in
a schedule. For example, let vl, v2, v3 be three values
of a da ta object such that vl and v2 are similar, as
are v2 and v3. A transaction instance reading vl as
input will produce similar output as one tha t reads v~
as input. Likewise, the same transact ion reading v2
as input will produce similar ou tput as one tha t reads
v3 as input. However, there is no guarantee tha t the
output of the transaction reading vl as input will be
similar to one reading v3 as input, since vl and v3
may not be related under the regular similarity rela-
tion. Swapping events two or more times may result in
a transaction reading a value tha t is not similar to the
input value before event swapping, and is hence unac-
ceptable. To overcome this problem, we add another
restriction to the similarity relation such tha t swap-
ping similar events in a schedule will always preserve
similarity in the output.

This restriction is mot ivated by the observation
that the state information of many real-t ime systems
is "volatile", i.e., these systems are designed in such a
way that system state is determined completely by the
history of the recent past, e.g., the velocity and accel-
eration of a vehicle are computed from the last several
values of the vehicle's position from the position sen-
sor. Unless events in a schedule may be swapped in
such a way that a transaction reads a value that is
derived from the composition of a long chain of trans-
actions tha t extends way into the past, a suitable sim-
ilarity relation may be chosen such that ou tput simi-
larity is preserved by limiting the "distance" between
inputs that may be read by a t ransact ion before and
after swapping similar events in a schedule. Thus if
two events in a schedule are strongly similar (i.e., they
are either both writes or both reads, and the two data
values involved are strongly similar), then they can al-
ways be swapped in a schedule without violating data
consistency requirements. Strong similarity is estab-

20 S I G M O D R e c o r d , Vol. 25, No . 1, M a r c h 1996

lished by the "write-length" of the data dependency
graph, which in turn can be related to update frequen-
cies in practice.

4 .2 S i m i l a r i t y S t a c k P r o t o c o l s (S S P)

We assume that the application semantics allows
us to derive a similarity bound for each data object
such that two write events on the data object must
be strongly similar if their t ime-stamps differ by an

amount no greater than the similarity bound.
The basic strategy of the SSP protocols can be

summarized as follows: Transactions are normally
scheduled according to their priorities which can be
dynamic (e.g., earliest-deadline-first) or static (e.g.,
as determined by the rate monotonic assignment)[9],
with the provision that transaction execution follows
the stack discipline, i.e., if transaction B starts after
transaction A, then A cannot resume until after B
finishes. However, no transaction is allowed to start
execution if it conflicts with another transaction which
has already started but not committed such that the
conflicting read/write events may not be arbitrarily
swapped under the similarity relation in the following
way:

no larger than similarity bound
9 P

W l R W 2 W 3
I I I -

~- = Time

Done no larger than similarity bound

Figure 1: Similarity of conflicting events

Suppose two events el and e~ conflict with each
other. Let el and e2 be the write events w2 and w3,
respectively. If their write values are similar under
the similarity bound as shown in Figure 1, these two
events are similar and it does not mat ter the result of
which write is read by subsequent read events. Sup-
pose el and e~ are respectively, the write event w2
a n d the read event r in Figure 1. For their relative or-
dering to be unimportant , there must exist an earlier
write event whose write value is similar to the write
value of w2 under the similarity bound. If this is the
case, as is shown in Figure 1, then it does not mat ter
which write value the read event r reads. The same
argument applies to the case where ex and e~ are a
read event and a write event, respectively.

It can be shown that the SSP protocols are
deadlock-free, subject to limited blocking and satisfy
view A-serializability. This class of protocols offer bet-
ter performance, especially on multiprocessor systems,

for managing real-time data access. Intuitiwly, this is
what one would expect since many lock-based proto-
cols tend to artificially serialize computation whereas
SSP uses no locks at all! We refer readers to [4, 5, 6]
for details.

5 Real-Time Object Management In-
terface (RTOMI)

We have designed RTOMI (Real-Time Object Man-
agement Interface) to evaluate algorithms for l~rocess
scheduling and data distribution based on the similar-
ity concept[7]. RTOMI supports various data-access
services ranging from data acquisition to high-leveled
data-access commands.1 It provides the necessary sys-
tem calls, manages data across processors, and sched-
ules transactions preemptively by various real-time
resource-scheduling techniques. Although RTOM! is
currently being implemented only on an Intel multi-
board computer, its design is entirely architecture-
independent.

5.1 O b j e c t s A t t r i b u t e s a n d C o h e r e n c e

Data objects in RTOMI are virtually/physically
continuous blocks of memory space. They may be
associated with a set of user-defined procedures that
detect violations of the consistency constraints which
can be internal, temporal, external, or dynamic[3, 6].
By hiding implementation details, RTOMI not only
provides a clean and efficient intcrface for data ac-
cesse but also avoids complicated object declarations
and the usual enormous number of associated data-
manipulation routines.

Real-time data objects in RTOMI can be dupl;-
cated and distributed over network hosts. Data co-
herence is justified by the similarity relation. For tra-
ditional non-real-time data objects, the similarity re-
lation degenerates into the "identity" relation.

5.2 C o n c u r r e n c y C o n t r o l

Users may use real-time resource scheduling al-
gorithms provided by RTOMI which consider both
data synchronization and real-time process schedul-
ing. RTOMI allows users to program their data
synchronization protocols (through rtomi_lock 0 a n d

1 Providing the best data-access services depends on the con-
text of individual applications. RTOMI aims at idem ;fying "es-
sential" data-access services in distributed real-time database
systems.

S I G M O D R e c o r d , Vol. 25, No. 1, M a r c h 1996 21

rtomi_unlock 0 system calls), such as the two-phase
locking protocol, in a process code. For now, only
independent real-time resource scheduling algorithms
such as earliest-deadline-first or fixed priority[9] are al-
lowed. Otherwise, conflicts between data synchroniza-
tion protocols and other real-time resource scheduling
algorithms in handling data synchronization may leave
the system in an undefined state.

5.3 R e a d a n d W r i t e

RTOMI not only supports primitive data-access op-
erations such as read or write but also provides some
advanced data-access operations such as "periodic-
read" requests. Note that many real-time applications
such as a Video-On-Demand system need to provide
"periodic" presentation services for continuous media
streams. The ordinary read and write operations are
called value reads and value writes, respectively. The
advanced read and write operations are called action
reads or action writes.

6 S u m m a r y

Our research provides a framework for understand-
ing and exploiting an impor tant aspect of real-time
applications. We have introduced the concept of simi-
larity which has been used on an ad hoc basis by appli-
cation engineers to provide more flexibility in concur-
rency control. We have proposed weaker consistency
requirements and a class of real-time, data-access pro-
tocols, all based on the similarity concept. We have
also obtained encouraging experimental performance
results. We have also proposed a real-time object man-
agement interface to provide low-level mechanisms
to facilitate the implementat ion of real-time, data-
intensive applications.

Tailoring a real-time database system to cater to
the needs of a wide variety of applications and to
achieve good utilization of resources is very important
in many real-time applications. An interesting direc-
tion of this work is to characterize the domain-specific
similarity relation of data in applications such as mul-
timedia, real-time knowledge base, advanced commu-
nication and control systems, and to provide a facility
for application engineers to specify similarity relations
for complex objects. The architecture of the real-time
database can then be optimized for efficient similarity-
based data access.

R e f e r e n c e s

[1] S. B. Davidson and A. Watters, "Partial Computation
in Real-Time Database Systems," IEEE 5th Work-
shop on Real-time Software and Operating Systems,
May 1988.

[2] H. Garcia-Mofin;t and G. Wiederhold, "Read-Only
Transactions in a Distributed Database," ACM
Transactions on Datebase Systems, Vol. 7, No. 2, June
1982.

[3] Tei-Wei Kuo and Aloysms K. Mok, "Application Se-
mantics and Concurrency Control of Real-Time Data-
Intensive Appfications," IEEE 13th Real-Time Sys-
tems Symposium, 1992.

[4] Tei-Wei Kuo and Aloysius K. Mok, "SSP: a
Semantics-Based Protocol for Real-Time Data Ac-
cess," IEEE 14th Real-Time Systems Symposium, De-
cember 1993.

[5] Tei-Wei Kuo and Aloysius K. Mok, "Using Data Sim-
ilarity to Achieve Synchronization for Free," IEEE
11th Workshop on Real-Time Operating Systems and
Software, May 1994.

[6] Tei-Wei Kuo, "Real-Time Database - - Semantics and
Resource Scheduling," Ph.D. dissertation, University
of Texas at Austin, 1994.

[7] Tei-Wei Kuo and Aloysius K. Mok, "The Design and
Implementation of A Real-Time Object Management
Interface," 1995 IEEE Real-Time Technology and Ap-
plicatzons Symposium, May 1995

[8] H. F. Korth and G. D. Speegle, "Formal Model of
Correctness Without Serializability," In Proceedings
of 1988 ACM SIGMOD Conference on Management
of Data, 1988.

[9] C.L. Liu and J.W. Layland, "Scheduling Algorithms
for Muitiprogramming in a hard Real-Time Environ-
ment," Journal of the ACM, Vol. 20, No. 1, January
1973.

[10] C. Papadimitriou, "The Theory of Database Concur-
rency Control," Computer Science Press, 1986.

[11] K. Ramamritham and C. Pu, "A Formal Character-
ization of Epsflon Serializability," Technical Report,
CUCS-044-91, Dept. of Computer Science, Columbia
University, 1991.

[12] L. Sha, R. Rajkumar, and J.P. Lehoczky, "Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization," Technical Report CMU-CS-87-181,
Dept. of Computer Science, CMU, November, 1987.
IEEE Transactions on Computers, Vol. 39, No. 9,
September 1990.

22 SIGMOD Record, Vol. 25, No. 1, March 1996

