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1 Introduction 

A Real-Time DataBase System (RTDBS) can be viewed as 
an amalgamation of a conventional DataBase Management 
System (DBMS) and a real-t ime system. Like a DBMS, it 
has to process transactions and guarantee ACID database  
properties. Furthermore,  it has to operate in real-time, 
satisfying t ime constraints imposed on transaction commit-  
ments. A RTDBS may exist as a standoalone system or 
as an embedded component in a larger mult idatabase sys- 
tem. The publication in 1988 of a special issue of ACM 
SIGMOD Record on Real-Time DataBases [23] signaled the 
bir th of the RTDBS research a r e a - - a n  area that  brings to- 
gether researchers from both the database and real-time sys- 
tems communities. Today, almost eight years later, I am 
pleased to present in this special section of ACM SIGMOD 
Record a review of recent advances in RTDBS research. 

There were 18 submissions to this special section, of 
which eight papers were selected for inclusion to provide 
the readers of ACM SIGMOD Record with an overview of 
current and future research directions within the RTDBS 
community. In the remainder of this paper, I will summa- 
rize these directions and provide the reader with pointers to 
other publications for further information.1 

2 Concurrency Control 

In [52], Ramamr i tham presents the real-time (or temporal)  
characteristics of da t e  in a RTDBS. These characteristics 
may give rise to stringent t iming constraints that  must be 
satisfied when transactions are executed. These constraints 
are in addition to the logical constraints imposed by the 
concurrency control protocol to ensure the database consis- 
tency requirements. In [67], Lain examines the properties of 
RTDBS and specifies correctness criteria for different types 
of real-time transactions using the ACTA framework [21]. 

The satisfaction of both t iming and logical constraints is 
inherently difficult due to the fact that  concurrency control 
algorithms may introduce unpredictable delays due to trans- 
action restarts  and /o r  blocking. Early a t tempts  to solve 
this problem have focussed on relaxing either the deadline 
semantics (thus suggesting best-effort mechanisms for con- 
currency control in the presence of soft [30] and firm [27] 
but  not hard deadlines), or the transactions ACID proper° 

I A d d i t i o n a l  on- l ine  i n f o r m a t i o n  a b o u t  R T D B S  r e s e a r c h  c a n  
be  f o u n d  on  the  W e b  t h r o u g h  t h e  R e a l - T i m e  S y s t e m s  P a g e  a t  
" h t t p : / / c s - w w w . b u . e d u / p u b / i e e e - r t s  " ,  a n d  t h r o u g h  the  R T D B S  In- 
t e r e s t  G r o u p  a t  "http://www.eng.uci.edu/ecc/rtdb/rtdb.html'. 

ties (serializability in particular) [54, 45, 66]. Two instances 
of this lat ter  approach are described in separate papers in 
this issue. In [42], Kuo and Mok overview their similarity- 
based concurrency control, which uses the semantic-based 
correctness cri teria defined in [41]. In [46], Lin and Peng 
present another semantic-based concurrency control scheme 
for OO RTDBS that  favors external consistency over serial- 
izability. 

Various concurrency control algorithms differ in the t ime 
when conflicts are detected, and in the way they are re- 
solved. Pessimistic Concurrency Control (PCC) protocols 
detect  conflicts as soon as they occur and resolve them us- 
ing blocking. Optimist ic Concurrency Control (OCC) proto- 
cols detect conflicts at transaction commit t ime and resolve 
them using rollbacks. 

Most real-time concurrency control schemes considered 
in the l i terature could be viewed as extensions of either 
PCC-based or OCC-based protocols. In particular,  trans- 
actions are assigned priorities that  reflect the urgency of 
their timing constraints. These priorities are used in con- 
junction with PCC-based techniques to make it possible for 
more urgent transactions to abort  conflicting, less urgent 
ones (thus avoiding the hazards of blockages). Examples in- 
clude the Priori ty Abort  (PA) technique [3], Priority Inheri- 
tance (PI) technique [56], and variations of these techniques 
[55, 32, 7, 58, 64]. These priorities are also used in con- 
junction with OCC-based techniques to favor more urgent 
transactions when conflicting, less urgent ones a t t empt  to 
validate and commit  (thus avoiding the hazards of restarts).  
Examples include the Broadcast Commit  (BC) technique 
[40, 27] and the Wait-50 technique [26]. Performance eval- 
uation studies of these concurrency control techniques can 
be found in [3, 29, 57, 31, 1, 28, 30]. 

Other priority-driven real-time concurrency control pro- 
tocols, which are not direct extensions of PCC or OCC, 
were also suggested in the literature. In [35], Kim and 
Srivastava s tudied and evaluated the potential  performance 
improvement of using several protocols based on multiple- 
version two-phase locking concurrency control in RTDBS. In 
[47, 62], Son et al. propose a hybrid protocol that  combines 
OCC and t imestamp ordering. Using tha t  protocol, the de- 
cision regarding the exact serialization order of transactions 
is delayed as much as possible to allow urgent transactions 
to commit. This is done through the dynamic allocation 
and adjustment  of t imestamp intervals [16]. In a recent 
s tudy [12], Bestavros proposed the use of Speculative Con- 
currency Control (SCC), whereby a new dimension (namely 
redundancy) is exploited. By allowing a transaction to use 
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more resources, it can achieve better speculation and hence 
improve its chances for a timely commitment. Thus, the 
problem of incorporating transaction deadline and critical- 
ness information into concurrency control is reduced to the 
problem of rationing system resources amongst competing 
transactions, each with a different payoff to the overall sys- 
tem. 

Real-Time concurrency control is not a problem restricted 
to RTDBS data  access activities. In a recent effort, summa- 
rized in a separate paper [25], Haritsa and Seshadri discuss 
and propose solutions to the important issues of real-time 
index concurrency control problem [24]. 

3 Resource Management and Operating System Support 

The interaction between a RTDBS and its underlying oper- 
ating system (OS) is another important topic of research be- 
cause the correct functioning and timing behavior of RTDBS 
cannot be guaranteed without a thorough understanding of 
the impact of OS internals--including resource management 
in general, and scheduling in particular. 

The interplay between OS and RTDBS can be best un- 
derstood through implementation efforts. In a separate pa- 
per in this issue [6], Adelberg, Kao and Garcia-Molina de- 
scribe their implementation of the Stanford STRIP plat- 
form. The main philosophy underlying STRIP is that soft 
RTDBS are likely to be part of larger open systems (i.e. not 
a monolithic stand-alone system) consisting of many hetero- 
geneous databases. Towards that end, STRIP is designed 
on top of UNIX and provides support for value function 
scheduling and for temporal constraints on data. Son et 
al. developed a suite of database systems on several plat- 
forms, including UNIX, ARTS, and Real-Time Mach. 2 The 
main focus of their work has been to apply current real- 
time technology to architect an actual RTDBS [59]. The 
issues they considered included OS-RTDBS interface [36], 
flexible control of concurrent transactions [43], resource and 
data contention [44, 60], and predictable transaction execu- 
tion [38 i. Database security is another important issue that 
is often ignored in RTDBS work. In a separate paper in 
this issue [61], Son, David and Thuraisingham investigate 
the trade-offs that need to be made between security and 
timeliness. 

The main challenge in applying real-time technology (e.g., 
scheduling) to DBMS is that the resources needed to ex- 
ecute a transaction are not known a prior/. Assuming a 
priori knowledge of transaction requirements is necessary 
for a predictable system, which in turn is necessary to meet 
hard deadlines. This a priori knowledge is the underlying 
assumption taken by Ulusoy and Buchmann in their ef- 
forts described in a separate paper [50] to improve time- 
liness by exploiting main memory DBMS features. Possess- 
ing complete knowledge of transaction requirements reduces 
resource management problems (e.g., concurrency control, 
memory and buffer management) to scheduling problems. 
In many applications, however, the set of objects to be read 
(written) by a transaction may be dependent on user in- 
put (e.g., in a stock market application) or dependent on 
sensory inputs (e.g., in a process control application). In 
such systems, the a priori reservation of resources (e.g., 
read/write locks on data objects) to guarantee a particular 

2The ARTS and RT-Mach real-time operating systems are devel- 
oped at Carnegie-Mellon [49]. 

Worst Case Execution Time (WCET) becomes impossible-- 
and the non-deterministic delays associated with the on-the- 
fly acquisition of such resources pose the real challenge of 
integrating scheduling into DBMS technology. This non- 
determinism led to a wealth of work ( e.g., [ 19]) on scheduling 
and resource management techniques for best-effort systems. 

In a recent effort [14], Bestavros and Nagy proposed an 
admission control paradigm for RTDBS that attempts to 
strike a middle ground between predictable performance and 
best-effort performance. In their model, a transaction is 
submitted to the system as a pair of processes: a primary 
task, and a recovery block. The execution requirements of 
the primary task are not known a priori, whereas those of 
the recovery block are known a priori. Upon the submis- 
sion of a transaction, an Admission Control Mechanism is 
employed to decide whether to admit or reject that transac- 
tion. Once admitted, a transaction is guaranteed to finish 
executing, either by completing its primary task (successful 
commitment) or by completing its recovery block (safe ter- 
mination). Committed transactions bring a profit to the 
system, whereas terminated transactions bring no profit. 
The goal of the admission control, and scheduling protocols 
(e.g., concurrency control, I /O  scheduling, memory man- 
agement) employed in the system is to maximize system 
profit. This notion of "cost consciousness" is similar to that 
investigated by Chakravarthy, Hong, and Johnson in [20], 
where a Cost Conscious Approach with Average Load Fac- 
tor (CCA-ALF) is proposed and evaluated. CCA-ALF is a 
best-effort scheduling strategy (i.e. no guarantees are given) 
that takes into account the dynamic aspects of transaction 
execution (e.g., system load) in addition to its static aspects 
(e.g. soft/firm deadlines) when making scheduling decisions. 

Scheduling issues permeates several facets of a RTDBS. 
One such facet is I /O scheduling and memory management. 
Example work includes the development of time-cognizant 
• "ariants of the traditional SCAN disk scheduling algorithm 
by Abbott  and Garcia-Molina [5] and by Carey, Jauhari, 
and Livny [19], the development of time-cognizant broad- 
cast disk organizations by Bestavros [11], the development 
of priority-based buffer managers by Abbott  and Garcia- 
Molina [4] and by Kim and Srivastava [35], and the devel- 
opment of page replacement strategies for real-time memory 
managers by Carey, Jauhari, and Livny [19, 33] and by Ab- 
bott and Garcia-Molina [5]. In [51], Pang, Carey and Livny 
consider memory management at a higher level. They pro- 
pose an admission control algorithm for real-time queries 
with large memory requirements, in which the multipro- 
gramming level is related to the dynamic demand on the 
system's resources (memory). 

4 Models and Paradigms 

Two recent PhD theses have proposed novel transaction pro- 
ceasing frameworks for RTDBS. In [39, 37], Kim establishes 
a RTDBS model which includes both hard and soft real-time 
transactions, maintains temporal and logical consistency of 
data [52], and supports multiple guarantee levels. Under 
this model, an integrated transaction processing scheme is 
devised, providing both predictability and consistency for 
RTDBS such that every application in the system is assured 
to achieve its own performance goal (the guarantee level) 
and maintain consistency requirement. A simulation study 
shows that higher guarantee levels require more system re- 
sources and therefore cost more than non-guaranteed trans- 
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actions. In [17, 13], Braoudakis takes a different approach, 
whereby transactions axe associated with value functions 
that identify the nature of their timing constraints, as well as 
their overall importance to the system's mission. Under this 
framework a whole spectrum of transactions could be spec- 
itled, including transactions with no timing constraints, as 
well as transactions with soft, firm, and hard deadlines. The 
novelty of this approach is that it allows transaction process- 
ing to be carried uniformly on all types of transactions. The 
efficacy of this approach has been demonstrated by applying 
it to the concurrency control problem in RTDBS. In partic- 
ular, speculative concurrency control algorithms [12] were 
extended to work under this framework and were shown--in 
detailed simulation studies--to yield superior performance. 
The notion of transaction values and value functions [34, 48] 
has been utilized in both general real-time systems [15, 18] 
as well as in RTDBS [2, 29, 63]. In [15, 18], the value of a 
task is evaluated during the admission control process. The 
decision to reject a task or remove a previously guaranteed 
task is based upon tasks' values. A task that is accepted into 
the system is conditionally guaranteed to complete its exe- 
cution provided that  no higher valued (critical) task (with 
which it conflicts) arrives. 

The increasing interest in Object Oriented (OO) systems 
has prompted a number of researchers to investigate the 
suitability of the OO paradigm for RTDBS. In [68], Zhou, 
Rundensteiner, and Shin propose ROMPP, a Real-time Ob- 
ject Model with Performance Polymorphism, to capture the 
characteristics of real-time control applications. In [65], is- 
sues of temporal and logical consistency, and precision are 
investigated within an OO framework. 

5 Active Databases 

Typically, a real-time constraint is imposed on a transaction 
to guarantee that the system's response to a trigger is com- 
mitted in a timely manner. If the generation of this trigger 
depends on the state of the database, then the database is 
characterized as being both real-time and active. Applica- 
tion areas for Active RTDBS include automated manufac- 
turing, air traffic control, and stock market trading, among 
others. 

Early work on active RTDBS include Dayal et ars High 
Performance ACtive (HiPAC) Database System project [22] 
and Korth et ars active RTDBS paradigm [40]. Over the 
last few years, interest in active RTDBS has intensified as 
evidenced by the inaugural ARTDB'95 meeting [9], which is 
detailed in a separate report [10]. In this issue, two papers 
describing on-going projects on active RTDBS are included. 
The first paper [53], describes the work undertaken at the 
University of Massachusetts at Amherst to study the con- 
fluence of real-time constraints, temporal consistency con- 
straints, and concurrency control and recovery constraints 
on Active RTDBS. In particular, they show that exploiting 
the characteristics of data for transaction processing, plac- 
ing the data at the appropriate level of the memory hier- 
archy, and performing appropriate logging and recovery for 
each type of data is crucial to achieve high performance in 
RTDBS. The second paper [8], describes DeeDS--a research 
prototype under development at the University of SkSvde in 
Sweden. Through the use of lazy replication, main memory 
residency, and contingency plans, DeeDS boosts the pre- 
dictability of distributed active RTDBS. 
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