
Inferring Structure in Semistructured Data

SVETLOZAR NESTOROV* SERGE ABITEBOUL t RAJEEV MOTWANI ~t

Department of Computer Science
Stanford University

Stanford, CA 94305-9040
{evtimov, abitebou} @db.stanford.edu, rajeev @cs.stanford.edu

Abstract

When dealing with semistructured data such as that
available on the Web, it becomes important to infer the
inherent structure, both for the user (e.g., to facilitate
querying) and for the system (e.g., to optimize access). In
this paper, we consider the problem of identifying some
underlying structure in large collections of semistructured
data. Since we expect the data to be fairly irregular,
this structure consists of an approximate classification of
objects into a hierarchical collection of types. We propose
a notion of a type hierarchy for such data, and outline
a method for deriving the type hierarchy, and rules for
assigning types to data elements.

1 Introduction

An increasing number of information sources
available to the casual user export data in a variety
of different formats. In most cases, the data has
some structure but it is too irregular to be easily
modeled using a relational [14] or an object-oriented
approach [7]. We refer to this as semistructured
data. Discussions of semistructured data have
recently appeared in the literature [1, 4]. Because of
the very nature of semistructured data, it becomes
important to derive a concise representation or a
summary of the inherent structure in order to give
the casual user some idea of the structure and
contents of the data source. Such information
facilitates query formulation and can also be used
for query optimization. We outline a method for

* Supported by a grant from IBM, a gift from Hitachi, and
MITRE agreement number 21263.

t Permanent address: INRIA-Rocquencourt, 78153 Le
Chesnay, France

t Supported by an Alfred P. Sloan Research Fellowship,
an IBM Faculty Partnership Award, an ARO MURI Grant
DAAH04-96-1-0007, and NSF Young Investigator Award CCR-
9357849, with matching funds from IBM, Mitsubishi, Schlum-
berger Foundation, Shell Foundation, and Xerox Corporation.

inferring some underlying structure, more precisely,
an approximate classification of objects into types,
for large collections of semistructured data.

Several approaches have been proposed re-
cently [5, 10, 13] to describe the "schema" of a
semistructured database using graphs. In one ap-
proach [5], the schema is assumed to be given a
priori. However, notably for Web data, the schema
is rarely given a priori. In another approach [10, l 3],
it is required that the schema be a faithful represen-
tation of the data. For large and irregular data sets,
such a schema may become very complex and dif-
ficult to use. Our goal is to extract a "reasonably
small approximation" of the typing of a large and
irregular data collection.

Following two recent independent proposals [6,
12], we assume that the data consists of a directed
labeled graph. For a concrete example, consider
the integration of several data sources containing
information about movies found on the Web. We
assume that the data is "wrapped" in a common
model, specifically OEM, as done in Tsimmis [8]. In
this model, the data is represented as a labeled graph
of objects where the labels stand for relationships
between objects. Because the data is drawn from
many different sources, it is relatively irregular. To
obtain a concrete sense of the kinds of problems we
wish to address, suppose that the resulting database
consists of thousands of labels and hundreds of
thousands of objects, most of which have relatively
few (dozens) of distinct labels on outgoing edges.
Consider now a browser or a QBE-like interface
for such a data set. The user will rapidly be
overwhelmed by the sheer number of alternative
labels to choose from. Thus, it is important to be able
to automatically analyze the data, type the objects
(to the extent possible), assign meaningful names to

S I G M O D Record, Vol. 26, No. 4, December 1997 39

these types, distinguish the "core" attributes from
the more circumstantial ones, etc. We do not expect
a precise and complete description of the database
since the data may be too irregular. However, the
techniques should be able to adapt to the needs
of user, e.g., to refine the description locally if so
desired, perhaps explain the precision of the typing
that is obtained, or the degree of irregularity of the
data.

In this paper, we propose a notion of a type
hierarchy for semistmctured data, an algorithm
for deriving the type hierarchy, and rules for
assigning types to objects of semistructured data
collections. Our initial idea was to employ data
mining techniques developed for mining association
rules [2]. Clearly, other techniques developed in
the areas of machine learning, classification and
clustering, e.g., [11, 9], are relevant to a certain
extent and could provide alternative approaches.
After running some experiments with association-
rule mining techniques, we found the results
somewhat unsatisfactory. The notions of support
and confidence that are central to mining association
rules seem less pertinent to our problem. Instead,
we propose a technique based on another criteria,
called jump, that captures the relative importance
of some attributes in a larger set. We propose
an algorithm to select types and assign objects to
types. As previously mentioned, we do not insist
that this provide a high-precision typing of the data.
In particular, some objects may remain untyped and
other objects may be assigned a type that does not
describe them exactly.

We briefly discuss some preliminary experimental
results on Web data. While our initial results
are encouraging, more experiments are needed,
particularly with larger data sets. Comparison with
more standard techniques such as BDDs [3] should
also be performed. Finally, our initial experiments
allowed us to further refine our algorithm. This
paper describes on-going research. We are currently

working on improving the technique and the
performance of the algorithm.

2 Preliminaries

In this section we describe the data model and define
some terminology that is needed for the next section.
Two similar models for semistructured data have
been proposed recently and independently [6, 12].

In both models, semistructured data is modeled as
a rooted, labeled, directed graph with the objects as
vertices and labels on edges. While we will employ
the Object Exchange Model (OEM) [12], our work
is equally applicable to any graph-based data model
(e.g., [6]). An example of an OEM database is shown
in Figure 1..

"g~f' ~~ lme~dr ~g~NO~ ~
1000000 35 "Eric Paris" 15 "John male London"

Figure 1" Part of the example OEM database D.

Let D denote the data set. For each object o in
D, let a t t r i b u t e s (o) be the set of labels on the
outgoing edges at o, and let r o l e s (o) be the set of
labels on incoming edges at o. For a set S of labels
and a data set D, we define a t (S) to be the number
of objects o in D such that a t t r i b u t e s (o) = S,
and above(S) to be the number of objects o in
D such that a t t r i b u t e s (o) D S. Note that
above(S) > a t (S) because all objects counted in
a t (S) are also counted in above(S) . We also define
the following function: for each S,

at (S)
j mp(S) - above(S)'

where jump(S) is set to 0 whenever a t (S) = 0,
regardless of whether above(S) is 0 or not. Since
for any S and D, 0 _< a t (S) _< above(S), then we
have 0 <__ jurap(S) <_ 1.

3 Algorithm

In this section we present an algorithm for construct-
ing a type hierarchy for a semistructured data source.
We also present the rules for assigning types to ob-
jects given a type hierarchy. The skeleton of our al-
gorithm consists of four main steps, some of which
may be applied iteratively.

Step 1: Identify candidate types.

40 S I G M O D Record, Vol. 26, No. 4, December 1997

Step 2: Select types from the candidates and orga-
nize them into a type hierarchy.

Step 3: Derive the typing rules.

Step 4: Validate or type-check the type hierarchy
against the data.

For ease of exposition, we use a small and rather
simplistic example to introduce the algorithm. The
basic idea is to use jumps to discover the types, i.e.,
the increase in the number Of "fitted" objects when
an attribute is added to a set. Besides this guiding
principle, the choice of types and the assignment of
types to objects is based on a number of heuristic
rules. The rules in a real system should be expected
to be more complicated 1 than those presented in the
paper. We focus here on the main idea and mention
briefly possible improvements.

Our running example is a data set D that contains
various information about people and companies
such as their names (for both companies and people),
addresses (for both companies and people), age
(for people), sex (for people), salary (for people),
employees (for companies), and subsidiaries (for
companies). We will illustrate how our algorithm
derives a type hierarchy for D which is intuitively
correct in this simplistic example.

3.1 Identi fying Candidate Types

The types we consider are characterized by sets of
labels. Intuitively, an object o has type r if the set
of labels on edges with source o coincide with r . Of
course, this is too demanding so we will insist that
this set be as close as possible to r .

To identify candidate types, we first create a
counting lattice, L, with an alphabet consisting of
all distinct labels in D. The counted words are
a t t r i b u t e s (o) for all objects o in D. Note that
from L we can efficiently compute the functions a t
and above for every set of labels. The counting
lattice L can be constructed in one pass over D,
as can the computation of a t values. The task of
computing above values can be performed in time
O(n2), where n is the number of non-zero a t values,
which should be significantly less than than the size
of D in any reasonable application.

To continue with our example, suppose the
relevant part of L (i.e., with non-zero a t values) for

llndeed, our prototype does use more complex rules.

the data set D is as shown in Figure 2. Each vertex
contains the lattice entry (i.e., the set of different
labels) associated with the vertex and the number
of exact occurrences of the word, i.e., the a t value.
For example, the bottom vertex corresponds to the
fact that in D there are 100 objects that have only
subobjects labeled Name and Add:t-.

Addr, Age,Narne,Sal,Sex]
3000 .j

"--...
Addr, Name,Sal,Sex] Addr.Age.Name,Sex 2000 J [4000 1 (Addr'EmPll0 Name's~

ddr.Name.Sex]1500) [Addr,E l,Nam

• Addr,Empi,Name.Sub I

Figure 2: The counting lattice L constructed from
the database D.

Once L has been created, we identify sets of labels
(i.e., vertices in the lattice) that present significant
jumps by selecting all sets of labels S such that
jump(S) _> 0, where O is a predetermined threshold.
(The choice of 0 will be discussed later.) The sets of
labels with significant jumps are added to the set of
candidate types. Then, we try to obtain more vertices
with significant jumps by pushing counts "down"
for vertices that are not "above" any candidate type.
Intuitively, if an object is not in a candidate type, it
is going to be assigned to less precise types, thereby
increasing the population of such types and possibly
turning them into candidates. Clearly, more complex
rules may be used here; for instance, we could decide
to attach some objects to a type with more attributes
than what they actually have, thereby growing the
population of more refined types.

To continue with our example, suppose that we
choose a threshold 0 = 0.7. Then, there are three
significant jumps in the lattice L shown in Figure 2:

• jump({Addr, Age, Name, Sal , Sex}) = 1

• jump({Addr, pl, rJame, Sub}) = 1

• jurap({Addr, Empl, r ame}) = O.83

After pushing counts down we get an additional sig-
nificant jump as the a t value of {Addr, Name, Sex}
is incremented to 7500 and we obtain that

jlal'ap({Addr, Name, Sex}) = 0.71.

SIGMOD Record, Vol. 26, No. 4, December 1997 41

Remark 3.1 As mentioned in the introduction, we
first intended to use an approach involving data
mining for association rules [2]. However, looking
for types with large support, i.e., large a t values,
does not work. This would lead to missing some
types that occur relatively infrequently even though
they are rather regular in terms of their attributes
and neatly distinguished from the rest of the data.

3.2 Building the Type Hierarchy
In the first step, we focused exclusively on the
attribute labels of each object. Here we also
consider role labels. Simplifying the problem for
exposition purposes, for each of the candidate types,
we define its primary role as the label occurring
most frequently in r o l e s (o) for all objects o of the
given candidate type. We will denote the primary
role of a candidate type S as p-role(S). Then
we select candidate T as a type if there does not
exist another candidate T' such that T' C T and
p-role(T) = p-role(T'). Intuitively, we choose the
minimal set of attributes necessary to distinguish a
type.

Going back to our running example, Figure 3
shows the candidate types chosen from Figure 2
and their primary roles. We find three types,
namely {Addr, Narae, Sox} with a primary role
Person, {Name, Addr, Empl} with a primary role
Company and {Name, Addr, Ago, Sex, Sal} with
a primary role Empl. Note that the candidate
{Addr, Erapl, Name, Sub} does not become a type
because it is a superset of {Addr, Erapl, Name} and
their primary roles are the same.

Empl (2800) "~
%ddr,Age,Name,Sal,Sex I

3000)
I

IA Person (5500))
ddr,Name,Sex|

7500)

Company (10) "i
iAddr,Empl,Name,Sub::
: 10 :

. '

Company(45)]
. I Addr,Ernpl,Name I

t. 50)

Figure 3: The candidate types with their primary
roles.

In general, we can use more than one label as
the primary role of a given candidate S. Indeed, it
might be the case that the two most frequent labels
in p-role(S) occur an (almost) equal number of
times. In our simple example we do not address

this problem but our algorithm can handle more
complex structures in p-role(S), e.g., a set of labels
with weights. In this case, the rules for choosing the
types from the candidates become more complex.

3.3 Typing Rules

Let the types we found in the previous step be
S1, . . . , SN. Consider an object o. Then we assign
to o the type Sk that has the shortest "distance"
to o. By distance 2 we mean the number of labels
in the set differences a t t r i b u t e s (o) , - - Sk and
Sk -- attributes(o).

Note that a given object may be assigned to more
than one type. We consider this to be a feature of the
algorithm rather than a shortcoming. In many real
life situations, objects do belong to more than one
type.

3.4 Validation and Evaluation

Once we have build the type hierarchy and assigned
types to the objects, we need to evaluate the result
and validate the classification we obtained. One
important measure is the type size (e.g., the number
of classes) of the typing. Another category of
measures involves correctness or accuracy of the
typing. Consider, for instance, the number of objects
that have been assigned a certain type even though
they are missing some of the attributes characterizing
the type or they have more than what is required.
Also, consider the ntimber of objects that we failed
to classify.

As mentioned earlier, the result of the algorithm
depends crucially on the choice of threshold 0 that
we considered so far somewhat arbitrary. Clearly,
there is a trade-off between type size and accuracy.
For example, with 0 = 0, we obtain a perfect typing
by creating a separate type for each slight variation
of object structure. On the other hand, a too high 0
would yield very few types and thus may result in
very low accuracy. If the number of classes does not
fit our expectations (e.g., is too large to be tractable)
or if the accuracy is not sufficient, we have to try
new values for 0.

It would be useful to relate directly 0 to the
database size, number of labels, type size, accuracy
and other fixed parameters ofthe problem. However,

2More complex distance measures could clearly be used,
e.g., a distance that would give less weight to the presence of an
extra attribute than to the absence of a required one.

42 S I G M O D Record, Vol. 26, No. 4, D e c e m b e r 1997

this is ignoring another important measure - the
degree of regularity of the data set. This degree
of regularity may be a useful information for the
system (e.g., for physically organizing the data) as
well as for the user who is told what kind of data to
expect. It can also be useful in guiding the choice of
a value for 0.

4 Conclus ions

We outlined an algorithm for deriving a type
hierarchy for a semistructured data source and rules
for assigning types to objects. The algorithm
evolved from experiments on Web data. In our
experiments, we used two different data sources:
a subset of the ESPN SportsZone 3 that provides
various sports information, and an on-line database
containing information about the Stanford Database
Group (DBG) 4. Both data sets are of relatively
modest size (hundreds of objects and dozens of
labels) but DBG is highly cyclic whereas ESPN
is close to a tree. The typing is simple enough
so we could interpret the results of the algorithm;
but the data is irregular enough so that finding the
type hierarchy is nontrivial. Our initial results are
encouraging although clearly more experiments and
work are needed. In particular, as expected, our
algorithm is sensitive to the jump threshold in the
sense that lower threshold values result in a greater
number of types. We plan to investigate techniques
to provide "good" estimates for this threshold. Also,
the rules that we present in this paper are simplified
for presentation purposes. The choice of such rules
has a strong impact on the quality of the results, and
we are currently experimenting with more complex
rules and working on the fine tuning of our algorithm
with respect to such rules. Finally, we designed the
algorithm with performance in mind. We are now
working on designing appropriate access structures
to improve the performance of our prototype.

References

[ll S. Abiteboul. Querying semi-structured data. In
Proceedings of ICDT, pages 1-18, Delphi, Greece,
January 1997.

[2] R. Agrawal, T. Imilienski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases. In
Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 207-216, May 1993.

3http://espnet.sportszone.com/
4http://www-lore.stan ford.edu:8765/ui2/

[3] S.B. Akers. Binary decision diagrams. IEEE Transactions
on Computers. C-27(6):509-516, 1978.

[4] P. Buneman. Semistructured data: a tutorial. In
Proceedings of PODS, pages 117-121, Tuscon, Arizona,
May 1997.

[5] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Addind structure to unstructured data. In Proceedings of
ICDT, pages 336-350, Delphi, Greece, January 1997.

[6] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques ~br
unstructured data. In Proceedings of the ACM S1GMOD
International Conference, pages 505-516, Montreal,
Canada, June 1996.

[7] R.G.G. Caitetl. Object data management. Addison-
Wesley, Reading, Mass., 1994.

[8] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The Tsim-
mis project: Integration of heterogeneous information
sources. In Proceedings of lOOth Anniversary Meeting
of the Information Processing Society of Japan, pages 7-
18, Tokyo, Japan, October 1994.

[9] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors.
Machine learning, neural and statistical classification.
Prentice Hall, Englewood Cliffs, N.J., 1994.

[I0] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Rep-
resentative objects: Concise representations of semistruc-
tured, hierarchical data. In Proceedings of ICDE, pages
79-90, Birmingham, U.K., April 1997.

[1 II N.J. Nilsson. The mathematical foundations of learning
machines. Morgan Kaufmann, San Mateo, Calif., 1990.

[12] Y. Papakonstantinou, H. Garcia-Molina. and J. Widom.
Object exchange across heterogeneous information
sources. In Proceedings oflCDE, pages 251-260, Taipei,
Taiwan, March 1995.

[13] D. Quass et. al. Lore: A lightweight object repository for
semistructured data. In Proceedings of the ACMSIGMOD
International Conference on Management of Data, page
549, Montreal, Canada, June 1996.

[14] J.D. Ullman. Principles of Database and Knowledge-Base
Systems, Volume I. Computer Science Press, Rockville,
Maryland, 1989.

SIGMOD Record, Vol. 26, No. 4, December 1997 43

