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Abstract 

When dealing with semistructured data such as that 
available on the Web, it becomes important to infer the 
inherent structure, both for the user (e.g., to facilitate 
querying) and for the system (e.g., to optimize access). In 
this paper, we consider the problem of identifying some 
underlying structure in large collections of semistructured 
data. Since we expect the data to be fairly irregular, 
this structure consists of an approximate classification of 
objects into a hierarchical collection of types. We propose 
a notion of a type hierarchy for such data, and outline 
a method for deriving the type hierarchy, and rules for 
assigning types to data elements. 

1 Introduction 

An increasing number of information sources 
available to the casual user export data in a variety 
of different formats. In most cases, the data has 
some structure but it is too irregular to be easily 
modeled using a relational [14] or an object-oriented 
approach [7]. We refer to this as semistructured 
data. Discussions of semistructured data have 
recently appeared in the literature [1, 4]. Because of 
the very nature of semistructured data, it becomes 
important to derive a concise representation or a 
summary of the inherent structure in order to give 
the casual user some idea of the structure and 
contents of the data source. Such information 
facilitates query formulation and can also be used 
for query optimization. We outline a method for 
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inferring some underlying structure, more precisely, 
an approximate classification of objects into types, 
for  large collections of semistructured data. 

Several approaches have been proposed re- 
cently [5, 10, 13] to describe the "schema" of a 
semistructured database using graphs. In one ap- 
proach [5], the schema is assumed to be given a 
priori. However, notably for Web data, the schema 
is rarely given a priori. In another approach [ 10, l 3], 
it is required that the schema be a faithful represen- 
tation of the data. For large and irregular data sets, 
such a schema may become very complex and dif- 
ficult to use. Our goal is to extract a "reasonably 
small approximation" of the typing of a large and 
irregular data collection. 

Following two recent independent proposals [6, 
12], we assume that the data consists of a directed 
labeled graph. For a concrete example, consider 
the integration of several data sources containing 
information about movies found on the Web. We 
assume that the data is "wrapped" in a common 
model, specifically OEM, as done in Tsimmis [8]. In 
this model, the data is represented as a labeled graph 
of objects where the labels stand for relationships 
between objects. Because the data is drawn from 
many different sources, it is relatively irregular. To 
obtain a concrete sense of the kinds of problems we 
wish to address, suppose that the resulting database 
consists of  thousands of labels and hundreds of 
thousands of objects, most of which have relatively 
few (dozens) of distinct labels on outgoing edges. 
Consider now a browser or a QBE-like interface 
for such a data set. The user will rapidly be 
overwhelmed by the sheer number of alternative 
labels to choose from. Thus, it is important to be able 
to automatically analyze the data, type the objects 
(to the extent possible), assign meaningful names to 
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these types, distinguish the "core" attributes from 
the more circumstantial ones, etc. We do not expect 
a precise and complete description of the database 
since the data may be too irregular. However, the 
techniques should be able to adapt to the needs 
of user, e.g., to refine the description locally if so 
desired, perhaps explain the precision of the typing 
that is obtained, or the degree of irregularity of the 
data. 

In this paper, we propose a notion of a type 
hierarchy for semistmctured data, an algorithm 
for deriving the type hierarchy, and rules for 
assigning types to objects of semistructured data 
collections. Our initial idea was to employ data 
mining techniques developed for mining association 
rules [2]. Clearly, other techniques developed in 
the areas of machine learning, classification and 
clustering, e.g., [11, 9], are relevant to a certain 
extent and could provide alternative approaches. 
After running some experiments with association- 
rule mining techniques, we found the results 
somewhat unsatisfactory. The notions of support 
and confidence that are central to mining association 
rules seem less pertinent to our problem. Instead, 
we propose a technique based on another criteria, 
called jump, that captures the relative importance 
of some attributes in a larger set. We propose 
an algorithm to select types and assign objects to 
types. As previously mentioned, we do not insist 
that this provide a high-precision typing of the data. 
In particular, some objects may remain untyped and 
other objects may be assigned a type that does not 
describe them exactly. 

We briefly discuss some preliminary experimental 
results on Web data. While our initial results 
are encouraging, more experiments are needed, 
particularly with larger data sets. Comparison with 
more standard techniques such as BDDs [3] should 
also be performed. Finally, our initial experiments 
allowed us to further refine our algorithm. This 
paper describes on-going research. We are currently 

working  on improving the technique and the 
performance of the algorithm. 

2 Preliminaries 

In this section we describe the data model and define 
some terminology that is needed for the next section. 
Two similar models for semistructured data have 
been proposed recently and independently [6, 12]. 

In both models, semistructured data is modeled as 
a rooted, labeled, directed graph with the objects as 
vertices and labels on edges. While we will employ 
the Object Exchange Model (OEM) [12], our work 
is equally applicable to any graph-based data model 
(e.g., [6]). An example of an OEM database is shown 
in Figure 1.. 

"g~f' ~~ lme~dr  ~g~NO~ ~ 
1000000 35 "Eric .... Paris" 15 "John .... male .... London" 

Figure 1" Part of the example OEM database D. 

Let D denote the data set. For each object o in 
D, let a t t r i b u t e s ( o )  be the set of labels on the 
outgoing edges at o, and let r o l e s ( o )  be the set of 
labels on incoming edges at o. For a set S of labels 
and a data set D, we define a t ( S )  to be the number 
of objects o in D such that a t t r i b u t e s ( o )  = S, 
and above(S)  to be the number of objects o in 
D such that a t t r i b u t e s ( o )  D S. Note that 
above(S)  > a t ( S )  because all objects counted in 
a t ( S )  are also counted in above(S) .  We also define 
the following function: for each S, 

at (S )  
j mp(S) - above(S)' 

where jump(S) is set to 0 whenever a t ( S )  = 0, 
regardless of whether above(S)  is 0 or not. Since 
for any S and D, 0 _< a t ( S )  _< above(S),  then we 
have 0 <__ jurap(S) <_ 1. 

3 Algorithm 

In this section we present an algorithm for construct- 
ing a type hierarchy for a semistructured data source. 
We also present the rules for assigning types to ob- 
jects given a type hierarchy. The skeleton of our al- 
gorithm consists of four main steps, some of which 
may be applied iteratively. 

Step 1: Identify candidate types. 
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Step 2: Select types from the candidates and orga- 
nize them into a type hierarchy. 

Step 3: Derive the typing rules. 

Step 4: Validate or type-check the type hierarchy 
against the data. 

For ease of exposition, we use a small and rather 
simplistic example to introduce the algorithm. The 
basic idea is to use jumps to discover the types, i.e., 
the increase in the number Of "fitted" objects when 
an attribute is added to a set. Besides this guiding 
principle, the choice of types and the assignment of 
types to objects is based on a number of heuristic 
rules. The rules in a real system should be expected 
to be more complicated 1 than those presented in the 
paper. We focus here on the main idea and mention 
briefly possible improvements. 

Our running example is a data set D that contains 
various information about people and companies 
such as their names (for both companies and people), 
addresses (for both companies and people), age 
(for people), sex (for people), salary (for people), 
employees (for companies), and subsidiaries (for 
companies). We will illustrate how our algorithm 
derives a type hierarchy for D which is intuitively 
correct in this simplistic example. 

3.1 Identi fying Candidate  Types 

The types we consider are characterized by sets of 
labels. Intuitively, an object o has type r if the set 
of labels on edges with source o coincide with r .  Of 
course, this is too demanding so we will insist that 
this set be as close as possible to r .  

To identify candidate types, we first create a 
counting lattice, L, with an alphabet consisting of 
all distinct labels in D. The counted words are 
a t t r i b u t e s ( o )  for all objects o in D. Note that 
from L we can efficiently compute the functions a t  
and above for every set of labels. The counting 
lattice L can be constructed in one pass over D, 
as can the computation of a t  values. The task of 
computing above values can be performed in time 
O(n2), where n is the number of non-zero a t  values, 
which should be significantly less than than the size 
of D in any reasonable application. 

To continue with our example, suppose the 
relevant part of L (i.e., with non-zero a t  values) for 

llndeed, our prototype does use more complex rules. 

the data set D is as shown in Figure 2. Each vertex 
contains the lattice entry (i.e., the set of different 
labels) associated with the vertex and the number 
of exact occurrences of the word, i.e., the a t  value. 
For example, the bottom vertex corresponds to the 
fact that in D there are 100 objects that have only 
subobjects labeled Name and Add:t-. 

Addr, Age,Narne,Sal,Sex ] 
3000 .j 

"--... 
Addr, Name,Sal,Sex ] Addr.Age.Name,Sex 2000 J [ 4000 1 (Addr'EmPll0 Name's~ 

ddr.Name.Sex]1500 ) [Addr,E l,Nam 

• Addr,Empi,Name.Sub I 

Figure 2: The counting lattice L constructed from 
the database D. 

Once L has been created, we identify sets of labels 
(i.e., vertices in the lattice) that present significant 
jumps by selecting all sets of labels S such that 
jump(S) _> 0, where O is a predetermined threshold. 
(The choice of 0 will be discussed later.) The sets of 
labels with significant jumps are added to the set of 
candidate types. Then, we try to obtain more vertices 
with significant jumps by pushing counts "down" 
for vertices that are not "above" any candidate type. 
Intuitively, if an object is not in a candidate type, it 
is going to be assigned to less precise types, thereby 
increasing the population of such types and possibly 
turning them into candidates. Clearly, more complex 
rules may be used here; for instance, we could decide 
to attach some objects to a type with more attributes 
than what they actually have, thereby growing the 
population of more refined types. 

To continue with our example, suppose that we 
choose a threshold 0 = 0.7. Then, there are three 
significant jumps in the lattice L shown in Figure 2: 

• jump({Addr, Age, Name, Sal ,  Sex}) = 1 

• jump({Addr,  pl, rJame, Sub}) = 1 

• jurap({Addr, Empl, r ame}) = O.83 

After pushing counts down we get an additional sig- 
nificant jump as the a t  value of {Addr, Name, Sex} 
is incremented to 7500 and we obtain that 

jlal'ap({Addr, Name, Sex}) = 0.71. 
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Remark  3.1 As mentioned in the introduction, we 
first intended to use an approach involving data 
mining for association rules [2]. However, looking 
for types with large support, i.e., large a t  values, 
does not work. This would lead to missing some 
types that occur relatively infrequently even though 
they are rather regular in terms of their attributes 
and neatly distinguished from the rest of the data. 

3.2 Building the Type Hierarchy 
In the first step, we focused exclusively on the 
attribute labels of each object. Here we also 
consider role labels. Simplifying the problem for 
exposition purposes, for each of the candidate types, 
we define its primary role as the label occurring 
most frequently in r o l e s ( o )  for all objects o of the 
given candidate type. We will denote the primary 
role of a candidate type S as p-role(S). Then 
we select candidate T as a type if there does not 
exist another candidate T'  such that T'  C T and 
p-role(T) = p-role(T'). Intuitively, we choose the 
minimal set of attributes necessary to distinguish a 
type. 

Going back to our running example, Figure 3 
shows the candidate types chosen from Figure 2 
and their primary roles. We find three types, 
namely {Addr, Narae, Sox} with a primary role 
Person, {Name, Addr, Empl} with a primary role 
Company and {Name, Addr, Ago, Sex, Sal} with 
a primary role Empl. Note that the candidate 
{Addr, Erapl, Name, Sub} does not become a type 
because it is a superset of {Addr, Erapl, Name} and 
their primary roles are the same. 

Empl (2800) "~ 
%ddr,Age,Name,Sal,Sex I 

3000 ) 
I 

IA Person (5500)) 
ddr,Name,Sex| 

7500 ) 

Company (10) "i 
iAddr,Empl,Name,Sub:: 
: 10 : 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . '  

Company(45)] 
. I Addr,Ernpl,Name I 

t. 50 ) 

Figure 3: The candidate types with their primary 
roles. 

In general, we can use more than one label as 
the primary role of a given candidate S. Indeed, it 
might be the case that the two most frequent labels 
in p-role(S) occur an (almost) equal number of 
times. In our simple example we do not address 

this problem but our algorithm can handle more 
complex structures in p-role(S), e.g., a set of labels 
with weights. In this case, the rules for choosing the 
types from the candidates become more complex. 

3.3 Typing Rules 

Let the types we found in the previous step be 
S1, . . . ,  SN. Consider an object o. Then we assign 
to o the type Sk that has the shortest "distance" 
to o. By distance 2 we mean the number of labels 
in the set differences a t t r i b u t e s ( o ) , - -  Sk and 
Sk -- attributes(o). 

Note that a given object may be assigned to more 
than one type. We consider this to be a feature of the 
algorithm rather than a shortcoming. In many real 
life situations, objects do belong to more than one 
type. 

3.4 Validation and Evaluation 

Once we have build the type hierarchy and assigned 
types to the objects, we need to evaluate the result 
and validate the classification we obtained. One 
important measure is the type size (e.g., the number 
of classes) of the typing. Another category of 
measures involves correctness or accuracy of the 
typing. Consider, for instance, the number of objects 
that have been assigned a certain type even though 
they are missing some of the attributes characterizing 
the type or they have more than what is required. 
Also, consider the ntimber of objects that we failed 
to classify. 

As mentioned earlier, the result of the algorithm 
depends crucially on the choice of threshold 0 that 
we considered so far somewhat arbitrary. Clearly, 
there is a trade-off between type size and accuracy. 
For example, with 0 = 0, we obtain a perfect typing 
by creating a separate type for each slight variation 
of object structure. On the other hand, a too high 0 
would yield very few types and thus may result in 
very low accuracy. If the number of classes does not 
fit our expectations (e.g., is too large to be tractable) 
or if the accuracy is not sufficient, we have to try 
new values for 0. 

It would be useful to relate directly 0 to the 
database size, number of labels, type size, accuracy 
and other fixed parameters ofthe problem. However, 

2More complex distance measures could clearly be used, 
e.g., a distance that would give less weight to the presence of an 
extra attribute than to the absence of a required one. 
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this is ignoring another important measure - the 
degree of regularity of the data set. This degree 
of regularity may be a useful information for the 
system (e.g., for physically organizing the data) as 
well as for the user who is told what kind of data to 
expect. It can also be useful in guiding the choice of 
a value for 0. 

4 Conclus ions  

We outlined an algorithm for deriving a type 
hierarchy for a semistructured data source and rules 
for assigning types to objects. The algorithm 
evolved from experiments on Web data. In our 
experiments, we used two different data sources: 
a subset of the ESPN SportsZone 3 that provides 
various sports information, and an on-line database 
containing information about the Stanford Database 
Group (DBG) 4. Both data sets are of relatively 
modest size (hundreds of objects and dozens of 
labels) but DBG is highly cyclic whereas ESPN 
is close to a tree. The typing is simple enough 
so we could interpret the results of  the algorithm; 
but the data is irregular enough so that finding the 
type hierarchy is nontrivial. Our initial results are 
encouraging although clearly more experiments and 
work are needed. In particular, as expected, our 
algorithm is sensitive to the jump threshold in the 
sense that lower threshold values result in a greater 
number of types. We plan to investigate techniques 
to provide "good" estimates for this threshold. Also, 
the rules that we present in this paper are simplified 
for presentation purposes. The choice of such rules 
has a strong impact on the quality of the results, and 
we are currently experimenting with more complex 
rules and working on the fine tuning of our algorithm 
with respect to such rules. Finally, we designed the 
algorithm with performance in mind. We are now 
working on designing appropriate access structures 
to improve the performance of our prototype. 
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