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Abstract

We consider the problem of mining association rules over
interval data (that is, ordered data for which the separa-
tion between data points has meaning). We show that the
measures of what rules are most important (also called rule
interest) that are used for mining nominal and ordinal data
do not capture the semantics of interval data. In the pres-
ence of interval data, support and confidence are no longer
intuitive measures of the interest of a rule. We propose
a new definition of interest for association rules that takes
into account the semantics of interval data. We developed
an algorithm for mining association rules under the new def-
inition and overview our experience using the algorithm on
large real-life datasets.

1 Background

Much work in data mining revolves around the discovery of
rules within kwge quantities of data. Rules over relations
are of the form Cl -Cz where Cl and C2 are conditions on
tuples of the relation [PS91]. Such a rule may be exact,
meaning that all tuples that satisfy Cl also satisfy Cz, it
may be strong, meaning that tuples satisfying Cl almost
always satisfy C2 or it may be approximate meaning the
some of the tuplw satisfying Cl also satisfy C2 [PS91]. Most
often, the conditions are restricted to be simple equality
predicates restricting attribute values (e.g., Quantity = 10)
or conjunctions of such predicates on different attributes.

Rules are typically ranked by some measure of interest.
Common measures are based on the frequency with which
a rule appears in the relation or, for approximate rules, the
strength of the rule implication. Less commonly this mea-
sure may be baaed on the complexity of the rule or other pa-
rameters [PS91]. When these measures are numerical, some
resemchers have referred to the resulting rules as quantita-
tive rules, using the adjective quantitative to refer to the in-
terest measure not to the consideration of quantitative data
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[HCC93]. Such work should not be confused with the defi-
nition of rules over quantitative data which is the problem
considered in this paper.

The term association rule has been used to describe a
specific form of such rules [AIS93, AS94, CNFF96, HS95,
MTV94, PCY95, SON95]. The rule frequency is a measure
of how often a rule occurs in a data set. When defined as the
fraction of all tuples in a relation that satisfy a rule (specifi-
cally, ICI A CZI/lrl where r is the set of all tuples considered),
frequency is referred to as support [AIS93]. The strength of
a rule implication is a measure of how often a rule ii likely
to be true within the data set. When defined as the frac-
tion of all tuples satisfying Cl that also satisfy CZ (that is,
ICI A c2\/[C1 l), rule strength is referred to as confidence.
The problem of “discovering” association rules is then tra-
ditionally defined as follows: given fixed thresholds for the
permissible minimum support and confidence, find all asso-
ciation rules that hold with more than the given support
and confidence. For clarity, we will refer to this definition
of association rules as classical association rules. Numerous
algorithms have been proposed to solve this problem [AIS93,
SON95, AS94, HCC93, HS95, MTV94, PCY95, Toi96]. The
main idea behind many of these is the use of the minimum
support threshold to limit the space of rules that needs to
be searched [AS94]. The algorithms require that the mini-
mum confidence and support be specific a priori by a user.
The user is given no guidance on selecting the confidence
or support thresholds and will not know if a given pair of
thresholds will yield no rules or thousands of rules on a given
data set.

Algorithms for discovering classical association rules make
different assumptions about the type of data sets to be
mined. In general, the data set is a relational table. The do-
mains of the attributes may be restricted to boolean domains
[AIS93, AS94]. Under this formulation, an association rule
(XI = 1) A (X2 = 1) A ...(X. = 1)+(Y, = 1) A ...(Y~ = 1)
is often abbreviated as X+Y where X = {Xl, .... X. } and
Y = {Yl, .... Y~ } are sets of attributes. 1 This definition
has been generalized to include relational tables over ar-
bitrary domains including qualitative and quantitative do-
mains [SA96]. It is clear from the formulation of the as-
sociation rule problem that the complexity of the search
depends not only on the number of attributes, but also on
the number of values an attribute may have. To manage the
added complexity of considering large domains, data values

‘ Such boolean tables are often represented in an unnormalized
form as a list of tuple identifiers paired with a set of values [AIS93].
Logically, each value represents an attribute on which the tuple has
the value true.
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may be grouped together and considered only collectively.
Specifically, a hierarchy may be defined over the values of
a domain (for example, a hierarchy of continent-country --
region-city may be used to group geographic values). This
hierarchy may then be used to reduce the space of rules
considered [SA95, HF95]. Additionally, if an attribute is
linearly ordered then values may be grouped into ranges.
Instead of considering all values of a Salary attribute, val-
ues may be partitioned into ranges (for example, ranges of

$10,000 increments) [SA96].
These solutions work well for nominal dataaets in which

the data values represent names with no relative meaning
and ordinal data where data values have meaning only in
relation to each other. However, we show that these def-
initions and algorithms may yield very unintuitive results
when applied to interval data where the separation between
data values has meaning [JD88]. In Section 2, we explore
these difficulties. In Section 3, we introduce the notion of an
adaptive algorithm for which the quality of the results may

be varied dynamically depending on the available memory
resources. In Sections 4 and 5, we develop new definitions

of association rules that are appropriate for interval data.
We present an algorithm for discovering association rules

over intervaf data in Section 6. In Section 7. we brieflv.
overview our experience using the algorithm on large real-
life dataaets.

The important contributions of our work include:

● The formulation of the association rule problem for
interval data in a way that respects the quantitative
properties and semantics of the data. We refer to this
formulation as distance-based association rules.

● Application of adaptive techniques to develop mining
algorithms for both classicaI and distance-based asso-
ciation rules that find rules of the highest quality and
interest within given memory constraints.

2 Association Rules on Interval Data

We begin by examining a few examples to illustrate how
classical association rules would apply to relations contain-
ing interval data. From these examples, we extract three
goals that will motivate our algorithms.

As noted in [SA96], when data domains become large,
the expense of finding association rules involving all possi-
ble values may be prohibitive. Using a higher support and
confidence thresholds can reduce this cost but may also give
very few rules. Semantically interesting rules may not be
found. To address this problem, Srikant and Agrawal have
defined what they call quantitative association rules (QAR)

[SA96]. A QAR is simply a classical association rule in which
the predicates may be equality predicates (Att~ = val) or
range predicates (vail s Attr ~ va12). To limit the num-
ber of ranges (intervals) that must be considered, quality
metrics are imposed on what constitutes a ‘(good” interval,
These metrics are based on the following observations: if in-
tervals are too large, they may hide rules that exist between
portions of the interval; if intervals are too small, they may
not have sufficient support so few rules will be found.

Based on this, a measure of K-partial completeness was
defined to ensure that intervals are neither too big, nor too
small with respect to the set of rules they can- generate
[SA96]. Although designed for quantitative data, this mea-
sure uses only the ordinal properties of the data (a qualita-
tive feature) to group adjacent values into intervals [JD88].
The initial partitioning is an equi-depth partitioning where

Equi-depth Distance-based

Salary No. Interval I No. Interval

m

Figure 1: Equi-depth vs. distance-based partitioning

the depth (support) of each partition is determined by the
partial completeness level. Hence, the intervals are deter-
mined by their relative ordering (and their support). For
a depth d, the first d values (in order) are placed in one
interval, the next d in a second interval, etc. Quantitative
properties of the intervals, including such measures as the
relative distance between values, the density of an interval
or the distance between intervals are not considered.

This quality measure is very appropriate for ordinal data
where there is a linear order defined over the data but the
separation between values has no meaning (for example, a
domain where (1, 2, 3) is semantically equivalent to (1, 20,
300) [JD88]). However, the same cannot be said when this
quality measure is applied to interval data. In Figure 1, we
have given an example of an equi-depth partition of a Salary
attribute. Intuitively, intervals that include close data values
(for example, [81K, 82K]) are more meaningful than inter-
vals involving distant values (for example, [31K, 80K] ), In
this example, a more natural partition (using our intuitive
understanding of the data) would take the distance between
items into account when creating intervals as shown in the
second column. This is based on our belief that it is less
likely that a rule involving the interval [31K, 80K] will be of
interest, especially considering that no tuples occupy or sup-
port the interior portion of the interval. From this example,
we draw the following principle,

Goal 1 In selecting intervals or groups of data to consider,

we want a measure of interval quality that reflects the dis-
tance between data points.

As Srikant and Agrawal point out, their measure of inter-
val quality does not work well on skewed data since it may
separate close values that have the same behavior (e. g., par-
ticipate in the same rules) [SA96]. They suggest the need
for developing alternative measures that are based on the
range of an interval. In Section 4, we develop an alterna-
tive quality measure that is based on a more comprehensive
consideration of the quantitative properties of an interval or
region.

In addition to influencing the choice of data groupings,
the semantics of interval data may influence both the inter-
pretation of a rule (that is, the conditions under which a
rule is considered to be true). We illustrate this using the
two relations of Figure 2. In both relations, the following
classical association rule holds,

Job = DBA A Age = 30* Salary = 40,000 (1)

In both relations, the support of this rule is 50% (three
of the six tuples in the relation satisfy the rule) and the
confidence is 60?Z0(three of the five 30 year-old DBAs earn
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Relation RI Relation R2

Id I Job I Age \ Salary Id \ Job I Age I Salary

tl M.gr I 30 40,000 S1 Mgr I 30 I 40,000

Figure 2: Rule definition should reflect distance measure.

40,000). Yet, if we put aside the definition of association
rules for a moment and take an intuitive look at the data

sets, Relation R2 seems to be a better fit for this rule. Our
intuition cornea from the fact that within R2, it is more

likely that a 30 year-old DBA earns about 40,000. From

this intuition, we make two observations that will motivate
our work.

First, the formulation of the classical association rule is
based on exact set membership. Indeed, it was initially mo-
tivated by data sets in which tuples contained simple sets
of nominal values from a single unordered domain (also re-
ferred to as the boolean association rule problem [SA96]).
Although, the confidence measure provides some notion of
approximation ( “60Y0 of tuples satisfy Rule (l)”) it does
not provide any room for approximation in data values. In
particular, it cannot be used to express a rule such as “30
year-old DBAs earn about 40,000”.

Goal 2 FOT interval data, a definition of an association
rule (2’I~CZ is requiTed that models the following semantics:
items in Cl will be close to satisfying G2.

Interpreting Rule (1) in this way, we would like a measure
of rule interest that assigns this rule a higher rating in R2
than in RI. In terms of support or more generally rule
frequency, the tuples S5 and S6 provide support for the rule
(albeit not as much as tuples s2-s4). So the occurrence of
the rule is more frequent in R2 compared with RI. Also, the
likelihood that a 30 year-old DBA will earn close to 40,000 is
higher in R2 than in R1, so we are more confident of the rule
in R2. To capture these points, Rule (1) should be assigned
both higher support and higher confidence in R2 than in
R1. Our final goal (which is closely related to Goal 2) can
be stated as follows.

Goal 3 FOT interval data, the measures of rule interest, in-
cluding the measures of rule frequency and strength of rule
implication, should reflect the distance between data points.

We address these three goals in turn in the following sec-
tions by developing a series of definitions for the association
rule problem culminating in a definition of dist ante-based

association rules that meets all stated goals.

3 Adaptive Solution

While numerous algorithms for discovering association rules
have been proposed, we give an outline that is common to
many of these algorithms [AIS93, AS94].

Scan 1 Scan the data once and count the numbeT
oj occurrences oj each data value (that is, the

3

. . . 38:I o 39:32 40:20 42:9 45:56 47:19 48:15 49 :30 50 :53 . . .

Leaf nodes of (vahse: tuple-count) pairs

1 Reduce
Tree

Leaf nodes of (value-range: tuple-count) pairs

Figure 3: Adaptive summary trees of l-itemset counts.

number of tuples containing the value). Call this
set candidate l-itemsets. Set i = 1.

REPEAT

Prune i Discard candidate i-itemsets

that have a count less than a thTeshold

value so. Call the remaining sets fre-

quent i-itemsets. If this set is empty
or i is equal to the cardinality of the
relation, stop.

Scan i Scan the data and count the
number of tuples containing each set of
values of size i : (v1, VZ,.... W) such that
all i — 1 subsets are frequent.

The complexity of this algorithm depends on the com-
plexity of the data, but typically even for large data sets the
number of passes over the data is not inordinately large, Of
course, the hidden cost of this algorithm lies in the size of
the memory required to store the counts. If the counts of
l-itemsets do not fit in memory (which may be the case for
multi-dimensional data sets over large domains), there may
be a significant cost associated with the IO required for the
itemset counts.

To reduce the amount of storage, we can group values
and only store counts of groups. A group may be a se-
mantic generalization of a set of data values (we can store
one count for all cam rather than a separate count for Hon-
das, Fords, etc.) or an interval of ordered values (ages 20-
30) [SA95, HF95]. However, the use of groups reduces the
precision of the result. Taking our cue from recent work
in clustering of large datasets [ZRL96], we redefine the as-
sociation rule problem to include the operating constraint
that given a limited amount of memory, we would like to
find association rules at the finest (most detailed) level pos-
sible without dramatically increasing IO cost or response
time. This statement of the problem suggests the need for
an adaptive algorithm, one that can adjust the level of pre-
cision (i.e., group larger sets of values toget her) as memory
becomes scarce. A brief birds-eye view of this idea is de-
picted in Figure 3. For linearly ordered data, values (and
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their counts) are organized in memory in a height-balance
tree. A separate tree is maintained for each attribute that

can be grouped. As memory gets scarce, the height of the
tree is reduced. A simple way of viewing this reduction is to
consider each leaf node of the tree as having been replaced
by the appropriate summary count in the parent node.

4 Association Rules over Interval Data

To address Goal 1, we propose a more general form of as-
sociation rule where the predicates considered may include
predicates expressing that an attribute or set of attributes
must fall within a given subset of values. This set may be
defined as an interval on a single attribute as done in [SA96]
or it may be an arbitrary region or neighborhood in a multi-
dimensional space. Obviously, the cost of considering all
possible subsets of data values is prohibitive. We will place
restrictions on the properties of the subsets to be consid-
ered to ensure that they are interesting with respect to the
semantics of the data.

4.1 Clusters

Our examples suggest the need to cluster data and consider
association rules between these clusters. For interval data,
there is a whole field devoted to the discovery and analysis
of data groupings that reflect the relative distances between
data points [Eve93]. Clustering techniques vary tremen-
dously in how they use distances to determine groupings
and there is no universal definition of what a cluster is or
what properties it must have [Eve93].

We adopt a common form of clustering to identify data
groups that are compact (the distance between points within
a cluster is small) and isolated (relatively separable from
other groups). This latter criteria can be formalized by
defining the region around the cluster to be relatively sparse.
The equi-depth partitioning of Figure 1 fails to meet both of
these criteria. The problem of finding good clusters can be
formalized as: find a set of K clusters that minimize a given
distance metric (such as the average distance between pairs
of points in each cluster) [KR90, EKX95, NH94, ZRL96].

Before we give a formal definition, we introduce some
notation,

Let R = {Al, A7,, . ... Am} be a relation schema and r be a
relation over R where IRI = m and Irl = n. We use the con-
vention that symbols from the end of the alphabet X, Y, ...
refer to sets of attributes and symbols from the beginning
A, B, refer to single attributes.

A cluster is a set of tuples, For a specific set of attributes
X, we will place restrictions on the properties of these tuples
when projected on X. For this reason, we say that a cluster
is “defined on” X and denote the cluster CX.

A possible quality measure on a one dimensional clus-
ter is the range or smallest interval containing all points
[SA96] or on 2 dimensions, the area of the smallest bound-
ing box. However, the area does not reflect the density
or coverage of points within a cluster. We therefore have
chosen to use a common measure from Statistics, the aver-
age pairwise (intra-ciuster distance) or diameter of a cluster
[KR90, ZRL96]. We use Jx to denote a distance metric
on values in the attribute set X, such as the Euclidean or
Manhattan distance.

Dfn 4.1 The diameter d on X of a set of tup[es S = {ti :
1 s i s N} is the average pairwise distance between tuples
projected on X.

In order to use clusters in finding association rules, we
will restrict the quality of a cluster using two thresholds on
the cluster size and diameter.

Dfn 4.2 A cluster CX defined on a a set of attributes X is

J
any subset o r that satisfies the following for some density
threshold dO and frequency threshold so.

d(Cx [X]) S d;

Icxl > so

The number of tuples in the cluster is IC7X/ and the dimen-

sion is 1X1. ●

The first criteria ensures that the cluster is sufficiently
dense. The second criteria ensures that the cluster is fre-
quent, i.e., that it is supported by a sufficient number of
tuples. To ensure that clusters are isolated from each other,
we will rely on a clustering algorithm to discover clusters
that are as isolated as possible.

4.2 Rules

We now turn to the issue of how clusters can be used in
association rules. We would like a definition of association
rules that permits rules such as Xl E Cx, [Xl], .... Xz E
CX. [XZ]=Y1 ● CYI[Yl],..., Yk ● CYY [Yy]. We Will alWayS
label clusters with the attribute or set of attributes over
which they are formed, so without ambiguity we will abbre-
viate this rule as CXI.. .CXZ ~CYl.. .CYV.

If we restrict consideration to one dimensional clusters,
we can directly use the definition of quantitative association
rules [SA96].

Let A bean attribute of R with quantitative domain DA,
Let IR = {(,4,1, u) ] A is an attribute of R,l E DA, U E DA

and 1 < U}. 1A E ~R is called an interval, by Conventions we

label an interval with the attribute over which it is defined.
For lx ~ lR, X = {A [ (A, 1,u) E Ix}. The extension of 1X
is defined as {tIu < t[A] s 1 for all (A, 1, M) E Ix} and the
size of IX, 11x I is the size of its extension, Notice that 1X
with non-empty extensions can be written as 1A, U U 1A,

for some set of distinct attributes A; and intervals lAi.

Dfn 4.3 [SA96] A quantitative association rule is an
implication of the form IX ~IY where Ix C IR and IY c IR
where X fl Y = 0. ●

A rule 1X aly holds with confidence c if 11xUIY l/llx I z
c. A rule 1x*1Y holds with support s if llX U lY I z s.

For this definition, we redefine the problem of finding
quantitative association rules as follows, For a given amount
of available memory, a given minimum support so and den-
sity thresholds d;, find the largest number of intervals that
minimize the given distance metric while keeping the run-
ning time proportional to the data size. For this set of in-
tervals, find all rules with minimum confidence.

We can generalize this definition to multidimensional
clusters by replacing the use of intervals with (the more
general) clusters.

Dfn 4.4 A generalized quantitative association rule M an
implication of the for-m Cxl., .CXZ *CYI.. .CYV where all the

X, and Yj are disjoint. ●

A rule Cx, .Cx= ~CY,.. .CYV holds with confidence c if
[(UiCxi ) U (U~CYj)1/1 L-Jicxi / ? C. The rule holds with
support S if l(UiCX;) U (Uj CY, )l ~ s.
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4.3 Algorithm

Ive describe an adaptive algorithm for finding generalize
quantitative association rules (classical association rules over
interval data) that has linear IO cost. The idea is to use a
standard clustering algorithm to identify the intervals of in-

terest followed by a standard association rule algorithm to
identify rules over those intervals, The algorithm use a sin-
gle partitioning of the attributes into disjoint sets (Xi) over
which there is a meaningful distance metric. 2 Most often
each Xi an individual attribute or a small set of closely re-
lated attributes over similar domains. As noted in Section
3, we have drawn the initial idea for developing an adaptive
association rule algorithm from Birch, an adaptive cluster-
ing algorithm [ZRL96, ZRL97]. In addition to being adap-
tive, Birch haa linear IO cost and provides a mechanism for
handling outliers that can be modify to help prune clusters
with low frequency, We use Birch to find clusters over each
attribute. The clusters are created incrementally and rep-
resented by a compact summary. The summaries produced
in the first phase are then used to form association rules.

4.3.1 Phase I - Identifying Clusters

The basic idea behind Birch is that clusters can be incremen-
tally identified and refined in a single pass over the data.
Each cluster is represented by a Clustering Feature (CF)
that is a succinct summary of the properties of the clus-
ter. From the CFS of two clusters, the CF of their union
and a number of distance metrics (including the diameter of
Equation 2) can be derived [ZRL96]. Hence, clusters can be
combined and new points added to clusters using only the
CFS.

A clustering feature (CF) contains the number of tuples,
the linear sum of the tuples and the square sum of the tuples
of a cluster. For CX = {tl, .... i!N}, the CF is defined as:

CF(C.y) = (N, ~ ti[-Y], ~ ti[x]z)
,=1 ,=1 (3)

The clustering process is guided by a height-balanced
tree (similar to a B+-tree) of CF vectors. An internaf node
contains a list of (CF, pointer) pairs where each CF summa-
rizes all data points in the descendants. Leaf nodes contain
lists of CFS. The CF-tree is built incrementally by inserting
new data points individually, Each data point is inserted
by locating the closest CF at each level of the tree and fol-
lowing the corresponding pointer recursively, At each level,
the closest CF is updated to reflect the insertion of the new
point. At the leaf, the point is added to the closest cluster,
if the diameter of the augmented cluster does not exceed
a threshold diameter. Otherwise, a new cluster is created,
When leaf nodes are full, they are split and the CF-tree that
guides insertion is adjusted, much in the way a B+-tree is
adjusted in response to the insertion of a new tuple.

For each X,, we select an initial diameter threshold dis-

tance metric and d~i. As data values are inserted into the
CF-tree, if a cluster’s diameter exceeds the threshold, it is
split. The split may increase the size of the tree. If the

memory is full, the tree is reduced by increasing the diame-

ter threshold and rebuilding the tree. The rebuilding is done
by re-inserting leaf CF nodes into the tree. Hence, the data
or the portion of the data that has already been scanned
does not need to be rescanned [ZRL96], With the higher

threshold, some clusters are likely to be merged reduclug
the space required for the tree.

As the CF-tree is being built, small clusters (outliers)
may be paged out to disk. We define outliers to be the clus-
ters that are significantly smaller than the frequency thresh-
old. Since this is done before all data has been scanned, clus-
ters may be wrongly categorized as outliers. Hence, outliers
need to be re-inserted into the complete tree to ensure that
they are indeed outliers [ZRL96].

4.3.2 Phase II - Combining Clusters to Form Rules

All clusters found in Phase I will satisfy the density thresh-
old. In Phase II, all clusters that also satisfy the frequency
threshold (that is, clusters with sufficient support ) are used.
These clusters form the set of frequent itemsets that are
used as input to the a priori algorithm [AS94]. If for some
X, there are no frequent clusters, we omit X, from consid-
eration in Phase II.

Clusters are combined based on the frequency with which
they appeaz together in the dataset. Frequent i-itemsets (for
z > 1) are identified as follows.

Scan i Scan the data and count the number of
tuples containing each set of values of size i :
(v1,7J,,..., v,) where each V3 E CXj and all i – 1
subsets are frequent. Call this set candidate i-

itemsets.

Prune i Discard candidate i-itemsets that have

a count less than a threshold value so. Call the
remaining sets frequent i-itemsets. If this set is
empty or i is equal to the cardinality of the rela-
tion, stop; else increment i and repeat.

We have defined a cluster to be a set of tuples, but in
Birch summaries (rather than tuple sets) are discovered. We
therefore require a way to determine the cluster to which
a point belongs, For each point, we can find the centroid
closest to the point (by using the CF-tree as a search tree)
and define the tuple to be in the cluster represented by this
centroid.3 Due to the local and incremental nature of Birch,
this cluster may not be the same cluster to which the tuple
was assigned when it was originally inserted into the CF-
tree. Although we have describe Phase II using the a przori
algorithm, other classical association rule algorithms may
be used.

5 Distance-Based Association Rules

Using clustering, we have proposed a definition of associa-
tion rules that meets Goal 1. However, this definition, does
not meet Goals 2 or 3. Clustering is used to determine sets
of dense values in a single attribute or over a set of attributes
that are to be treated as a whole. These clusters are then
combined with clusters in other dimensions to form rules
based on the standard measure of rule support and confi-
dence.

Consider two attributes X and Y that have been clus-
tered individually into two sets of clusters. We have depicted
two clusters graphically in Figure 4. When the data set is
projected on the X-axis, the tuples of Cx represent a dense
cluster of points. Similarly, CY represents a dense cluster
when all tuples are projected on the Y-axis.

3See Equation (4) in Section 5,

2This partitioning is defined by the user given the data semantics.
The algorithm is applied to a single partitioning of the attributes,

456



Cx :
x

Figure 4: CX is a cluster on X and CY a cluster on Y

In Figure 4, the confidence of CX *CY interpreted as a
classical association rule is 10/12 which is more than the con-
fidence of Cy *CX (10/13). Under a distance-based mea-
sure, we would want each object in CY – CX to decrease
the confidence not by the same amount but by an amount
that is proportional to its distance from CY. So, while there
are more points in CY —CX than CX – CY, the former are
comparatively closer to the intersection. Hence, the former
set (CY – CX ) should decrease the confidence less. Also,
note that the larger the intersection is, the larger (and more
distant) the set CY – CX can be for a given implication
strength.

To quantify this, we will use a measure of distance be-
tween sets. To ensure that the implication CX *CY is strong,
we want to ensure that for all tuples in CX, their Y values
are in CY or close to it. Hence, we want the distance from
CY [Y] to Cx [Y] to be small. This distance measures the
degree oj association between CX and CY.

The distance between two clusters can be defined using
any of a number of standard statistical measures, including
the average inter-cluster distance or the centroid Manhattan
distance [zRL96]. We will apply these distance measures to
clusters projected on specific attributes.

Let Ci = {t; : 1 S j S ~,}. The image of a cluster
Ci on a set of attributes X, denoted Ci[X], is defined as
{t; [X] :1< j < N,}. (Note that the cluster Ci may be
defined on X or on another set of attributes.)

The centroid of Ci[X] is defined as:

The Manhattan distance D1 between

Cl [X] and C2[X] is defined as:

(4)

the two images

Dl(cl[x], C2[X]) = Ix”ol – X-02[ (5)

The average inter-cluster distance D2 is defined as:

These measures and a number of additional distance met-
rics between clusters are defined in [ZRL96]. We will use D
to refer to a distance metric between clusters when we are
not making a distinction between specific measures.

For a rule CX *CY, the larger the distance between
CY [Y]and CX [Y] the weaker the implication. We now de-
fine a new form of strong association rules over interval data.
We begin with the definition of 1:1 rules containing a single
cluster in the antecedent and in the consequent.

Dfn 5.1 1:1 Distance-based Association Rule
Let X and Y be disjoint sets of attributes. A 1:1 distance-
based association rule (DAR) is a rule of the form R:

GX =@y where CX is a cluster on X and CY a cluster on
Y. R holds with degree of association DO if:

D(CY[Y], CX[Y]) s Do c

A DAR models the semantics that tuples with X values
in CX will have Y values close to CY and satisfies Goal 2 of
Section 2.

5.1 Connection to Classical Association Rules

Before presenting the general definition of DARs, we con-
sider the connection between our definition and the classical
definition which provides further motivation for our work.
Consider nominal data over which the following distance
metric is defined.

r5(z, y)= O,ij z=y

l,if z#y

Only singleton sets are considered under classical associ-
ation rules. If we set the diameter threshold to O, then the
only clusters that satisfy this definition must be identical
on the value of a given attribute (that is, they are singleton
sets).

Theorem 5.1 A non-empty cluster CA has diameter O iff

for some value a, CA ~ {t E r : t[A] = a}, ●

Further, if we set so to be the support threshold, then
the set of all one dimensional clusters that fall within these
thresholds is identical to frequent l-itemsets under classical
association rules. There is also a close relationship between
the degree of an association and confidence.

Theorem 5.2 The classical association rule A = a+.B = b
holds with confidence co iff the distance-based association
rule CA +-CB holds with degree 1 – co where CA = {t E r :
t[A] =a} andCB = {t E r : t[ll] =b}. ●

Proof Each tuple t ● CA where t[B]# b is a distance 1
from every tuple in CB. Each tuple t c CA where t[B] = b
is a distance O fkom every tuple in CB, Nom this, we can

show that:

D2(CB[B], CA[B]) =
ICBI(ICAI - ICA nCBl)

IC’AIIC’BI

ICA n CBI
= 1- ,CAI

457



,(i,-(ljj
1[,41 IS th{, cmlfi(lenre of R Hvnc[’. the (’OllfidC’11(’(’of R

is at least co iff D2 (CB [D], CA [B]) is less th~u w equal to
l–co. M

5.2 Higher Arity Rules

We now turn to the application of Definition 5.1 to rules over
multiple clusters. Let YI =Stock-Price and Y2=Time be two
attributes of a relation and let Y’ = {YI, Yl }. Let X be any
set of attributes. To compute CA-*C7Y for any two clusters,
we must have a distance metric r5Yover Y. Even if we cluster
on Y1 and Y2 individually, to compute Cx *CYI CY2, we
must have a distance metric on Y by Definition 5.1.

Although we have assumed that we are working with in-

terval data, we have made no assumptions about the scales
used or the relative distance between values in different at-
tributes. We can talk about the distance between points
within an attribute A, but it is not clear how to define the
distance between points over multiple attributes. Consider
two specific attributes defined over the domains Stock-Price
and Time. If we wish to apply a distance measure (for exam-
ple, a Euclidean or Manhattan distance) across these dimen-
sions, it is not clear if Time should be expressed in seconds,
hours, days or years or if a non-linear transformation should
be used to standardize Time with respect to Stock-Price.
To cluster over multiple attributes, the scales must be stan-
dardized so that distances in the different dimensions are
comparable. There are numerous forms of statistical stan-
dardization but their use must be predicated on a detailed
understanding of the data and relationships between data in
different dimensions [Mi195]. The use of inappropriate stan-
dardization techniques may completely distort or destroy
the clustering properties of the data. It is our assumption,
and indeed one of the basic assumptions of data mining,
that such a deep understanding of relative data semantics
is not generally available across the full dataset [FPSM91].
h4ining is a first step is trying to understand the data.

If a semantically meaningful distance metric across a set
of attributes is available, we consider those attributes to-
gether and apply clustering to the set of attributes. For ex-
ample, it ma? be reiwonable to use the Euclidean distance
to measure distance across the two attributes Latitude and
Longitude or to use a linear function to standardize values
in two Salary attributes representing salaries from different
years. However, for most attribute combinations, we will
not have a meaningful dist ante metric.

Indeed, this same reason prevents, in general, the appli-
cation of clustering to arbitrary projections of the data set
and the determining of rules from projections of these clus-
ters. Rather than clustering on X and Y separately to find
Cx and CY, and then trying to combine clusters, a more
statistically appealing solution is to apply a clustering al-
gorithm to the data projected on XY to determine clusters
within the XY-dimensions. The lower dimensional clusters
Cx and CY may then be defined as projections of CA-Y onto
X and Y. res~ectivelv. However. without a distance metric
over .YY: thi~ solutiorl is not possible.

To generalize Definition 5.1 to rules that have multiple
clusters in the antecedent (R: Cxl, CA-Z, .C.xr *CY ), we
need to ensure that the clusters in the antecedent are (col-
lectively) strongly associated with the consequent. Consider
the three clusters (which we describe by their bounding in-
tervals): CA is the interval [41-47] on the attribute years
of age; CD is the interval [2-5] on the attribute number of
dependents; and CC is the interval [10,000-14,000] on the
amount of annual insurance claims. We want to understand

Annua1! Annw

1

Age$ .
Claims~ . Claims

I

,0 “.”,
.0 {.. ‘ 0“

10-I4K,.“ “ .. . . “o I .,:, “’,” 4,.47, ,. .:”,:
:. .“”. . .

I “’ ; ‘“’”’”

.L .
41-47 Age 2-5 Dependents 2-5 Dependents

Figure 5: Clusters over Age, Dependents and Claims

the conditions under which a rule CA CD*CC would hold.
Our goal is a definition of association rules that models the
semantics that people between the ages of 41 and 47 with
2-5 dependents are likely to have close to $1 OK-$14K of an-
nual insurance claims. For strong rules, we will require that
each of CA and CD be strongly associated with CC and in
addition, that CA and CD occur together. To quantify this,
we will again use the distance between clusters and require
that the distance between CA and CD on both the .4 and
D attributes be small. This will ensure that there are tu-
ples that satisfy (or come close to satisfying) the predicate
.4ge E CA A Dependents E CD. These conditions are de-
picted graphically in Figure 5. The associate between .Age
and Claims and between Dependents and Claims is one-
way. That is, we are not concerned about whether all peo-
ple with annual claims between $1 OK-$14K lie within CA or
CD. However, for CA and CD we require that each set be
closely associated with the other.

We have replaced the notion of support from classical
association rules with a distance based measure. In clas-
sicaf association rules, the threshold support for both a 1-
itemset (e.g., [41-47] year-olds) and a 2 or n-itemset (e.g.
[41-47] year-olds and [2-5] dependents) is set at the same
value. From our practical experience, we have noticed that
for higher arity rules, a higher distance threshold (or lower
support threshold) is acceptable. We revisit this issue in
Section 6. For our definition, we adopt the convention from
classical rules of using the same threshold value that was
used to define clusters (1-itemsets). We state a more gen-
eral definition for DARs below for rules from many clusters
to a single cluster.

Dfn 5.2 N:l Distance-based Association Rule
Let Xl, A’2, .. .. Xx and Y be pair-wise disjoint sets of at-
tributes. A N: 1 distance-baaed association rule (DAR)
is a rule of the form R: CX1, CXZ, ...CX= +Cy where each
CX, is a cluster on Xi and CY a cluster on 1“. R holds with
degree of association DO if:

D(CY [Y], C,y, [Y]) S Do 1S2<X

D(Cxi [Xi] CA-,1X,]) g d~’, Vi # j ●

The degree of association replaces the traditional notion
of confidence and the density threshold (on clusters and
pairs of clusters) replaces the notion of support satisfying
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Goal 3 of Section 2. The frequency threshold (wluch corre-
sponds to support) is only retained on the initial clusters.

N: 1 D.4Rs have a number of important applications, Of-

ten in mining, we are interested in discovering which at-
tributes determine one of a specific set of target attributes.

For example, in an insurance data set, hundreds of attributes
may be recorded about drivers and their characteristics.
However, associations between these attributes are not in-
teresting (e.g., whether drivers who earn between 50K and
65K and have 2 dependent drivers on their policy are likely
to be close to 45 years of age). Rather, an insurance agent
wants to find associations between driver characteristics and

a specific variable such as number of accidents or amount of
annual claims (e.g., drivers who earn between 50K and 65K
and have 2-3 dependent drivers on their policy are likely to
have about $1OK worth of claims annually).

5.3 Distance-Based Association Rules

To generalize our definition to rules of arbitrary arity (rules
of the form, C7X1CX2.. ,cx= +.C7Y1CY2. ..CYY ), we will require
that the clusters in the antecedent collectively occur to-
gether and similarly for the clusters in the consequent. We
will also require that clusters in the antecedent each be

strongly associated with each cluster in the consequent.

Dfn 5.3 Distance-based Association Rule
Let X1, .,., A’z, Y1, .. .. Yv be pair-wise dislomt sets of attributes.
A distance-based association rule (DAR) is a mde of
the form R: CX1 CX, ... xZ ~Cyl CY2 . ..CYY where each Cxi

and CY, are clusters on X, and Yi respectively. R holds with

degree of association Do if:

D(CYj [Yl], CXi [Yj]) < DO l<i<z, l<j<y

D(CXi[~i], CX, [Yi]) g d~’ Vi # 3
D(GY, [Y,], CYj(Yt]) < do’ VZ # j ●

6 Algorithm

Our algorithm for finding DARs is a modification of the al-
gorithm of Section 4.3. It retains the two phase structure:
in the first phase, clusters are identified and in the second
phase, clusters are combined to form rules. It again makes
use of a single partitioning of the attributes of R into disjoint
sets (R = {X1, .. .. X~ }) over each of which there is a dis-
tance metric Jx,. The criteria for rule formation for DAR,s
is based on the distance between clusters projected onto the
same attributes. rather than on counts of set sizes and in-
tersections of those sets. To facilitate the computation of
these distances, we have modified the clustering algorithm
to maintain additional information about a cluster.

6.1 Phase I - Identifying Clusters

In Birch, summary information about a cluster projected
onto the clustering attributes is maintained. We have ex-
tended this to maintain additional information about the
cluster projected onto other attribute sets. We store sum-
mary information in a data structure called an association

clustering featur-e (ACF). For Cx = {t1,....t~},the ACF
includes the clustering feature (Equation 3) and for all at-
tribute sets Y where Y # X:

‘&, ft*[Y]’ (7)

Like C’FS, .lCF~ may be incrementally malntamed. The
Additivity Theorem [ZRL96] for CFS may be extended to
ACFS. An .kCF-tree is a CF-tree with the leaf nodes modi-
fied to be ACFS. The internal nodes remain CF nodes. An
ACF-tree is maintained for each .Yi. The clustering algo-
rithm is unchanged from Birch.

6.2 Phase II – Combining Clusters to Form Rules

The set of clusters C discovered in Phase I that satisfy the
frequency threshold are the input to Phase II. In combining
clusters to form rules, we use only the ACF vectors of this
set. The data is not scanned again.

To aid in our search, we make use of the following graph.

Dfn 6.1 A clustering graph G = (N, E) of C contains a
node nC for each cluster- c E C. An edge e from ncx to ncY

if D(CX[X],CY[X]) < d$ andD(CX[Y],CY[Y]) < d;. ●

We do not require that the frequency thresholds used
to define the clustering graph be identical to the frequency
thresholds of Phase I. Empirically, we have found that using
a more lenient (higher) threshold in Phase II produces a
better set of rules.

Theorem 6.1 ACF Representat ivit y Theorem Given
the A CFS of all clusters, the clustering graph can be com-
puted using any of the distance metrics of Section 5. ●

From the clustering graph, we find all maximal cliques.
These cliques correspond to large itemsets for DARs. Specif-
ically, a clique and any of its subsets may form the an-
tecedent or consequent of a DAR as per Definition 5.3. The
set of all maximal cliques forms a partition of the clusters
that covers C (by definition a single vertex is a trivial 1-
clique).

Let Q1 and Q2 be two cliques corresponding to the two
sets of clusters C,Y = {CXI, CX2, . .. . CA-. } and CY = {CYI ,
CY2, .... CY, }. To compute rules from these cliques we con-
sider D(CY, [Yj], CX, [Yj]) for 1 < i s z, 1 < j s y. Let
aSSOC(CYj) = {Cx; lD(CYj [lj], Cxi [l;]) ~ Do}. If for any
CYj, assoc(CY, ) = 0, we omit this cluster from further con-
sideration.

For all s ~ assoc(Cyj ), S~CYj is a DAR. Similarly, if a
set of clusters from CX is in both assoc(Cy, ) and assoc(CYA )
then saCY, CY~.

Let Cy~ ~ CY be any subset of a clique Q2. For each
subset Cx, ~ CX of the clique Q1, we produce the rule
CX!SCY1 if Cx? ~ ncyj ~Cy, assoc(CY, ). This process is
repeated for all pairs of cliques.

Note that our criteria guarantee that individual clusters
have sufficient support under the classical definition. They
do not guarantee that the intersections of clusters have suf-
ficient support, If this additional frequency requirement is
made then these rules are only candidate rules. In a post
processing step, we can rescan the data (once) and count
the frequency of all candidate rules.

Reducing the cost of Phase II Image clusters with large
diameters (poor density) are unlikely to contribute edges
to the graph. Depending on the distance metric used, this
can be quantified relative to the size of the cluster, In an
initial pass over the ACFS, we can determine if edges from a
given node need to be computed, dramatically reducing the
number of node comparisons required.

,=1 ,=1
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7 Evaluation

We provide an analysis of our DAR algorithm and overview
some of our experience using the algorithm on a large, highly
multidimensional data.set.

7.1 Complexity analysis

Phase I - CPU Let N be the number of data tuples and
M be the number of dimensions of the data set. Phase I of
our algorithm needs to scan through N data tuples. Each
data tuple may travel at most tog~fV steps down the ACF
tree, where L is the branching factor of an internal node
in the ACF tree. The number of steps for insertion can
be bounded by the size of memory allocated for each ACF-
tree so the complexity will be much less than log~IV. All the
above operations are duplicated for each of the M dimensions
giving a time complexity of O(MIV(log~ IV)). In addition,
the tree may need to be rebuilt with a higher threshold if it
becomes too lar e. The time for the rebuilding can be done

5in O(M(log~ lV) ) [ZRL96]. So the worst case complexity of
Phase I is 0( A4(log~IV)2).

Phase I - 10 In Phase I, we scan the data set once. If
the ACF trees grow too large, the thresholds are adjusted
to condense the trees. Hence, a single scan of the data is all
that is required beyond the paging out and reincorporation
of infrequent clusters. The space allocated for infrequent
clusters is a small fraction of the data set size.

Phase II If C is the number of clusters found in Phase
I, then our algorithm considers all possible pairs of clusters
(over different attributes) to construct the clustering graph.
So the number of comparisons is exponential in the number
of clusters if the heuristic of not considering images of poor
density is not used. Note that Phase II is done entirely in
memory using cluster summaries (ACF vectors).

7.2 Performance Results

We present the results of performance experiments designed
to test the scalability of the algorithm. In this study, the

data set was the Wisconsin Breast Cancer Data (WBCD)
obtained from UCI Machine Learning Repository [WM92].

We used a subset of the WBCD data with 500 tuples4. We
used 30 of the 32 total attributes removing the key (tuple

identifier) attribute and the binary outcome attribute. We

then studied the performance of the algorithm by increas-
ing the number of points per cluster and proportionally the
number of irrelevant (or outliers) points in the data. In this
way, we were able to hold the data complexity constant (that
is, the number and form of the clusters and rules contained
in the data) and study the performance as the data size was
increased. All adjustable parameters with the exception of
the density and frequency thresholds were fixed.

The frequency threshold is used to select which clusters
identified in Phase I are frequent enough to be considered
in Phase II. To keep the number of clusters constant as the
data size was increased, we set this threshold to 3% of the
number of tuples. This experiment was performed on a Sun
Spare 10. The memory limit used in Phase I was set to
5MB. If the memory required to store the ACF trees grew

to exceed 5MB, the thresholds were reset and the tree rebuilt
using the new thresholds. The running time of Phase I is
plotted in Figure 6 for different relation sizes up to a half
million tuples. The performance scales linearly with the size
of the data set.

We verified that the data complexity was indeed kept rel-
atively constant in the experiment by examining the number

of clusters found in Phase 1. The number of ACFS found in
Phase I over runs ranging from 100K to .5M tuples varied
about 5~0 and was approximately 1050. There was a small
difference (typically less that 4%) in the centroid of the clus-
ters due to the use of a non-optimal clustering strategy. This
difference grew slightly with the data size.

For Phase II, the number of non-trivial cliques found
was approximately 90. The time to identify cliques was
roughly constant (about 7 seconds) as expected since the
complexity of the data was held constant. While the clus-
tering graph can potentially have an exponential number of
edges, in practice we found the number of edges in the graph
to be only a small constant times the number of nodes,

To present rules to a user, some description of the clus-
ters is required. A cluster can be described by its centroid,
but we have found that this is not the most meaningful de-
scription. In our applications, the number of attributes in
a partition is typically small. Hence, we have chosen to de-
scribe a cluster by its smallest bounding box.

8 Conclusions

We have demonstrated the importance of respecting the se-
mantics of the underlying data when formulating rule mining
problems. To this end, we have contributed a new defini-
tion of association rule mining that is appropriate for inter-
val data. We have presented an algorithm for finding such
rules that adjusts the dist ante-based quality and rule inter-
est measures based on the available memory. Finally, we
presented an overview of our initial experience applying the
algorithm to large data sets,

We are currently extending our techniques to consider
the mining of rules over mixed variable data including inter-
val and qualitative data. This involves combining the qual-
ity and interest measures used for different types of data.
We are also extending our performance results to provide
a comprehensive study of the sensitivity of our algorithm
to different input threshold values and an analysis of the
robustness of our techniques.
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