
Mediator Languages { a Proposal for a Standard

Report of an I3/POB working group held at the University of Maryland

April 12 and 13, 1996

Peter Buneman Louiqa Raschid Je�rey Ullman

1 Introduction

The DARPA Intelligent Integration of Information

(I3) e�ort is based on the assumption that systems

can easily exchange data. However, as a consequence

of the rapid development of research, and prototype

implementations, in this area, the initial outcome

of this program appears to have been to produce a

new set of systems. While they can perform certain

advanced information integration tasks, they cannot

easily communicate with each other.

With a view to understanding and solving this prob-

lem, there was a group discussion at the DARPA

Intelligent Integration of Information/Persistent Ob-

ject Bases (I3/POB) meeting in San Diego, in Jan-

uary, 1996; and a further workshop was held on this

topic at the University of Maryland in April, 1996.

The list of participants is in Appendix A. The idea

emerging from these meetings was not to force all

systems to communicate according to speci�ed stan-

dards, but to agree on the following:

� A minimal core language, or Level 1 option,

which would be a restriction of the object-

oriented query language OQL, such that it will

accept queries for relational databases. We

recommend that all system components be able,

at a minimum, to accept queries in this syntax,

provided they address concepts (e.g., relations or

classes, attributes or instance variables) known to

that component. There must be a simple protocol

to determine the schema of a system (its set of

supported concepts).

� A simple format for representing answers. This

could also be a fragment of OQL and will be

included in the core language speci�cation.

� A set of extensions, one of which could be full

OQL, and would handle complex structures and

abstract types (with methods). Other extensions

will be needed to support rules (e.g., de�nitions

of terms that can be shared among components),

semistructured data (for self-describing objects),

and shared code. A system component could sup-

port one or more of these extensions, indepen-

dently, and there should be some simple protocol

to determine the particular extensions that are

supported.

1.1 The Problem Being Solved

One reason for wanting a core language emerges

from the scenario of the 3{day crisis, where a crisis

management team has 3 days to build an I3 system

to integrate some predetermined set of independently

developed information servers/systems, and then to

incorporate new systems, that are identi�ed as the

crisis progresses. If every system has its own query

language and its own representation for answers,

there is a great amount of e�ort needed, by the

system integrators, to understand the nuances of

each system's language, and to write the appropriate

translators.



In the proposed approach, much of the adaptation

would be unnecessary. If a component were only

needed for simple functions that could be described

in the core language, then it would be only necessary

for the integrators to learn the schema of the

component. We do not want to underestimate the

problems involved in understanding a schema, nor

do we assure that a component accepts at least

one of perhaps several standard meanings for its

terms. The process of con�rming that meanings

are well understood will be present in any case,

and subscription to standard ontologies has been

advanced as the proper way to handle this problem.

Likewise, if advanced capabilities of a component

were needed, the implementers could easily deter-

mine whether some component o�ered these capabil-

ities. Exploiting these capabilities should be possible

through one or more extensions of the core language,

and there should be no need to learn a new core lan-

guage just in order to use these capabilities.

1.2 Systems With Lesser Capability

The Maryland workshop also addressed the fact

that some system components cannot usefully be

described as answering queries in even a limited

subset of SQL or OQL. An example would be an

encryption system, whose sole purpose was to take a

string and return an encrypted string. We therefore

believe that it is essential to include, in the core, a

Level 0 option, in which a component is described

as a function, giving only its input and output types,

(string-to-string in the above example).

Even among more powerful components, we are

concerned that, while they might appear to speak

the entire core language over some set of concepts,

in fact there are subtle limitations. For example,

a bibliographic source might answer core-language

queries over concepts title, author, publisher, etc.,

but it cannot answer the simple query SELECT *

FROM bibliography, that asks for a complete copy

of all its data. We are hopeful that there will

be breakthroughs in developing some grammatical

way to describe the actual family of queries that

may be answered, or to systematically describe the

constraints on the queries that may be asked.

At a minimum, such descriptions should be human-

understandable, but it is interesting to speculate that

the description could be mademachine-understandable,

to be used for example, by the query-optimizer/translator

of another component. We observed at the work-

shop that OLE-DB, the \tabular" database in-

terface extensions to OLE COM [Microsoft1994,

Microsoft1996], appears to be heading in this direc-

tion.

2 Discussion

The Maryland workshop focussed on several issues

and options. We did not attempt to resolve all issues,

but we believe we have a framework for convergence.

2.1 Functionality

There was little disagreement that all data sources

should be capable of expressing data in the rela-

tional model, and responding to a relational query

language. We recognize that this may not hold for

sources with limited capability, as discussed earlier.

It was also agreed that the adopted core language

should have the expressive power of the relational

algebra, but no more.

It is important to note that query languages are

based on a type system or data model. It follows that

by requiring a data source to understand a certain

language, we are also requiring it to map either all of

its data, or at least all of the data needed to provide

an answer to a query, into a data model appropriate

to that language.

2.2 Syntax

For the purpose of implementing a core language,

it is necessary to specify some syntax (for example

nonrecursive Datalog with negation), but for this

purpose alone, the issue of which syntax to use was

not regarded as particularly important, since they

are all equally easy to implement.

The motivation for discussing syntax further was

whether, by adopting a speci�c syntax, we would



make the core language more or less amenable to

incorporating further functionalities. Understanding

what these functionalities are, and why they are

important, was one of the reasons for the Maryland

meeting. The areas originally slated for discussion

were the following:

� Exchange of rules

� Complex types and semi-structured data (self-

describing objects)

� Abstract types (with methods)

� Exchange of Meta-data

In addition, early on in the Maryland meeting, it

was decided that the following areas should also be

discussed:

� Exchange format for the data.

� Communication protocol, including session con-

trol.

2.3 Alternative Approaches

Since the primary reason for wanting a core language

is to facilitate the exchange of data, the immediate

question is why not adopt one of the many existing

standard data formats, e.g., ASN.1 [ISO1987], that

have been developed for precisely this purpose. A

simple request language would be needed to specify

requests for data in this format. The problem with

this solution is that most data sources do not simply

dump all their data into some prescribed format;

they usually respond to some request that describes

what data is requested. Even if it were possible

to obtain all this data, there may be problems of

e�ciency, and usability of this data. It is the

language in which the requests are formulated {

the query language { which was the focus of this

discussion.

Another option that was rejected was to use KIF or

another powerful language as the standard. While

KIF may have its role representing rich knowledge

sources, we believe it is too expressive to be a

good model of most sources. What may be worse,

components that are able to handle full �rst-order

logical theories, or more, may behave unpredictably

when given logical statements from a variety of

sources with di�ering purposes.

3 Resolution

The main resolution at the Maryland meeting was

to recommend the relational subset of OQL, the

query language proposed by the ODMG committee,

[Cattell96], as the core language. This sublanguage

has a simple syntax { close to that of SQL { and

implements the desired \core semantics" { that of

the relational algebra. It also has the property that

the full language supports a range of complex types

(Set, Bag, List, Array), and allows free combination

of these types. Thus, those sources that implement

the full language will be able to communicate such

data easily and e�ciently. However, for the purposes

of communicating with other agents that only speak

the core sublanguage, it will be necessary to translate

more complex types into relational format.

The OQL standard has de�nitions to support scalar

and structured literals, and has type constructors;

it can therefore describe relational data, and this is

the input and output restriction of the core language.

Hence, the proposed Level 1 core language provides

a format for data transmission { another component

of this proposal.

This proposal is based on several desiderata:

1. An existing standard should be used if possible.

No-one wants another standards committee.

2. Interoperability with the core language should

be something that most systems being developed

within the I3 community (and others) can easily

achieve.

In addition to these properties, OQL is a relatively

simple language with compositional semantics. This

means, for example, that wherever a relation name

is used in an OQL program, a relation expression

of the same type may be used. This property is

an advantage in mediation, where it is desirable to

have a language that can freely combine data from



various sources. Thus, although the proposal is for

a language for data exchange among mediators, the

core language (with extensions), could also serve as

a language for mediation.

The full report includes a BNF description of the core

language and can be obtained at

ftp://ftp.umiacs.umd.edu/pub/ONRrept/

medmodel96.ps

We now present brief summaries of the various

working groups.

3.1 Complex types and semi-structured

data

[Buneman, Ramakrishnan, Ullman]

It was the desire to have a language that would

extend to \complex" data types that led to the

adoption of OQL syntax. Complex types di�er

from relational types in two ways: �rst, relational

databases only support sets and multisets (bags).

Lists and arrays are two other widely used \collection

types" that one would like to support in a database

system. Second, relational databases only support

\at" data structures { sets or multisets of tuples of

atomic types. Complex types allow these types to be

freely combined; e.g. lists can be contained in tuples,

which may in turn be members of sets.

Support for semi-structured data (self-describing

data) is also a needed extension. At present, the min-

imal core language does support such descriptions (in

a trivial manner), using the

<constructor query> speci�cation.

3.2 Abstract types (methods)

[Tannen, Qian, Raschid]

Abstract data types are necessary for any interchange

data model since many simple sources essentially

provide a functional interface. A typical example is

a dictionary. Its interface is a function from strings

(a word) to strings (its de�nition). Such an interface

can be integrated with an OQL-like query language

without impedance mismatch. Further, ODL-like

class de�nitions can be thought of as abstract data

types, where the methods are implemented using

some particular language binding. In general, most

object data models provide many additional features,

most notably the support of OIDs and inheritance.

However, class encapsulation of object data model

and the ADT encapsulation is essentially similar. In

the interchange data model for the mediator context,

the implementation of the ADTs is the responsibility

of the particular data sources (and their wrappers).

The mediator data model only needs a linguistic

mechanism for specifying ADT interfaces, i.e., a

set of types, and a set of operations (for these

types) must be speci�ed, The types mentioned by

the operations will include the ADTs, and also

the standard types such as int, bool, string, real,

etc. Thus, some convention about the representation

of these standard types needs to be adopted, for

example, a standard data format of [ISO1987]. The

more interesting question is whether data of the types

de�ned by the ADT can be exchanged? If so, is it

feasible to have a common format for the exchange of

ADT data? One possibility is to treat the operations

of the ADT as constructors, as in the OQL query

language. Then, the data can be treated as OQL

expressions inolving these constructors.

3.3 Exchange of rules

[Abiteboul, Maier, Levy]

Two di�erent motivations for the use of rules in

mediators were investigated. The �rst is to use

rules as a language to communicate various kinds of

information between the mediator and a source. The

second is to communicate knowledge, in the form of

rules, between the sources and mediators. Extensions

to the mediator model to support the exchange of

rules is strongly inuenced by the core language that

is chosen, and, more importantly, by the role that

rules play in such a language. We now enumerate

examples of rules that exchange information and the

exchange of information in the form of rules.

1. Constraints: Rules may express (integrity) con-

straints on the contents of a speci�c source; on

the relationship between the contents of di�erent

sources; on the completeness of the contents of



the sources; etc. This information may be com-

municated to the mediator, using rules, and used

for optimization, for example, to avoid sending

irrelevant queries to a source.

2. Schema queries to a source: A mediator may re-

quire information about the schema of a partic-

ular source, so that queries appropriate to that

schema may be sent. Rules can be used to query

and exchange this schematic information.

3. Mapping and translation of data between a medi-

ator and a source: This can include format trans-

lations and schema translations and restructur-

ing. This information, in the form of speci�c

rules, can be exchanged between a mediator and

a source.

4. Integration: Rules may specify how information

from multiple sources can be integrated with

respect to the particular schema of the mediator.

This information is also in the form of rules that

are shared between the mediator and the sources.

5. Propagation of updates and monitoring: Rules

may be used to specify how an update in a source

should a�ect the answer to a mediator query, or

to specify what changes (updates) in the sources

must be monitored by the mediator.

6. Queries posed to the mediator or queries from

mediator to sources may be expressed as a rule.

7. Rules support a compact format for representing

information; instead of responding to a query

with a set of all the answers, a source can

respond with a rule, or intensional answer, that

characterizes all the (extensional) answers.

3.4 Exchange of Meta-data and control

issues

[Subrahmaniam, Zdonik]

The following two questions were explored with

respect to meta-data:

1. What kind of meta-data characterizes a mediator

system?

2. How should this meta-data be used in order to

perform mediation tasks most e�ectively?

The following types of meta-data and their possible

usages were identi�ed

1. Structural Meta-data: Refers to the data struc-

tures (schema) of the data sources being inte-

grated. This can be limited to data structures

that are accessed external to the data source, or

made public by a wrapper for the data source.

Structural meta-data may be used to facilitate

the task of software integration, and building

parsers for handling data types returned by ex-

ternal processes.

2. Semantic Meta-data: Refers to information con-

tained within the above mentioned data struc-

tures and speci�es information about their se-

mantic types, as well as inter-relationships be-

tween these types. Semantic meta-data may be

used to infer that a given data item must be re-

turned to the user in a form di�erent from that in

which it is stored. For example, the user asking

for a total cost in US dollars may wish to con-

vert multiple currency quotations into US dollars

before aggregating the result. The existence of

semantic meta-data would solve some problems

of partially automating this process.

3. Cost Meta-data: Refers to information about

the performance (either time or processing costs

or �nancial charges) associated with di�erent

data sources. Cost meta-data is extremely

useful in optimizing queries. For example, when

evaluating a query plan, cost information about

times/charges are invaluable in assessing the

quality of the query plan.

4. Reliability Meta-data: Refers to information

about the reliability of data sources; to how

often the data contained in these data sources

change with time; and if these data sources are

maintained over time. As with cost meta-data,

reliability meta-data is often useful in evaluating

and rewriting a query plan. For instance, a

(previous) answer can be stored and re-used, if it

is known that the source is updated infrequently,



and if it is more expensive to recompute the

answer. Similarly, a query plan may be rewritten

to favor a reliable data source.

5. Ancestral Meta-data: Refers to generic informa-

tion about the data source (who created, when,

where and why?). May often be used to assess

reliability of the source, or to assess the ability

of a data source to provide certain kinds of in-

formation. For instance, one may choose to ex-

amine DoD databases for terrain information be-

fore turning to commercial GIS vendors, whose

databases may be less attuned to a defense appli-

cation.

3.5 Exchange protocols

It was suggested that we adopt http as the standard

for exchange, in the manner of many online interfaces

to IR search engines.

4 Further work

4.1 External Data Sources with Lesser

Capability

There are inevitably some sources that cannot sup-

port the interface of the minimal core model, nor can

they be \wrapped" to do this. Consider an on-line

encyclopedia that associates words with meanings {

its functionality is a mapping from input (character)

strings to strings. In a relational database, this is

represented as a binary relation on strings, however

it may not be possible to extract the data in this

form. Doing so would, for example, make it possible

to copy the encyclopedia, as opposed to querying it.

In OQL and other systems, this limitation can be

overcome by representing the encyclopedia as an

external function. However, this solution may not

easily extend to other sources, for example, sources

that provide several indexing structures. This was

one of the issues that requires further work.

More generally, the problem of describing what tasks

a source can execute e�ciently requires much further

work. Data sources often implement several indices

in order to support a variety of \canned" queries

(though not a full query language). The problem

of how to describe what a source can do e�ciently,

and of how to exploit this when building a wrapper,

requires further work.

A proposed road-map was discussed, based on a pro-

gression from \canned queries", to functional de-

scriptions or libraries, to templates or parameterized

descriptions (views), to grammars, all of which are

less powerful than the core Level 1 language.

References

[Cattell96] R.G.G. Cattell, et al. The Object

Database Standard - ODMG 93. Release 1.2.

Morgan Kaufmann, 1996.

[ISO1987] ISO, Standard 8824. Information Pro-

cessing Systems. Open Systems Interconnection.

Speci�cation of Abstraction Syntax Notation One

(ASN.1), 1987.

[Microsoft1994] Microsoft, OLE 2 Programmer's

Reference, Volumes 1-2, Microsoft Press, 1994.

[Microsoft1996] Microsoft, The Component Object

Model Speci�cation, Microsoft Development Li-

brary, 1996.

5 Appendix A List of Participants

Dr. Peter Buneman, University of Pennsylvania (co-

chair)

Dr. Je� Ullman, Stanford University (co-chair)

Dr. Louiqa Raschid, University of Maryland (Orga-

nizer)

Dr. Serge Abiteboul, Stanford University and IN-

RIA, France

Dr. Alon Levy, AT&T Research

Dr. David Maier, Oregon Graduate Institute

Dr. Xiaolei Qian, Stanford Research Institute

Dr. Raghu Ramakrishnan, University of Wisconsin

Dr. V.S. Subrahmaniam, University of Maryland

Dr. Val Tannen, University of Pennsylvania

Dr. Stan Zdonik, Brown University


