
Efficient Transparent Application Recovery
In Client-Server Information Systems

David Lomet and Gerhard Weikum
Microsoft Research

E-Mail: lomet@microsoft.com, weikum@cs.uni-sb.de

Abstract

Database systems recover persistent data, providing high database
availability. However, database applications, typically residing on
client or “middle-tier” application-server machines, may lose
work because of a server failure. This prevents the masking of
server failures from the human user and substantially degrades
application availability. This paper aims to enable high application
availability with an integrated method for database server
recovery and transparent application recovery in a client-server
system, The approach, based on application message logging, is
similar to earlier work on distributed system fault tolerance.
However, we exploit advanced database logging and recovery
techniques and request/reply messaging properties to significantly
improve efficiency. Forced log I/OS, frequently required by other
methods, are usually avoided. Restart time, for both failed server
and failed client, is reduced by checkpointing and log truncation.
Our method ensures that a server can recover independently of
clients. A client may reduce logging overhead in return for
dependency on server availability during client restart.

1. Introduction

1.1 Problem Statement

Database systems support fault-tolerance and high availability by
recovering quickly from system failures. However, recovery has
been restricted to the database and has ignored applications
interacting with the database at the time of failure. Dealing with
database system failures at the application level is still tedious
even if the application itself stays alive. The application process is
also failure-prone and would exhibit improved availability were it
recoverable. Finally, complicated forms of inconsistency may
arise from both application and database server failing
independently within a small time window.

Thus, developing failure-resilient database applications remains a

Permission to make digital or hard copies of all or part of this work for

personal or classroom we ia granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMOD ‘98 Seattle. WA, USA

8 1998 ACM O-89791-995-5/98/006...$5.00

black art unless one limits application structure to special
programming models, like queued transactions supported by TP
monitors [Gray93]. TP-monitor recovery is limited to undoing
incomplete transactions and restoring the last committed state of
message queues. Because the state of application processes is
lost, applications must be “stateless” between transactions.
However, the rich states of modem applications cannot be reduced
to a queued message. Consider long interactive sessions with a
repository tool [Bernstein97], authoring tools [KaiseB’I],
workflow systems [Georgakopoulos95], a CAD system that may
involve long-running computations, or a “middle-tier” application
service such as SAP R/3, which invokes database services and
itself supports many clients. Obviously, users of these applications
would benefit from increased failure resilience, to minimize the
amount of lost human work and to provide high availability at the
application level rather than only the database system level.
Ideally, recovery techniques should mask failures completely and
quickly bring both the application and its underlying databases
back to the pre-failure state.

We present an approach to database and application recovery that
is both efficient and masked from the human users. Specifically,
we consider a client-server environment where multiple clients
run one or more applications, and all applications interact with the
same database server. Applications are assumed to be “piece-wise
deterministic”, i.e., potentially non-reproducible behavior is
caused only by exchanging messages with the server or the
external world, typically a human user but also perhaps automatic
instruments (e.g., in an embedded control system). Failures can be
server crashes, client crashes, or both. Failures are assumed to be
“soft”, i.e., not lose information stored on stable storage such as
disks, and “fail-stop”, i.e., not lead to corruption beyond the actual
point of failure. This captures most real system failures.

Transparent application recovery requires careful logging of
messages and database updates. Efficient client application and
database server recovery from failures requires thorough
cost/benefit reasoning:
. Low logging cost limits overhead during normal operation.

In particular, forced log writes to stable storage, i.e. where
the write must complete before execution proceeds, should
be minimized.

. Fast recovery after a failure, of both server and application, is
critical for high availability. In particular, short outages may
be unnoticed by the human user.

. Recovery of server and clients should be as independently as
possible. Especially, it is unacceptable for server restart to
depend on possibly slow or unavailable clients.

460

Figure 1: Client-Recovery Problem Scenario

These design goals require integration of recovery for client
applications and the database server. Figure 1 shows a client
application and a server proceeding through a series of states
(shown as circles) with an exchange of messages at certain points.
The server interacts with other applications as well. Suppose the
client saves state SC1 of the application to disk. We call this an
application installation point. Suppose this application fails in
state SC4, while the server proceeds serving other clients and their
applications. When the client restarts, it reincarnates the
application at SCI, the most recent installation point. It then re-
executes the application, re-sending the previously sent request to
the server. If the server has not taken precautions, it will treat the
request as a “new request”, and send a new reply back to the
client. However, the server is now in a more advanced state, say
SS4, and has meanwhile executed other clients’ requests.
Therefore, the re-executed “new request” of the restarted client
may no longer produce the same outcome as the original request
and may show results to the user that differ from the original
results. This problem would not arise if client failure and restart
had forced the server to also restart from a state that has been
synchronized with the client’s restart point, for example state SSl.
However, such an approach compromises server recovery
independence and availability in an unacceptable way.

1.2 Prior Work

Prior work on application fault-tolerance in a distributed system
involves application installation points and/or message logging.
Installation points are called “application checkpoints” in the
literature, meaning that an application’s state is saved to stable
storage. We avoid this term to avoid confusion with database
checkpoints, which are special log records permitting log
truncation [Gray93, Mohan921. The prior work can be categorized
into three approaches, all of which incur high normal operation
and/or recovery costs:

. Fault-tolerant process pairs: This approach provides a
primary process with a hot-standby process, usually on a
different processor. When the primary process fails, the
standby process takes over and re-executes starting from the
last installation point of the primary process. The sending of
regenerated messages is conditionally suppressed, based on

testing sequence numbers against logged messages. This
approach was pioneered in the early eighties [Bartlettgl,
Borr81, Borg83, Borg89, Kim841 but is a heavyweight
solution justifiable only for mission-critical high-end
applications. It requires either an installation point or a forced
message log record at every process interaction. This
frequently required disk l/O greatly limits the achievable
throughput of both server and clients.

. Distributed state tracking: Approaches from the distributed
algorithms community (see, e.g., [Strom85, Johnson87,
Strom88, Alvisi95, Elnozahy961) have a relaxed model of
communicating processes. Processes generate installation
points only occasionally and independently. Messages are
logged in an optimistic, non-forced manner. A failed process
restarts from its most recent installation point, but other
processes may be forced to restart from earlier states to
guarantee a causally consistent global state [Chandy85]. This
induces recovery dependencies among the processes that are
unacceptable for a database server. Further, the restored
global state is not necessarily the last externally observed
state. This is fine for “number-crunching” computations, an
initial target of this work, but it does not mask application
failures from the user. Thus, this work has had little impact
on real systems [Huang95]. A variation of message logging
that eliminates recovery dependencies is pessimistic message
logging. Unfortunately, this approach is very expensive as it
forces every log record immediately. Most of this research
ignores the need both to minimize logging cost and to
truncate the log for fast restart.

. Persistent queues: This approach requires interactions
between processes to be via persistent queues [Bemstein90].
When a process sends a message to another process, the
sender enqueues the message to a persistent queue within the
boundaries of a distributed transaction involving the queue
and the sender. This incurs the high forced logging costs of a
two-phase commit protocol [Gray93]. Moreover, the same
protocol is used when the receiver dequeues the message.
This solution has been very successful in the context of
transaction-structured applications such as reservation
systems, and is even suitable for heterogeneous platforms.
However, its disk I/O costs are very high, and each
application must be decomposed into a sequence of
transactions with no state external to the queued messages.

Our approach achieves essentially the same effect for client/server
applications as the persistent-queue method or a pessimistic
logging method, but with much lower logging costs and very fast
restart. The key to this is to exploit the special properties of
request/reply messaging, and to use advanced database-style
logging and recovery techniques which minimize log forcing,
batch log I/OS, and efficiently truncate the log. These techniques
integrate application recovery with database recovery. The only
prior integrated approach [Lomet97, Lomet carefully
coordinates the writing of log records and the installing of updates
for both database and application-state modifications. It handles
applications that run under the direct control of the database
system (resource manager) on the same machine. Client/server
applications need new techniques.

461

1.3 Our Approach and Contribution

Our approach inherits the combined techniques of application
installation points and message logging. In contrast to prior work,
we take more care about when to force message log records versus
when to batch them with other log records and write them lazily.
Log records that capture input messages from the external world
to a client application are usefully forced immediately.
Opportunities for optimization do exist, however, for the log
records that capture client-server request-reply interactions.

There are several options for distributing the logging work
between client and server. Our method of choice, coined “server
reply logging”, makes the server responsible for the forced log
I/OS. This is advantageous as the server can recover independently
and the batching of log records is more likely at the server. A
client can log server replies, too, for faster application restart, but
it can do so lazily. Client recovery may then need the server to
ship log records that the client has lost in a failure, but this is a
small price for much better throughput. Besides, a client can limit
its need for log record shipping. That the server keeps log records
that may be necessary for the restart of a client application creates
subtle problems for truncation of the server’s stable log tile. Log
truncation is an important efficiency issue as it affects both log
space consumption and the duration of the server’s redo recovery
pass and hence, server availability. We derive a low-overhead
scheme that supports effective log truncation, based on the client
notifying the server when it no longer needs reply log records for
its recovery.

The paper improves the state of the art in three ways:

. Advanced database logging and recovery techniques are
extended to integrate database server and client application
recovery, while ensuring recovery independence for the
server. The supported class of applications includes
“stateful” client applications and is thus substantially more
general than the “stateless” applications represented by
sequences of transactions (“chained transactions”) alone.

. Message logging techniques from the distributed algorithms
literature are tailored to client-server application recovery to
minimize logging I/O costs and effectively support log
truncation for fast restart when the client/server interaction is
request/reply. Compared to using transactional persistent
queues between the client and the server, our method reduces
the forced log I/OS by a factor of six.

. The paper reconciles concepts from separate research
communities, database systems and distributed algorithms.
The result is an efficient solution that makes failures
transparent to users by providing high availability at both the
database system and application level. We believe this is
important for making application fault tolerance an
affordable “commodity feature”, not just an exotic “high-end
luxury”.

Throughout the paper we consider only redo recovery
(equivalently, the “repeating-history” part of recovery [Gray93,
Mohan921) as the most important component of fault tolerance.
We do not make any specific assumptions on the embedding of
client requests into transactions. Multiple request/reply pairs are

possible within a transaction, or a single request may comprise
multiple ACID transactions (e.g., when the request spawns a
stored procedure with multiple commit points). Also, our method
does not rely on a particular isolation model of transactions; both
full serializability and weaker isolation levels are compatible with
the developed recovery algorithms.

Undo or compensation of certain application steps and/or database
updates may also be necessary after a failure, but this is an
orthogonal subject. Indeed, the capability for undo is needed
during normal operation as well. This undo recovery is no
different from what is already in the literature (see
[Elmagarmid92, Ramamritham961 for overviews).

The rest of the paper is organized as follows. Section 2 introduces
client-server information systems and their requirements for
recovery, and discusses various design considerations. Section 3
presents the paper’s core contribution, a detailed algorithm for
efficient and user-masked application recovery, based on the
design considerations of Section 2. Section 4 discusses additional
refinements and optimizations of the algorithm, and an outlook on
possible extensions, while Section 5 concludes the paper with a
summary of the salient features of the algorithm. Pseudo-code for
the developed algorithms and additional correctness reasoning can
be found in [Lomet98a].

2 Design Rationale for Recoverable
Client-Server Systems

We focus on request-reply interactions between client applications
and a server. We assume that all requests of client applications are
intercepted by the client’s run-time system (e.g., the client’s
ODBC stub). We further assume that the server runs a single
resource manager that can control both database updates and its
incoming and outgoing messages in an integrated manner. The
server does not depend on any application state information across
multiple requests, other than what it keeps in its database. For
example, when SQL cursor positions or temporary tables live
across request/reply interactions, the server has to maintain them
in its database so that they are recoverable. Finally, we assume
that output parameters of request executions, including return
codes, are part of the server’s reply message.

2.1 General Message Passing

Consider two processes that exchange a message, a sender and a
receiver. Either or both may fail. We must ensure that the
recovered states of the two processes either both contain the
message exchange or that neither does. This amounts to requiring
the atomicity of a send-receive interaction and explains why the
most successful prior approach has been based on persistent
message queues (see Section 1.2). However, queues require two
distributed transactions for each message exchange, and hence
two instances of two phase commit. One transaction is between
the sender and the queue manager (so that the sender’s state is
advanced if and only if the request is persistently enqueued), and a
second between the receiver and the queue manager dequeuing the
message. If the second transaction fails, the message is returned to

462

the queue, and the surrounding TP monitor guarantees that the
receiver eventually retries the dequeuing. The net effect is that the
state transitions of both the sender and the receiver form one
atomic unit.

The drawback of the queue-based solution is its high I/O cost.
Sender, receiver, and queue manager all force information to
stable storage. Reducing this cost is one of the main points of this
paper. As our algorithm demonstrates, it is sufficient that only the
sender force-log the message. Then, if the receiver fails after
having received the message but without making it stable, the
receiver can again obtain the message from the sender, and this
argument is essentially symmetric in the two roles of a process. In
fact, this is obviously the weakest logging requirement that can
satisfy the correctness criterion. However, this approach has
certain non-obvious implications:
1. The sender takes the responsibility for recreating the message

when the receiver fails and needs to replay the message
exchange. The protocol also needs to consider when the
sender can discard the logged message and hence the server
needs to know when the receiver no longer has to re-obtain
the logged message.

2. The receiver’s recovery depends on the sender’s having
forced logged the message. Should the receiver fail after the
message exchange, it cannot perform independent restart. It
must communicate with the sender because the message
exchange must be replayed, but the receiver itself may have
no stable record for it.

Our goal is to improve upon sender logging for the important case
of request/reply message pairs. We specialize in the rest of the
paper to client-server information systems where we can make
specific assumptions about the roles of the processes in order to
design an efficient protocol.

2.2 Request/Reply Design Issues

Compared to general message-passing processes, the client-server
scenario is special in a number of ways:

Clients: A client knows exactly when one of its applications
is waiting for a reply message and this application is
suspended between sending a request to the server and
receiving the reply. A client application interacts with only
one other process, the server. A client application may
interact with another application, either on the same or some
other client, only via the server’s shared database, which has
its own recovery. A constant for all recovery scenarios is
that the client application also can interact with a user, and
hence has requirements imposed by that which we discuss
below.

Server: The server communicates with many clients
concurrently. Hence, it can exploit batching to improve the
disk I/O efficiency of logging. Furthermore, the server usually
processes multiple requests of different clients concurrently.
Since it does not have to commit itself to an ordering of these
requests until it sends replies, it can perform optimizations
that are impossible in a general message-passing framework.
However, this means that the server will not be piece-wise

deterministic between message events unless it does sufficient
logging to be able to reconstruct the exact interleaving of
database reads and writes. Such extensive logging can be
expensive. Not interleaving request executions is
unacceptable as it leads to poor server throughput.
Client-Server Dependability: The server is much more
reliable, because it is carefully administered, than the clients
are. Therefore, client applications may be willing to rely on
the server’s availability, but the server should never depend on
the clients - quite an asymmetric situation.

A decisive difference between client and server is that the client
application is piece-wise deterministic between requests whereas
the server is not.

2.3 Server Considerations

We could treat the server’s concurrent request executions as a set
of message-passing threads, whose “messages” correspond to the
interleaved accesses to the shared database and each would have
to be force-logged. Fortunately, the fact that the execution of
interleaved requests is not exactly reproducible does not matter
until the resulting effects propagate outside of the server, i.e.,
when a reply is sent to a client. Thus sending a reply commits the
state ofthe server. From this point on, the server promises that it
will deterministically replay a previously executed request if a
failed and restarted client should re-submit the request. This
commitment has three aspects:
. Recreate reply: The reply for a re-submitted request must be

identical to the original reply.
. Redo database updates: Effects of the original request on the

server’s database are redone if necessary and the re-
execution of a request is idempotent.

. Isolate other requests: The redo of database updates does not
alter the data values previously read by concurrently
executed requests.

To illustrate why these commitments are necessary, consider the
example in Figure 2. When the server fails and restarts after
having executed the action sequence shown, it must recreate the
original reply for request 2, and ensure that WZ(y) is redone if
necessary. If done by re-executing request 2, R2(x) must see the
value previously written by request 1. This problem is orthogonal
to transactions, A request-reply pair needn’t coincide with the
boundaries of a transaction. The request-reply pair may contain
multiple transactions (e.g., an invocation of a multi-transaction
stored database procedure) or be embedded in a transaction with
multiple requests (a conversational transaction).

The server relies on the client to resubmit application requests
should the client fail. The server guarantees to provide the reply
as long as the it does not fail by keeping the reply for a completed
request in a volatile data structure, so that it can be sent back
when a request is re-submitted. The challenge arises when the
server fails and then receives a re-submitted request after it
restarts. Section 3 details how this is done.

463

Figure 2: Request-interleaving problem scenario.

2.4 Client Considerations

Client applications, unlike the server, are piece-wise deterministic
between requests. Hence, to recover the state of a client
application, we need merely log the external input that it has seen
and initiate replay from a saved installation point. The client
exploits the recoverable request/reply mechanism when a
request/reply needs to be replayed to recover one of its
applications. The replay of the application up to the point of the
request guarantees that the request is regenerated, the fundamental
requirement placed on clients. A repeat of the request causes the
re-delivery of the reply to the client application.

Application installation points are generated at the client, where
the application is executing. The client may choose to store its
installation points on a server for reliable storage, but the server
then treats the installation-point information as regular data that it
stores and retrieves upon the client’s demand.

The client must also deal with input and output messages from
and to the external world (e.g., the human user). It must log input
messages and force them to stable storage promptly to minimize
the frequency with which the user may have to re-submit input, so
there is not much room for optimizations. Responsibility for
logging these messages lies naturally with the client as the client
receives them. For the rest of the paper, we assume that the client
logs such external input messages. Note, however, that the input
message log records should reside in the same log file that holds
other client log records.

There is no need to log output messages to the external world, as
they can be deterministically recreated if the application fails and
restarts. During the restart, previously sent output is suppressed,
except when an output message is immediately followed by a
failure. Then, it is impossible to tell if the user has already
received the output, whatever logging might be done. Therefore,
such a message is re-sent and may thus be seen twice by the user.
Note that should the “user” of our client be a program that can
fail, then our “client” begins to look a bit like a server, and should
start acting like one as well (see Section 4.3).

3 The Server Reply Logging Method

The above considerations strongly suggest that the server be
responsible for the stable logging of reply messages. This enables
fully independent server recovery after a failure, i.e., the server
becomes available again without exchanging information with
clients (that may be unavailable at this time). Server
independence is a major design goal. Once we decide on server

reply logging, most other aspects of the solution are natural
consequences of our analysis. If replies are recoverable, requests
are recoverable as well. Client applications are piece-wise
deterministic, and hence their replay re-creates the request. So our
server reply logging method need not perform any forced request
logging on client or server. This leaves us with only one forced
log I/O for each request-reply pair.

Server reply logging minimizes the server’s forced logging
frequency while providing the best solution in terms of recovery
independence and fast server restart. The only aspect where it may
be inferior to more client-centric approaches is a possibly
increased restart time for client applications and that client
recovery becomes dependent on the server. Given our design
goals, especially server independence, and the fact the client
depends on the server in any event, these disadvantages are surely
acceptable. Therefore, our method of choice is server reply
logging. In this section, we give a detailed description of the
server reply logging method. We elaborate on the optimizations
to minimize forcing the log; and on the subtle details of log
truncation, on both server and clients, to speed up restart and,
ultimately, guarantee very high availability. Pseudo-code for both
client and server logging and restart is given in Appendix A.

3.1 High-level Description

The server forces reply records to the log before sending a reply.
It does this by flushing the database log buffer, including the write
log records of the corresponding request-reply pair, the reply log
record being the last log record that must be written. In addition,
the server may perform an optimization similar to group-commit
[Gray93]; i.e., it postpones sending a reply until either a timeout
occurs or a sufficiently large batch of log records has
accumulated. It then writes the batch to the stable log file in a
single disk I/O.

The server can choose among a number of options for replaying
requests. It knows when a request execution is incomplete so that
an undo scheme is applicable given appropriate isolation.
Equally, it can choose replay a request to completion. Replay
would now be necessary only for incomplete requests (i.e., when
the reply is not yet stable). While these options require that the
request and all database reads be logged in addition to the
normally logged database writes, no additional forced log l/O is
needed. Forcing the reply log record ensures that they are written
to the stable log file as well. In fact, we will later see that there is
an opportunity for further optimizations in this regard (see Section
3.3.1).

A failed and restarting client may re-submit requests, hence
asking the server for some earlier replies. Because the server logs
replies, the server is always able to look up the corresponding
reply and send it back to the client without replaying its request.
However, this may randomly access the server’s stable log file, a
potential disk I/O efficiency problem. Therefore, the server keeps
the reply log records in a separate randomly accessible data
structure, ideally in main memory, called the “‘message lookup
table”. During recovery after a server failure, the server rebuilds
this table from its stable log to avoid random I/OS to the log for
re-submitted requests.

464

From the client’s viewpoint, a drawback of this method is that
client restart time can be significantly longer than with client
logging. Communication latency with a potentially highly loaded
server to obtain the reply log records is a serious issue. To ease
this problem, the client can perform some “lazy logging”, writing
reply log records to stable storage in a non-forced manner
whenever there is available disk bandwidth.

Client recovery dependency on log records kept by the server
causes subtle difficulties for log truncation at the server. Without
additional mechanism, the server would never be able to truncate
its stable log tile and the log scan time during a restart would
grow without bound. To avoid this, clients inform the server
when log records are no longer needed by sending “stability
notifcations” to the server whenever the client:
. generates an installation point (log records preceding an

installation point are not needed for client recovery); or
. makes reply log records stable by additional lazy logging of

replies at low priority.
The client can piggyback stability notifications on its regular
messages to the server. Application recovery is not compromised
when the server garbage-collects reply log records that will never
be used by a client.

3.2 Data Structures

In addition to the usual recovery data structures, our method uses
the following two data structures, instantiated at both the server
and the client:
. an Active Application Table (AT) that contains status

information about ongoing (possibly failed or restarting)
applications that the server or the client is responsible for,
and

. a Message Lookup Table (MT) that contains (log records
about) messages of active applications, most importantly
reply messages.

These data structures, described in Figure 3, reside in volatile
storage, with entries made stable by forcing them to the log. We
explain the various fields as we discuss the algorithm. A message
is tagged with:
. an application identifier (AppID) that includes an encoding

of the host client and is unique across all applications of all
clients:

. a message sequence number (MSN) that is unique and
monotonically increasing within each client application.

Messages include the input and output messages documenting
client interactions with the external world. For convenience, we
consider an application installation point (IP) as message with an
MSN, and we distinguish start and termination installation points
(start-IP and term-IP) from the regular ones.

The client tracks the last used MSN for each application, by
recording it as the LustMSN in the active application table. The
client keeps two additional MSN fields. The RedoMSN, is the
oldest MSN that follows the most recent installation point of the
application, or the installation point MSN itself if no more recent
message exists. The StableMSN, is the most recent MSN for
which it and all smaller MSN’s of the client have stable log
records. The client’s StableMSN is the server’s RedoMSN for the

given application. All server message log records on its stable log
tile with an MSN smaller than the server RedoMSN of the
corresponding application are obsolete and can be garbage-
collected (they are unneeded by the client).

During the recovery analysis pass, relevant entries for the active
application table and the message lookup table are recovered in
volatile storage with information from the stable log tile. Thus,
server recovery has the usual two scans over the stable log file
(analysis pass and redo pass), yet all relevant information on
applications and reply messages is readily accessible for restarting
clients.

AT: array[AppID] of record /* Active Application Table */
LastMSN: integer;

/* MSN of the application’s last message event
(only relevant on client) */

StableMSN: integer;
/* MSN such that all prior message events of the
application, including this one, are known to be on
stable storage locally (only relevant on client) */

RedoMSN: integer;
/* MSN of the oldest non-obsolete message event (for
the client, this is always the most recent installation point
or the oldest MSN that follows it) */

RedoLSN: integer;
I* LSN of Iog record that corresponds to the RedoMSN */

end;
MT: array[AppID,MSN] of record /* Message Lookup Table *I

MsgType: (request, reply, input, output);
I* input and output are only needed for
client-to-external-world messages */

MsgContents: array of char;
end;
LF: persistent array[LSN] of record /* Stable Log File */

LogRecType: (write, read, undo, request, reply,
input, IP, start-IP, term-IP, CP);

LogRecContents: array of char;
AppID: integer;
MSN: integer;

end;

Figure 3: Major data structures of the server reply logging
and recovery method

3.3 Logging Algorithms

3.3.1 Server Algorithm

The server generates log records for each of its database write
operations and each request and reply message, as well as some
additional temporary log records to cope with incomplete
requests, discussed below. These log records are posted in a
conventional log buffer, which is forced to disk whenever it is full
or according to write-ahead-logging or force-at-commit rules. In
addition, the log records for messages are kept in the message
lookup table described in the previous section. A reply log record
is forced to stable storage, by flushing the database log buffer,
before the reply message is sent to the client. Making the reply log

465

record stable does not imply that we discard it from the message
lookup table. As a restarting client may re-request a log record,
keeping the reply in main memory can save random disk I/O on
the log file.

To force a reply message, the server flushes its log buffer in a
single atomic write to the log. If the message lookup table still
contains the corresponding request message (which must have the
largest preceding MSN of the application), then this message can
be discarded once the atomic log tile write is completed.

Logging for incomplete requests

We need to take special care when the server fails in the middle of
a request execution. Note that this problem arises with at most one
request per active application, namely, the last, outstanding
request of an application. The server has two principal options to
achieve this goal:

1. Rollback request, und execute again: The server knows when
the original reply has not yet been sent to the client. Then it
has no obligation to deterministically replay as long as all
database writes of concurrently executed requests are kept
isolated. Thus the server can undo incomplete requests and
re-execute them all as new requests with different
interleaving and effects. This requires that the effects of
incomplete requests be kept isolated. Isolation typically
holds if a request-reply interaction is inside one ACID
transaction that uses, e.g., strict two-phase locking. When a
client request initiates a sequence of transactions on the
server (e.g., a request that starts a ‘mini-batch” stored
procedure on the server), undo requires compensating
transactions. The effects of the original transactions would
have to be kept quasi-isolated at a higher level of abstraction
taking into account application semantics [Lomet92,
WeikumBO].

2. Redo/continue request execution: To make the server’s non-
deterministic behavior deterministically replayable, the
server logs all database reads as well as writes. To ensure
deterministic replay after the reply message is sent, the server
must flush the log buffer before sending the reply. This
makes stable all read and write log records generated for the
completed request execution. During server restart, a missing
reply for an unfinished request is reconstructed by redoing
and completing the request. During replay, database reads
and writes are intercepted. Writes are applied to the
database using LSN testing for idempotence. There are two
ways in which to handle reads.

a) Log physical read operations that record the values read
by database reads. During recovery, read values are
extracted from the logged values. The danger is that
logging read values can greatly increase the amount of data
logged.

b) Log logical read operations that record the occurrence of a
database read and its source [Lomet98]. During recovery,
read values are re-read from the database. Thus, recovery
must read the same versions as originally read. However,
current cache managers write pages back to the stable
database in any order, and hence may overwrite the version
required by a read. Thus, the cache manager must not
overwrite a page whose prior version is still needed to

replay a read, by tracking and enforcing installation
dependencies [Lomet9S]. A danger is that installation
dependencies may prevent the flushing of a dirty page
(containing a version needed for recovery) for a very long
time. Forced logging of the reply ends this installation
dependency.

None of the options incurs additional forced log I/O for
incomplete requests. Also, request log records and either undo log
records or read log records are irrelevant once the reply log record
is forced. Therefore, if any of these log records are still in the log
buffer, they can be safely discarded without being written. This
technique is similar to how atomic subtransactions are dealt with
in the multi-level recovery methods of [WeikumgO, Lomet92,
Weikum931, where some log records become irrelevant when
subtransactions commit. However, should these log records be
written to the stable log, they must appear in the log in their
chronological order for correct recovery.

There is no clear choice among our three options. For
concreteness, pseudo-code in Appendix A is based on logging
read values and redoing/continuing request executions (option 2a).

Checkpoint log records

As in standard database recovery, the server creates checkpoint
(CP) log records that contain certain bookkeeping information to
shorten the analysis and redo pass of recovery. The CP log
records identify which parts of the log are irrelevant and
effectively truncate the log. However, since we need to take into
account both server and client needs, log truncation is more
complicated than with database recovery alone. We postpone the
detailed discussion of this until we have presented the client
logging algorithm.

3.3.2 Client Algorithm

A client creates log records for each request and reply exchange
with the server. In addition, it creates log records for each input
message from the external world (human user or sensor/actor, e.g.,
in an embedded control system). These log records are kept in a
message lookup table with the same layout as on the server. The
client forces log records for external input to the stable log file
immediately. The other messages are not forced to the stable log
tile. Rather the client writes them “lazily”.

The client maintains a StableMSN for each application, which
tracks by how much the client lags behind the server in terms of
its stable message logging. The StableMSN is increased when the
client writes a set of (chronologically) consecutive request and
reply messages to the stable log file. One concrete policy is to
ensure that this “backlog” (relative to the server) is limited by
initiating a log file write whenever LastMSN - StableMSN
reaches some threshold.

Each application periodically generates an installation point,
saving the entire process state of an application onto stable storage
on a per application basis, using a shadowing technique to provide
atomicity of installation points. Each installation point is tagged
with the MSN assigned to it and is thus “self-describing”. Once an
installation point is completed, all earlier log records of the

466

corresponding application can be discarded. They are now lower
than the RedoMSN for the application, which is advanced to the
MSN of the IP log record.

Like the server, the client can also occasionally write checkpoint
log records to allow truncation of its log. Only the “discarded”
log records above are truncated. The issue of log truncation is
discussed in detail in the next subsection.

3.3.3 Log Truncation

Both server and client continuously truncate obsolete parts of both
the stable log file and the message lookup table. This is important
to free disk and memory space and shorten the log tail scanned
during the restart redo pass. Log truncation, a form of garbage
collection, is especially important for the server. If the server
cannot delete log records after some time, then its log processing
upon restart becomes excessively long, and the server’s
availability is compromised by its role in application recovery.
Below, we first consider when clients can discard log records,
which is the simpler of the two cases, and then discuss server log
truncation.

Client log truncation

A client discards all log records and message lookup table entries
of an active application at each new installation point for that
application. However, when the client runs multiple applications
simultaneously, this does not yet allow truncating the stable log
tile, as other applications may still need “old” parts of the log file.
The client marks the progress for the installed application in the
active application table by setting its RedoMSN entry to the MSN
of the installation point. (For convenience, installation points are
viewed as messages here, so that they can be identified by an
MSN. We also tag installation points with the MSN of their
associated log record.) The minimum RedoMSN among all active
applications then determines the part of the log tile that the client
needs to keep. To reconstruct the minimum RedoMSN after a
failure without having to scan the entire log, the client periodically
generates a checkpoint log record that contains the active
application table. This is a standard technique of database-style
logging and recovery, applied here to application message
logging. The applications play the role of dirty database pages.

Server logfile truncation based on client stability notifications

As the server does not itself install applications, it has no direct
information about when it can safely discard log records and thus
truncate its log file. The server relies on the clients notifying it
about their steps that allow it to discard log records. These
stability notifications need not incur extra messages as the
relevant information is piggybacked on the next request message.
The client steps that trigger a stability notification are an
application installation or the writing of reply log records to the
client stable log tile. In both cases, the client increases its
StableMSN, and it is this that is sent to the server. Upon receiving
a stability notification with StabIeMSN m, the server discards all
entries of its message lookup table with MSN’s smaller than or
equal to m. The server also sets the application’s RedoMSN in
the active application table to the smallest MSN higher than m and
adjusts the corresponding system RedoLSN accordingly.

The server needn’t make the changes to its message lookup table
and active application table stable. It should, however, generate a
log record to mark this event in the log, but this (very short) log
record need not be forced. Consequently, when the server fails, it
may not remember that it effectively truncated its log file and it
may scan the log starting from overly old RedoMSN’s. This does
not affect correctness and the stale RedoMSN information will
usually be updated soon by the next stability notification from the
client.

The only case where a stale RedoMSN could result in a permanent
and critical problem is the server loss of a stability notification
from a terminating application that will not send more
notifications. Log records for this application would become
permanently unreclaimed garbage, forever preventing the server
from truncating its log. Thus, we require that stability notifications
for application termination be specially tagged. The server must
force a “term-IP” log record to the log or generate a checkpoint
record with an updated copy of the entire active application table.
The client must await an acknowledgment from the server before
it can remove the application from its own active application table
and thus commit the termination.

3.4 Restart Algorithms

3.4.1 Server Algorithm

After a server failure, the server restarts by performing an analysis
pass and a redo pass over the stable log tile. The analysis pass
starts from the most recent checkpoint log record (found by
looking up the bootstrap file) and scans all log records until the
end of the log. For application recovery, this pass rebuilds the
active application table. This table is re-initialized from the
checkpoint log record, and is then updated whenever the log scan
encounters an installation point log record for an application. At
the end of the analysis pass, the server knows for which
applications it may have to recreate replies. It also knows a
RedoMSN and a corresponding RedoLSN for each application,
bounding the part of the log that contains the required reply log
records.

The redo pass then starts from the minimum of RedoMSN’s
among active applications or the minimum RedoLSN among dirty
database pages, whichever is older. For client application
recovery, we focus on the redo of the message log records,
understanding that request execution can write to pages of the
database, and hence that we must, in this redo scan, do normal
database redo as well. The server redo pass rebuilds the message
lookup table, restoring it to its state as of the crash. The server
can then deliver logged replies to re-submitted requests in case a
client application has failed and is itself restarting.

A case that needs special consideration is the handling of
incomplete request executions where the server has logged redo
steps for database writes of a request. Then the request log record
itself and corresponding undo or read log records are guaranteed
to be on the stable log file at their original points in the interleaved
request-execution history. We consider two cases.

467

. Undo log records permit the server to undo the database
writes of all incomplete requests, subsequently re-executing
these requests as if they were new requests, and re-generating
the corresponding replies (option 1. in Section 3.3.1, valid for
isolated request-reply interactions only.).

. Read log records permit the server to deterministically replay
the partial execution of the incomplete requests and then
continue executing the requests to completion (options 2. and
3. of Section 3.3.1).

The replies are then handled like replies during normal operation:
they are inserted into the message lookup table, forced to the
stable log tile, and finally sent to the client. From this point on the
server is in its normal operation mode. Client requests that are
lost because the request log record is not forced are re-executed
when the client re-submits the request.

3.4.2 Client Algorithm

Client restart also consists of analysis and redo passes over its
stable log file. The analysis pass is identical to the server’s and
rebuilds the active application table. The redo pass, however,
differs from the server’s. The server “merely” rebuilds
bookkeeping data that may be needed by failed clients. Client
recovery actually restarts the applications active at the client
failure, resuming their execution in a way that is transparent to the
human user. This leads to the following differences.

The RedoMSN of an application identifies the oldest log record
needed for recovery, the installation point log record, or the
application log record following it. Note that the RedoMSN
determined by the analysis pass is a lower bound on the real
RedoMSN. It is possible for an installation point to occur just
before the system fails and for the log record describing it not to
reach the stable log. In this case, a better RedoMSN can be
determined from reading the application installation point and
examining its tag MSN.

The redo pass scans the log from the oldest RedoMSN of all
applications in the reconstructed active application table. We
process the log records of all applications at this client in a single
pass over the log as opposed to making a separate pass per
application. This is an important optimization for clients running
“middle-tier” application services with a large number of
concurrently active applications. Each application is re-incarnated
upon encountering its analysis-determined RedoMSN log record
(i.e., the lower bound for the RedoMSN) during the redo pass.
The MSN that tags the application installation point is then used
to determine the true RedoMSN, which may be later because the
system may have failed before the stable writing of the log record
for this installation point. All log records for the application are
ignored until the true RedoMSN is encountered. This is the
application analog to the way that updates to data pages are
bypassed when the log record LSN for the update is less than the
LSN stored on the page.

An application then re-executes asynchronously to the further
redo processing of the log (i.e., in a separate process or thread).
As in normal operation, application requests are intercepted. At
these points, either client recovery has already encountered the
corresponding reply log record or the application process pauses

until it is encountered. If the reply has been encountered, then it is
replayed. Otherwise the application waits and replays the reply
when it shows up on the log. Application replay proceeds after
the reply has been redone. Note that with asynchronous
application re-execution, restart is substantially faster, which is
especially important if applications perform long computations
between server interactions.

The redo pass over the log file proceeds in parallel with
application re-execution. It re-creates the message lookup table to
the state as of the last stable log record. During the application re-
execution, user input messages are consumed from the message
lookup table, and output messages to the user can be re-created as
part of the application re-execution. A11 output messages which
are known to be followed by a log record of that application are
suppressed (i.e., not sent to the user) as they would be duplicated.

There is a chance of repeating the very last output message or of
missing the very last input message. Regardless of how quickly
we force the log, a system failure can occur between the time of
the input and the time when the input is logged. The best that we
can do is to reduce the probability that this will occur. Similarly,
on output, it is possible for the output to be lost before the user
sees it, even if it were “sent”. Regardless of logging, it is
impossible to tell whether the user has seen the output or not until
the user “acks” the message in some way. Thus, one has to re-
present the last (un-ack’d) output.

For requests and replies, the client’s analysis pass also
reconstructs the StableMSN for each active application. So the
redo pass knows which log records it will eventually encounter on
its stable log file. All other, more recent reply log records have to
be retrieved from the server. However, the client does not know
its exact point of failure. Therefore, it does not know if there are
additional log records on the server. When application re-
execution reaches the last locally logged reply, application
execution simply continues beyond this point and re-enters normal
operation. The client executes the application until the next
interception point and sends the request to the server. The client
cannot (and does not have to) tell whether this request is a re-send
or if it is the original send. On a re-send, the server sends back a
previously logged reply. For a new request, the server does its
normal request execution. An obvious optimization is to ask the
server, right after the client’s analysis pass, to asynchronously
ship the reply log records that are more recent than the client’s
StableMSN. This approach is more complicated and therefore not
pursued here.

4 Additional Considerations

4.1 Further Optimizations

Here we briefly discuss further potential improvements for
handling the logging required for application recovery.
. Server log truncation: When the RedoMSN of an active

application becomes too old, it prevents log file truncation,
hence increasing recovery time. To deal with this without
client help, the server appends again the log record identified

468

by RedoMSN to the stable log tail. This changes the
RedoLSN of the application, but not the RedoMSN. It
allows the server to advance the redo scan start point and
truncate the log. The server can iterate this technique,
garbage-collecting interspersed obsolete log records by
copying the “live” ones to the log tail. The message log
records of an application now no longer appear in MSN order
on the stable log file, but this is not a problem. At restart, the
redo pass entirely rebuilds (the non-obsolete part of) the
message lookup table anyway before resuming normal
operation.

. Separately storing large replies: We expect most request and
reply messages to be short, but some applications may use
very large parameter values in their messages, for example,
when dealing with images or large documents. Such large log
records increase the log processing time during a server
restart, even when they are already obsolete but not yet
truncated. Thus, it can be beneficial to separate message
contents from the message log record. Such a log record
contains only a pointer to a file (or disk address) where the
message body is kept as an “extension”. Finally, these
extensions can be garbage-collected earlier because they are
not interspersed with other log records.

. Regenerating replies via replay: One way to avoid large
reply log records is not to log message replies. If the total
size of the request log record and all its read log records is
significantly shorter than the reply log record, the server can
choose to log that information instead of the reply. We
preserve the server reply logging advantage of a single forced
log I/O per request-reply. One can think of this as a way of
“compressing” the reply message log record.

. Out-of-order client message logging: The client can reduce
its logging costs at the cost of complicating the server’s log
truncation by relaxing the order in which it writes log
records. For example, the client may avoid writing large log
records to its stable log file, instead writing shorter but more
recent log records. Since the client’s logging is “lazy”, the
large log record might never be made stable since an
application installation might make this unnecessary.
However, “out-of-order” log writing complicates both server
log tile truncation and client restart. Client stability
notifications to the server must now contain explicit MSN’s
of stable log records rather than merely its StableMSN. The
server is potentially more restricted in truncating the log.
Client restart has to identify replies from the server explicitly
rather than with a “high-water mark”.

. Strenuous measures for difficult clients: The server must
keep all “un-ack’d” reply log records. When a client does
not send any stability notifications for an extended time, the
server is sorely “inconvenienced”. The server can ease this
inconvenience with the techniques for server log truncation
and the storing of large replies discussed above.
Alternatively, at the cost of no longer masking an application
failure, the server can discard such an application’s log
records. If the client fails and application restart takes
unusually long, when application restart eventually asks the
server for a reply log record, the server sends back a return
code indicating a “cancellation” of that application. This
does not do much harm if it is sufficiently infrequent. This
seems appropriate, as a long application outage is no longer
masked from the user.

4.2 State Installation

We have implicitly assumed that application state can be captured
and installed at the client. This is essentially the stateless server
model, i.e., the server holds no state for the client. However,
database systems are not stateless servers. Clients have sessions
(connections) with databases; sessions may have temporary tables,
cursors, and a variety of additional state. There is nothing
conceptually difficult in dealing with this. However, there can be
substantial practical difficulties.

There are two generic approaches.
. The server permits the client to ‘Ye-install” server state when

client redo recovery needs to instantiate the application state.
Such server state includes, e.g., session-related information
like session id, which are required if the server is to preserve
any part of this state for the client.

. The server recovers these elements of client application state
during its recovery. These elements are thus present for the
client as part of the server state. Things like temporary tables
or cursors are very difficult for the client to log or include in
an application’s installation point.

Further, we have assumed that request executions are independent
and short enough so that we do not have to deal with installing
intermediate states at the server. If this should be a problem, then
we would need installation points for request executions as well as
client applications. Such installation points are implemented
using the same techniques as for client applications.

4.3 Extensions to Other Architectures

We have focused on an architecture where multiple clients interact
with one server. It is straightforward, however, to generalize our
approach to multiple servers. Each server simply employs the
server reply logging algorithm, and on the client side, the data
structures of the algorithm have to be instantiated and maintained
for each server connection. No other extensions are needed.

Three-tier systems have a middle-tier service such as SAP R/3
with multiple client applications that interact with each other as
well as with servers. Even more general architectures are possible
with workflow management. A workflow engine is a middle-tier
service that uses a database server to store the workflow state. It
also interacts with “invoked applications” that run on different
servers and in turn interact with other database servers or even
other workflow engines. This leads to servers that may also be
clients of other servers. As long as the client side of such a
“mixed” architecture isolates all its execution threads and the
threads do not issue asynchronous requests to other servers, our
approach generalizes in a straightforward manner. Essentially
each “mixed” application executes both the client and the server
logging and recovery algorithms. However, if such a process has
itself shared state among its concurrent executions or arbitrarily
interleaves its executions with its requests to other servers, then
our original assumption of piece-wise deterministic clients no
longer holds. Providing transparent application recovery for this
general architectural setting requires more research. We consider
this an important direction for computer science.

469

5 Summary

We have analyzed the problem of making transparent application
recovery efficient. Our algorithm for a client/server architecture,
server reply logging, has a number of unique and novel properties:

. It substantially reduces the log I/O costs compared to
conventional approaches based on persistent queues or
message logging. It requires only one forced log I/O by the
server before a reply is sent. Contrast this with the forced
I/OS in the queuing approach, two each in three distributed
transactions.

.

.

.

.

It allows the server to recover and resume normal work
independently of the clients.
It ensures fast server restart consistent with modem database
recovery techniques that perform a single redo pass over the
log tile (in addition to a short analysis pass). In addition, it
facilitates continuous log truncation to bound the restart time.
Although independence and restart performance of client
application recovery is less important than for server
recovery, the algorithm permits the client to make trade-offs.
It supports fast application restart by allowing the client to
“eagerly” log work to reduce its dependency on the server
during a restart.
The algorithm can be easily combined with a standby-
process approach where a backup process is initialized and
advanced using the logged messages to eliminate rebooting
and process launching delays during restart. The backup
process is typically run on a different processor, cluster node,
or other unit of fault containment, and the failover is
accomplished by shipping log records.

Our approach provides transparent application recovery. By its
fast client restart, it can mask application failures to the human
user. It is the first method that ensures an exactly-once semantics
for applications as an affordable “commodity-feature”.
Transactions, on the other hand, provide atomicity in the “all-or-
nothing” sense, where the “nothing” case requires explicit
programming to re-initiate an application. Our approach allows
none, one, or multiple transactions inside an application. Thus, it
is more general than purely transactional applications. We believe
that we have accomplished an important step towards providing
“TP-monitor-class” system guarantees to arbitrary client
applications.

References

[AlvisiQS] Lorenzo Alvisi, Keith Marzullo: Message Logging:
Pessimistic, Optimistic, and Causal. International Conference on
Distributed Computing Systems, 1995

[Bartlett811 J.F. Bartlett: A Nonstop Kernel, ACM Symposium on
Operation Systems Principles, 1981

[Bernstein971 Philip A. Bernstein, Brian Harry, Paul Sanders,
David Shutt, Jason Zander: The Microsoft Repository. Invited
Keynote Paper, VLDB Conference, Athens, 1997

[Bernstein901 Philip A. Bernstein, Meichun Hsu, Bruce Mann:
Implementing Recoverable Requests Using Queues, ACM
SIGMOD Conference, 1990

[Borg831 Anita Borg, Jim Baumbach, Sam Glazer: A Message
System Supporting Fault Tolerance. ACM Symposium on
Operating Systems Principles, 1983

[Borg891 Anita Borg, Wolfgang Blau, Wolfgang Graetsch,
Ferdinand Herrmann, Wolfgang Oberle: Fault Tolerance Under
UNIX, ACM Transactions on Computer Systems Vol.7 No.1,
February 1989, pp. l-24

[Borr81] Andrea Barr: Transaction Monitoring in Encompass:
Reliable Distributed Transaction Processing. VLDB Conference,
Cannes, 1981

[Bulterman95] Dick C.A. Bultermann and Lynda Hardman:
Multimedia Authoring Tools: State of the Art and Research
Challenges, in: Jan van Leeuwen (Editor), Computer Science
Today: Recent Trend and Developments, Springer, LNCS 1000,
1995

[Chandy85] K.M. Chandy and Leslie Lamport: Distributed
Snapshots: Determining Global States of Distributed Systems,
ACM Transactions on Computing Systems Vol.3 No.1, Feb. 1985,
pp. 63-75

[Elmagarmid92] Ahmed K. Elmagarmid (Editor): Database
Transaction Models for Advanced Applications. Morgan
Kaufmann, 1992

[Elnozahy96] E.N. Elnozahy, D.B. Johnson, Y.M. Wang: A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems. Technical Report, Carnegie-Mellon University,
Pittsburgh, 1996

[GeorgakopouloBS] Dimitrios GeorgakopouIos, Mark Homick,
Amit Sheth: An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases Vol.3 No.2, 1995, pp. 119-153

[Gray931 Jim Gray, Andreas Reuter: Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993

[Huang95] Yennun Huang, Yi-Min Wang: Why Optimistic
Message Logging Has Not Been Used In Telecommunications
Systems. International Symposium on Fault-Tolerant Computing
Systems, 1995

[Johnson871 David B. Johnson, Willy Zwaenepoel: Sender-based
Message Logging. International Symposium on Fault-Tolerant
Computing Systems, 1987

[Kaiser971 Gail E. Kaiser and Jim Whitehead, Collaborative
Work: Distributed Authoring and Versioning. IEEE Internet
Computing Vol.1 No.2, 1997, pp. 76-77

[Kim841 Won Kim: Highly Available Systems for Database
Applications. ACM Computing Surveys Vol.16 No.1, 1984, pp.
71-98

470

[Lomet92] David Lomet: MLR: A Recovery Method for Multi-
Level Systems. ACM SIGMOD Conference, 1992

[Lomet95] David Lomet, Mark Tuttle: Redo Recovery after
System Crashes. VLDB Conference, Zurich, 1995

[Lomet97] David Lomet: Application Recovery with Logical
Write Operations. Technical Report, Microsoft Research,
Redmond, Washington, June 1997

[Lomet98] David Lomet: Persistent Applications Using
Generalized Redo Recovery. IEEE Int. Conference on Data
Engineering, Orlando, FL 1998

[Lomet98a] David Lomet, Gerhard Weikum: Efficient
Transparent Application Recovery in Cient-Server Information
Systems, Technical Report, Microsoft Research, Redmond,
Washington, 1998

[Mohan92] C. Mohan, Don Haderle, Bruce Lindsay, Hamid
Pirahesh, Peter Schwarz: ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging. ACM Transactions on
Database Systems Vol. 17 No. 1, March 1992, pp. 94- 162

[Mohan93] C. Mohan: A Cost-effective Method for Providing
Improved Data Availability During DBMS Restart Recovery
After a Failure. VLDB Conference, 1993

[Ramamritham96] Krithi Ramamritham and Panos Chrysanthis:
Advances in Concurrency Control and Transaction Processing.
IEEE Computer Society Press, 1996

[Strom851 Robert E. Strom, Shaula Yemini: Optimistic Recovery
in Distributed Systems. ACM Transactions on Computer Systems
Vol.3 No.3, August 1985, pp. 204-226

[Strom881 Robert E. Strom, David F. Bacon, Shaula A. Yemini:
Volatile Logging in n-Fault-Tolerant Distributed Systems.
International Symposium on Fault-Tolerant Computing, Tokyo,
1988

[Weikum90] Gerhard Weikum, Christof Hasse, Peter Broessler,
Peter Muth: Multi-Level Recovery. ACM PODS Symposium,
Nashville, 1990

[Weikum93] Gerhard Weikum, Christof Hasse: Multi-Level
Transaction Management for Complex Objects: Implementation,
Performance, Parallelism. VLDB Journal Vol.2 No.4, 1993

471

