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Abstract 

Database systems recover persistent data, providing high database 
availability. However, database applications, typically residing on 
client or “middle-tier” application-server machines, may lose 
work because of a server failure. This prevents the masking of 
server failures from the human user and substantially degrades 
application availability. This paper aims to enable high application 
availability with an integrated method for database server 
recovery and transparent application recovery in a client-server 
system, The approach, based on application message logging, is 
similar to earlier work on distributed system fault tolerance. 
However, we exploit advanced database logging and recovery 
techniques and request/reply messaging properties to significantly 
improve efficiency. Forced log I/OS, frequently required by other 
methods, are usually avoided. Restart time, for both failed server 
and failed client, is reduced by checkpointing and log truncation. 
Our method ensures that a server can recover independently of 
clients. A client may reduce logging overhead in return for 
dependency on server availability during client restart. 

1. Introduction 

1.1 Problem Statement 

Database systems support fault-tolerance and high availability by 
recovering quickly from system failures. However, recovery has 
been restricted to the database and has ignored applications 
interacting with the database at the time of failure. Dealing with 
database system failures at the application level is still tedious 
even if the application itself stays alive. The application process is 
also failure-prone and would exhibit improved availability were it 
recoverable. Finally, complicated forms of inconsistency may 
arise from both application and database server failing 
independently within a small time window. 

Thus, developing failure-resilient database applications remains a 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom we ia granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage and that copies bear this notice and the full citation on the first page. 
To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SIGMOD ‘98 Seattle. WA, USA 

8 1998 ACM O-89791-995-5/98/006...$5.00 

black art unless one limits application structure to special 
programming models, like queued transactions supported by TP 
monitors [Gray93]. TP-monitor recovery is limited to undoing 
incomplete transactions and restoring the last committed state of 
message queues. Because the state of application processes is 
lost, applications must be “stateless” between transactions. 
However, the rich states of modem applications cannot be reduced 
to a queued message. Consider long interactive sessions with a 
repository tool [Bernstein97], authoring tools [KaiseB’I], 
workflow systems [Georgakopoulos95], a CAD system that may 
involve long-running computations, or a “middle-tier” application 
service such as SAP R/3, which invokes database services and 
itself supports many clients. Obviously, users of these applications 
would benefit from increased failure resilience, to minimize the 
amount of lost human work and to provide high availability at the 
application level rather than only the database system level. 
Ideally, recovery techniques should mask failures completely and 
quickly bring both the application and its underlying databases 
back to the pre-failure state. 

We present an approach to database and application recovery that 
is both efficient and masked from the human users. Specifically, 
we consider a client-server environment where multiple clients 
run one or more applications, and all applications interact with the 
same database server. Applications are assumed to be “piece-wise 
deterministic”, i.e., potentially non-reproducible behavior is 
caused only by exchanging messages with the server or the 
external world, typically a human user but also perhaps automatic 
instruments (e.g., in an embedded control system). Failures can be 
server crashes, client crashes, or both. Failures are assumed to be 
“soft”, i.e., not lose information stored on stable storage such as 
disks, and “fail-stop”, i.e., not lead to corruption beyond the actual 
point of failure. This captures most real system failures. 

Transparent application recovery requires careful logging of 
messages and database updates. Efficient client application and 
database server recovery from failures requires thorough 
cost/benefit reasoning: 
. Low logging cost limits overhead during normal operation. 

In particular, forced log writes to stable storage, i.e. where 
the write must complete before execution proceeds, should 
be minimized. 

. Fast recovery after a failure, of both server and application, is 
critical for high availability. In particular, short outages may 
be unnoticed by the human user. 

. Recovery of server and clients should be as independently as 
possible. Especially, it is unacceptable for server restart to 
depend on possibly slow or unavailable clients. 
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Figure 1: Client-Recovery Problem Scenario 

These design goals require integration of recovery for client 
applications and the database server. Figure 1 shows a client 
application and a server proceeding through a series of states 
(shown as circles) with an exchange of messages at certain points. 
The server interacts with other applications as well. Suppose the 
client saves state SC1 of the application to disk. We call this an 
application installation point. Suppose this application fails in 
state SC4, while the server proceeds serving other clients and their 
applications. When the client restarts, it reincarnates the 
application at SCI, the most recent installation point. It then re- 
executes the application, re-sending the previously sent request to 
the server. If the server has not taken precautions, it will treat the 
request as a “new request”, and send a new reply back to the 
client. However, the server is now in a more advanced state, say 
SS4, and has meanwhile executed other clients’ requests. 
Therefore, the re-executed “new request” of the restarted client 
may no longer produce the same outcome as the original request 
and may show results to the user that differ from the original 
results. This problem would not arise if client failure and restart 
had forced the server to also restart from a state that has been 
synchronized with the client’s restart point, for example state SSl. 
However, such an approach compromises server recovery 
independence and availability in an unacceptable way. 

1.2 Prior Work 

Prior work on application fault-tolerance in a distributed system 
involves application installation points and/or message logging. 
Installation points are called “application checkpoints” in the 
literature, meaning that an application’s state is saved to stable 
storage. We avoid this term to avoid confusion with database 
checkpoints, which are special log records permitting log 
truncation [Gray93, Mohan921. The prior work can be categorized 
into three approaches, all of which incur high normal operation 
and/or recovery costs: 

. Fault-tolerant process pairs: This approach provides a 
primary process with a hot-standby process, usually on a 
different processor. When the primary process fails, the 
standby process takes over and re-executes starting from the 
last installation point of the primary process. The sending of 
regenerated messages is conditionally suppressed, based on 

testing sequence numbers against logged messages. This 
approach was pioneered in the early eighties [Bartlettgl, 
Borr81, Borg83, Borg89, Kim841 but is a heavyweight 
solution justifiable only for mission-critical high-end 
applications. It requires either an installation point or a forced 
message log record at every process interaction. This 
frequently required disk l/O greatly limits the achievable 
throughput of both server and clients. 

. Distributed state tracking: Approaches from the distributed 
algorithms community (see, e.g., [Strom85, Johnson87, 
Strom88, Alvisi95, Elnozahy961) have a relaxed model of 
communicating processes. Processes generate installation 
points only occasionally and independently. Messages are 
logged in an optimistic, non-forced manner. A failed process 
restarts from its most recent installation point, but other 
processes may be forced to restart from earlier states to 
guarantee a causally consistent global state [Chandy85]. This 
induces recovery dependencies among the processes that are 
unacceptable for a database server. Further, the restored 
global state is not necessarily the last externally observed 
state. This is fine for “number-crunching” computations, an 
initial target of this work, but it does not mask application 
failures from the user. Thus, this work has had little impact 
on real systems [Huang95]. A variation of message logging 
that eliminates recovery dependencies is pessimistic message 
logging. Unfortunately, this approach is very expensive as it 
forces every log record immediately. Most of this research 
ignores the need both to minimize logging cost and to 
truncate the log for fast restart. 

. Persistent queues: This approach requires interactions 
between processes to be via persistent queues [Bemstein90]. 
When a process sends a message to another process, the 
sender enqueues the message to a persistent queue within the 
boundaries of a distributed transaction involving the queue 
and the sender. This incurs the high forced logging costs of a 
two-phase commit protocol [Gray93]. Moreover, the same 
protocol is used when the receiver dequeues the message. 
This solution has been very successful in the context of 
transaction-structured applications such as reservation 
systems, and is even suitable for heterogeneous platforms. 
However, its disk I/O costs are very high, and each 
application must be decomposed into a sequence of 
transactions with no state external to the queued messages. 

Our approach achieves essentially the same effect for client/server 
applications as the persistent-queue method or a pessimistic 
logging method, but with much lower logging costs and very fast 
restart. The key to this is to exploit the special properties of 
request/reply messaging, and to use advanced database-style 
logging and recovery techniques which minimize log forcing, 
batch log I/OS, and efficiently truncate the log. These techniques 
integrate application recovery with database recovery. The only 
prior integrated approach [Lomet97, Lomet carefully 
coordinates the writing of log records and the installing of updates 
for both database and application-state modifications. It handles 
applications that run under the direct control of the database 
system (resource manager) on the same machine. Client/server 
applications need new techniques. 
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1.3 Our Approach and Contribution 

Our approach inherits the combined techniques of application 
installation points and message logging. In contrast to prior work, 
we take more care about when to force message log records versus 
when to batch them with other log records and write them lazily. 
Log records that capture input messages from the external world 
to a client application are usefully forced immediately. 
Opportunities for optimization do exist, however, for the log 
records that capture client-server request-reply interactions. 

There are several options for distributing the logging work 
between client and server. Our method of choice, coined “server 
reply logging”, makes the server responsible for the forced log 
I/OS. This is advantageous as the server can recover independently 
and the batching of log records is more likely at the server. A 
client can log server replies, too, for faster application restart, but 
it can do so lazily. Client recovery may then need the server to 
ship log records that the client has lost in a failure, but this is a 
small price for much better throughput. Besides, a client can limit 
its need for log record shipping. That the server keeps log records 
that may be necessary for the restart of a client application creates 
subtle problems for truncation of the server’s stable log tile. Log 
truncation is an important efficiency issue as it affects both log 
space consumption and the duration of the server’s redo recovery 
pass and hence, server availability. We derive a low-overhead 
scheme that supports effective log truncation, based on the client 
notifying the server when it no longer needs reply log records for 
its recovery. 

The paper improves the state of the art in three ways: 

. Advanced database logging and recovery techniques are 
extended to integrate database server and client application 
recovery, while ensuring recovery independence for the 
server. The supported class of applications includes 
“stateful” client applications and is thus substantially more 
general than the “stateless” applications represented by 
sequences of transactions (“chained transactions”) alone. 

. Message logging techniques from the distributed algorithms 
literature are tailored to client-server application recovery to 
minimize logging I/O costs and effectively support log 
truncation for fast restart when the client/server interaction is 
request/reply. Compared to using transactional persistent 
queues between the client and the server, our method reduces 
the forced log I/OS by a factor of six. 

. The paper reconciles concepts from separate research 
communities, database systems and distributed algorithms. 
The result is an efficient solution that makes failures 
transparent to users by providing high availability at both the 
database system and application level. We believe this is 
important for making application fault tolerance an 
affordable “commodity feature”, not just an exotic “high-end 
luxury”. 

Throughout the paper we consider only redo recovery 
(equivalently, the “repeating-history” part of recovery [Gray93, 
Mohan921) as the most important component of fault tolerance. 
We do not make any specific assumptions on the embedding of 
client requests into transactions. Multiple request/reply pairs are 

possible within a transaction, or a single request may comprise 
multiple ACID transactions (e.g., when the request spawns a 
stored procedure with multiple commit points). Also, our method 
does not rely on a particular isolation model of transactions; both 
full serializability and weaker isolation levels are compatible with 
the developed recovery algorithms. 

Undo or compensation of certain application steps and/or database 
updates may also be necessary after a failure, but this is an 
orthogonal subject. Indeed, the capability for undo is needed 
during normal operation as well. This undo recovery is no 
different from what is already in the literature (see 
[Elmagarmid92, Ramamritham961 for overviews). 

The rest of the paper is organized as follows. Section 2 introduces 
client-server information systems and their requirements for 
recovery, and discusses various design considerations. Section 3 
presents the paper’s core contribution, a detailed algorithm for 
efficient and user-masked application recovery, based on the 
design considerations of Section 2. Section 4 discusses additional 
refinements and optimizations of the algorithm, and an outlook on 
possible extensions, while Section 5 concludes the paper with a 
summary of the salient features of the algorithm. Pseudo-code for 
the developed algorithms and additional correctness reasoning can 
be found in [Lomet98a]. 

2 Design Rationale for Recoverable 
Client-Server Systems 

We focus on request-reply interactions between client applications 
and a server. We assume that all requests of client applications are 
intercepted by the client’s run-time system (e.g., the client’s 
ODBC stub). We further assume that the server runs a single 
resource manager that can control both database updates and its 
incoming and outgoing messages in an integrated manner. The 
server does not depend on any application state information across 
multiple requests, other than what it keeps in its database. For 
example, when SQL cursor positions or temporary tables live 
across request/reply interactions, the server has to maintain them 
in its database so that they are recoverable. Finally, we assume 
that output parameters of request executions, including return 
codes, are part of the server’s reply message. 

2.1 General Message Passing 

Consider two processes that exchange a message, a sender and a 
receiver. Either or both may fail. We must ensure that the 
recovered states of the two processes either both contain the 
message exchange or that neither does. This amounts to requiring 
the atomicity of a send-receive interaction and explains why the 
most successful prior approach has been based on persistent 
message queues (see Section 1.2). However, queues require two 
distributed transactions for each message exchange, and hence 
two instances of two phase commit. One transaction is between 
the sender and the queue manager (so that the sender’s state is 
advanced if and only if the request is persistently enqueued), and a 
second between the receiver and the queue manager dequeuing the 
message. If the second transaction fails, the message is returned to 
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the queue, and the surrounding TP monitor guarantees that the 
receiver eventually retries the dequeuing. The net effect is that the 
state transitions of both the sender and the receiver form one 
atomic unit. 

The drawback of the queue-based solution is its high I/O cost. 
Sender, receiver, and queue manager all force information to 
stable storage. Reducing this cost is one of the main points of this 
paper. As our algorithm demonstrates, it is sufficient that only the 
sender force-log the message. Then, if the receiver fails after 
having received the message but without making it stable, the 
receiver can again obtain the message from the sender, and this 
argument is essentially symmetric in the two roles of a process. In 
fact, this is obviously the weakest logging requirement that can 
satisfy the correctness criterion. However, this approach has 
certain non-obvious implications: 
1. The sender takes the responsibility for recreating the message 

when the receiver fails and needs to replay the message 
exchange. The protocol also needs to consider when the 
sender can discard the logged message and hence the server 
needs to know when the receiver no longer has to re-obtain 
the logged message. 

2. The receiver’s recovery depends on the sender’s having 
forced logged the message. Should the receiver fail after the 
message exchange, it cannot perform independent restart. It 
must communicate with the sender because the message 
exchange must be replayed, but the receiver itself may have 
no stable record for it. 

Our goal is to improve upon sender logging for the important case 
of request/reply message pairs. We specialize in the rest of the 
paper to client-server information systems where we can make 
specific assumptions about the roles of the processes in order to 
design an efficient protocol. 

2.2 Request/Reply Design Issues 

Compared to general message-passing processes, the client-server 
scenario is special in a number of ways: 

Clients: A client knows exactly when one of its applications 
is waiting for a reply message and this application is 
suspended between sending a request to the server and 
receiving the reply. A client application interacts with only 
one other process, the server. A client application may 
interact with another application, either on the same or some 
other client, only via the server’s shared database, which has 
its own recovery. A constant for all recovery scenarios is 
that the client application also can interact with a user, and 
hence has requirements imposed by that which we discuss 
below. 

Server: The server communicates with many clients 
concurrently. Hence, it can exploit batching to improve the 
disk I/O efficiency of logging. Furthermore, the server usually 
processes multiple requests of different clients concurrently. 
Since it does not have to commit itself to an ordering of these 
requests until it sends replies, it can perform optimizations 
that are impossible in a general message-passing framework. 
However, this means that the server will not be piece-wise 

deterministic between message events unless it does sufficient 
logging to be able to reconstruct the exact interleaving of 
database reads and writes. Such extensive logging can be 
expensive. Not interleaving request executions is 
unacceptable as it leads to poor server throughput. 
Client-Server Dependability: The server is much more 
reliable, because it is carefully administered, than the clients 
are. Therefore, client applications may be willing to rely on 
the server’s availability, but the server should never depend on 
the clients - quite an asymmetric situation. 

A decisive difference between client and server is that the client 
application is piece-wise deterministic between requests whereas 
the server is not. 

2.3 Server Considerations 

We could treat the server’s concurrent request executions as a set 
of message-passing threads, whose “messages” correspond to the 
interleaved accesses to the shared database and each would have 
to be force-logged. Fortunately, the fact that the execution of 
interleaved requests is not exactly reproducible does not matter 
until the resulting effects propagate outside of the server, i.e., 
when a reply is sent to a client. Thus sending a reply commits the 
state ofthe server. From this point on, the server promises that it 
will deterministically replay a previously executed request if a 
failed and restarted client should re-submit the request. This 
commitment has three aspects: 
. Recreate reply: The reply for a re-submitted request must be 

identical to the original reply. 
. Redo database updates: Effects of the original request on the 

server’s database are redone if necessary and the re- 
execution of a request is idempotent. 

. Isolate other requests: The redo of database updates does not 
alter the data values previously read by concurrently 
executed requests. 

To illustrate why these commitments are necessary, consider the 
example in Figure 2. When the server fails and restarts after 
having executed the action sequence shown, it must recreate the 
original reply for request 2, and ensure that WZ(y) is redone if 
necessary. If done by re-executing request 2, R2(x) must see the 
value previously written by request 1. This problem is orthogonal 
to transactions, A request-reply pair needn’t coincide with the 
boundaries of a transaction. The request-reply pair may contain 
multiple transactions (e.g., an invocation of a multi-transaction 
stored database procedure) or be embedded in a transaction with 
multiple requests (a conversational transaction). 

The server relies on the client to resubmit application requests 
should the client fail. The server guarantees to provide the reply 
as long as the it does not fail by keeping the reply for a completed 
request in a volatile data structure, so that it can be sent back 
when a request is re-submitted. The challenge arises when the 
server fails and then receives a re-submitted request after it 
restarts. Section 3 details how this is done. 
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Figure 2: Request-interleaving problem scenario. 

2.4 Client Considerations 

Client applications, unlike the server, are piece-wise deterministic 
between requests. Hence, to recover the state of a client 
application, we need merely log the external input that it has seen 
and initiate replay from a saved installation point. The client 
exploits the recoverable request/reply mechanism when a 
request/reply needs to be replayed to recover one of its 
applications. The replay of the application up to the point of the 
request guarantees that the request is regenerated, the fundamental 
requirement placed on clients. A repeat of the request causes the 
re-delivery of the reply to the client application. 

Application installation points are generated at the client, where 
the application is executing. The client may choose to store its 
installation points on a server for reliable storage, but the server 
then treats the installation-point information as regular data that it 
stores and retrieves upon the client’s demand. 

The client must also deal with input and output messages from 
and to the external world (e.g., the human user). It must log input 
messages and force them to stable storage promptly to minimize 
the frequency with which the user may have to re-submit input, so 
there is not much room for optimizations. Responsibility for 
logging these messages lies naturally with the client as the client 
receives them. For the rest of the paper, we assume that the client 
logs such external input messages. Note, however, that the input 
message log records should reside in the same log file that holds 
other client log records. 

There is no need to log output messages to the external world, as 
they can be deterministically recreated if the application fails and 
restarts. During the restart, previously sent output is suppressed, 
except when an output message is immediately followed by a 
failure. Then, it is impossible to tell if the user has already 
received the output, whatever logging might be done. Therefore, 
such a message is re-sent and may thus be seen twice by the user. 
Note that should the “user” of our client be a program that can 
fail, then our “client” begins to look a bit like a server, and should 
start acting like one as well (see Section 4.3). 

3 The Server Reply Logging Method 

The above considerations strongly suggest that the server be 
responsible for the stable logging of reply messages. This enables 
fully independent server recovery after a failure, i.e., the server 
becomes available again without exchanging information with 
clients (that may be unavailable at this time). Server 
independence is a major design goal. Once we decide on server 

reply logging, most other aspects of the solution are natural 
consequences of our analysis. If replies are recoverable, requests 
are recoverable as well. Client applications are piece-wise 
deterministic, and hence their replay re-creates the request. So our 
server reply logging method need not perform any forced request 
logging on client or server. This leaves us with only one forced 
log I/O for each request-reply pair. 

Server reply logging minimizes the server’s forced logging 
frequency while providing the best solution in terms of recovery 
independence and fast server restart. The only aspect where it may 
be inferior to more client-centric approaches is a possibly 
increased restart time for client applications and that client 
recovery becomes dependent on the server. Given our design 
goals, especially server independence, and the fact the client 
depends on the server in any event, these disadvantages are surely 
acceptable. Therefore, our method of choice is server reply 
logging. In this section, we give a detailed description of the 
server reply logging method. We elaborate on the optimizations 
to minimize forcing the log; and on the subtle details of log 
truncation, on both server and clients, to speed up restart and, 
ultimately, guarantee very high availability. Pseudo-code for both 
client and server logging and restart is given in Appendix A. 

3.1 High-level Description 

The server forces reply records to the log before sending a reply. 
It does this by flushing the database log buffer, including the write 
log records of the corresponding request-reply pair, the reply log 
record being the last log record that must be written. In addition, 
the server may perform an optimization similar to group-commit 
[Gray93]; i.e., it postpones sending a reply until either a timeout 
occurs or a sufficiently large batch of log records has 
accumulated. It then writes the batch to the stable log file in a 
single disk I/O. 

The server can choose among a number of options for replaying 
requests. It knows when a request execution is incomplete so that 
an undo scheme is applicable given appropriate isolation. 
Equally, it can choose replay a request to completion. Replay 
would now be necessary only for incomplete requests (i.e., when 
the reply is not yet stable). While these options require that the 
request and all database reads be logged in addition to the 
normally logged database writes, no additional forced log l/O is 
needed. Forcing the reply log record ensures that they are written 
to the stable log file as well. In fact, we will later see that there is 
an opportunity for further optimizations in this regard (see Section 
3.3.1). 

A failed and restarting client may re-submit requests, hence 
asking the server for some earlier replies. Because the server logs 
replies, the server is always able to look up the corresponding 
reply and send it back to the client without replaying its request. 
However, this may randomly access the server’s stable log file, a 
potential disk I/O efficiency problem. Therefore, the server keeps 
the reply log records in a separate randomly accessible data 
structure, ideally in main memory, called the “‘message lookup 
table”. During recovery after a server failure, the server rebuilds 
this table from its stable log to avoid random I/OS to the log for 
re-submitted requests. 
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From the client’s viewpoint, a drawback of this method is that 
client restart time can be significantly longer than with client 
logging. Communication latency with a potentially highly loaded 
server to obtain the reply log records is a serious issue. To ease 
this problem, the client can perform some “lazy logging”, writing 
reply log records to stable storage in a non-forced manner 
whenever there is available disk bandwidth. 

Client recovery dependency on log records kept by the server 
causes subtle difficulties for log truncation at the server. Without 
additional mechanism, the server would never be able to truncate 
its stable log tile and the log scan time during a restart would 
grow without bound. To avoid this, clients inform the server 
when log records are no longer needed by sending “stability 
notifcations” to the server whenever the client: 
. generates an installation point (log records preceding an 

installation point are not needed for client recovery); or 
. makes reply log records stable by additional lazy logging of 

replies at low priority. 
The client can piggyback stability notifications on its regular 
messages to the server. Application recovery is not compromised 
when the server garbage-collects reply log records that will never 
be used by a client. 

3.2 Data Structures 

In addition to the usual recovery data structures, our method uses 
the following two data structures, instantiated at both the server 
and the client: 
. an Active Application Table (AT) that contains status 

information about ongoing (possibly failed or restarting) 
applications that the server or the client is responsible for, 
and 

. a Message Lookup Table (MT) that contains (log records 
about) messages of active applications, most importantly 
reply messages. 

These data structures, described in Figure 3, reside in volatile 
storage, with entries made stable by forcing them to the log. We 
explain the various fields as we discuss the algorithm. A message 
is tagged with: 
. an application identifier (AppID) that includes an encoding 

of the host client and is unique across all applications of all 
clients: 

. a message sequence number (MSN) that is unique and 
monotonically increasing within each client application. 

Messages include the input and output messages documenting 
client interactions with the external world. For convenience, we 
consider an application installation point (IP) as message with an 
MSN, and we distinguish start and termination installation points 
(start-IP and term-IP) from the regular ones. 

The client tracks the last used MSN for each application, by 
recording it as the LustMSN in the active application table. The 
client keeps two additional MSN fields. The RedoMSN, is the 
oldest MSN that follows the most recent installation point of the 
application, or the installation point MSN itself if no more recent 
message exists. The StableMSN, is the most recent MSN for 
which it and all smaller MSN’s of the client have stable log 
records. The client’s StableMSN is the server’s RedoMSN for the 

given application. All server message log records on its stable log 
tile with an MSN smaller than the server RedoMSN of the 
corresponding application are obsolete and can be garbage- 
collected (they are unneeded by the client). 

During the recovery analysis pass, relevant entries for the active 
application table and the message lookup table are recovered in 
volatile storage with information from the stable log tile. Thus, 
server recovery has the usual two scans over the stable log file 
(analysis pass and redo pass), yet all relevant information on 
applications and reply messages is readily accessible for restarting 
clients. 

AT: array[ AppID] of record /* Active Application Table */ 
LastMSN: integer; 

/* MSN of the application’s last message event 
(only relevant on client) */ 

StableMSN: integer; 
/* MSN such that all prior message events of the 
application, including this one, are known to be on 
stable storage locally (only relevant on client) */ 

RedoMSN: integer; 
/* MSN of the oldest non-obsolete message event (for 
the client, this is always the most recent installation point 
or the oldest MSN that follows it) */ 

RedoLSN: integer; 
I* LSN of Iog record that corresponds to the RedoMSN */ 

end; 
MT: array[AppID,MSN] of record /* Message Lookup Table *I 

MsgType: (request, reply, input, output); 
I* input and output are only needed for 
client-to-external-world messages */ 

MsgContents: array of char; 
end; 
LF: persistent array[LSN] of record /* Stable Log File */ 

LogRecType: (write, read, undo, request, reply, 
input, IP, start-IP, term-IP, CP); 

LogRecContents: array of char; 
AppID: integer; 
MSN: integer; 

end; 

Figure 3: Major data structures of the server reply logging 
and recovery method 

3.3 Logging Algorithms 

3.3.1 Server Algorithm 

The server generates log records for each of its database write 
operations and each request and reply message, as well as some 
additional temporary log records to cope with incomplete 
requests, discussed below. These log records are posted in a 
conventional log buffer, which is forced to disk whenever it is full 
or according to write-ahead-logging or force-at-commit rules. In 
addition, the log records for messages are kept in the message 
lookup table described in the previous section. A reply log record 
is forced to stable storage, by flushing the database log buffer, 
before the reply message is sent to the client. Making the reply log 
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record stable does not imply that we discard it from the message 
lookup table. As a restarting client may re-request a log record, 
keeping the reply in main memory can save random disk I/O on 
the log file. 

To force a reply message, the server flushes its log buffer in a 
single atomic write to the log. If the message lookup table still 
contains the corresponding request message (which must have the 
largest preceding MSN of the application), then this message can 
be discarded once the atomic log tile write is completed. 

Logging for incomplete requests 

We need to take special care when the server fails in the middle of 
a request execution. Note that this problem arises with at most one 
request per active application, namely, the last, outstanding 
request of an application. The server has two principal options to 
achieve this goal: 

1. Rollback request, und execute again: The server knows when 
the original reply has not yet been sent to the client. Then it 
has no obligation to deterministically replay as long as all 
database writes of concurrently executed requests are kept 
isolated. Thus the server can undo incomplete requests and 
re-execute them all as new requests with different 
interleaving and effects. This requires that the effects of 
incomplete requests be kept isolated. Isolation typically 
holds if a request-reply interaction is inside one ACID 
transaction that uses, e.g., strict two-phase locking. When a 
client request initiates a sequence of transactions on the 
server (e.g., a request that starts a ‘mini-batch” stored 
procedure on the server), undo requires compensating 
transactions. The effects of the original transactions would 
have to be kept quasi-isolated at a higher level of abstraction 
taking into account application semantics [Lomet92, 
WeikumBO]. 

2. Redo/continue request execution: To make the server’s non- 
deterministic behavior deterministically replayable, the 
server logs all database reads as well as writes. To ensure 
deterministic replay after the reply message is sent, the server 
must flush the log buffer before sending the reply. This 
makes stable all read and write log records generated for the 
completed request execution. During server restart, a missing 
reply for an unfinished request is reconstructed by redoing 
and completing the request. During replay, database reads 
and writes are intercepted. Writes are applied to the 
database using LSN testing for idempotence. There are two 
ways in which to handle reads. 

a) Log physical read operations that record the values read 
by database reads. During recovery, read values are 
extracted from the logged values. The danger is that 
logging read values can greatly increase the amount of data 
logged. 

b) Log logical read operations that record the occurrence of a 
database read and its source [Lomet98]. During recovery, 
read values are re-read from the database. Thus, recovery 
must read the same versions as originally read. However, 
current cache managers write pages back to the stable 
database in any order, and hence may overwrite the version 
required by a read. Thus, the cache manager must not 
overwrite a page whose prior version is still needed to 

replay a read, by tracking and enforcing installation 
dependencies [Lomet9S]. A danger is that installation 
dependencies may prevent the flushing of a dirty page 
(containing a version needed for recovery) for a very long 
time. Forced logging of the reply ends this installation 
dependency. 

None of the options incurs additional forced log I/O for 
incomplete requests. Also, request log records and either undo log 
records or read log records are irrelevant once the reply log record 
is forced. Therefore, if any of these log records are still in the log 
buffer, they can be safely discarded without being written. This 
technique is similar to how atomic subtransactions are dealt with 
in the multi-level recovery methods of [WeikumgO, Lomet92, 
Weikum931, where some log records become irrelevant when 
subtransactions commit. However, should these log records be 
written to the stable log, they must appear in the log in their 
chronological order for correct recovery. 

There is no clear choice among our three options. For 
concreteness, pseudo-code in Appendix A is based on logging 
read values and redoing/continuing request executions (option 2a). 

Checkpoint log records 

As in standard database recovery, the server creates checkpoint 
(CP) log records that contain certain bookkeeping information to 
shorten the analysis and redo pass of recovery. The CP log 
records identify which parts of the log are irrelevant and 
effectively truncate the log. However, since we need to take into 
account both server and client needs, log truncation is more 
complicated than with database recovery alone. We postpone the 
detailed discussion of this until we have presented the client 
logging algorithm. 

3.3.2 Client Algorithm 

A client creates log records for each request and reply exchange 
with the server. In addition, it creates log records for each input 
message from the external world (human user or sensor/actor, e.g., 
in an embedded control system). These log records are kept in a 
message lookup table with the same layout as on the server. The 
client forces log records for external input to the stable log file 
immediately. The other messages are not forced to the stable log 
tile. Rather the client writes them “lazily”. 

The client maintains a StableMSN for each application, which 
tracks by how much the client lags behind the server in terms of 
its stable message logging. The StableMSN is increased when the 
client writes a set of (chronologically) consecutive request and 
reply messages to the stable log file. One concrete policy is to 
ensure that this “backlog” (relative to the server) is limited by 
initiating a log file write whenever LastMSN - StableMSN 
reaches some threshold. 

Each application periodically generates an installation point, 
saving the entire process state of an application onto stable storage 
on a per application basis, using a shadowing technique to provide 
atomicity of installation points. Each installation point is tagged 
with the MSN assigned to it and is thus “self-describing”. Once an 
installation point is completed, all earlier log records of the 
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corresponding application can be discarded. They are now lower 
than the RedoMSN for the application, which is advanced to the 
MSN of the IP log record. 

Like the server, the client can also occasionally write checkpoint 
log records to allow truncation of its log. Only the “discarded” 
log records above are truncated. The issue of log truncation is 
discussed in detail in the next subsection. 

3.3.3 Log Truncation 

Both server and client continuously truncate obsolete parts of both 
the stable log file and the message lookup table. This is important 
to free disk and memory space and shorten the log tail scanned 
during the restart redo pass. Log truncation, a form of garbage 
collection, is especially important for the server. If the server 
cannot delete log records after some time, then its log processing 
upon restart becomes excessively long, and the server’s 
availability is compromised by its role in application recovery. 
Below, we first consider when clients can discard log records, 
which is the simpler of the two cases, and then discuss server log 
truncation. 

Client log truncation 

A client discards all log records and message lookup table entries 
of an active application at each new installation point for that 
application. However, when the client runs multiple applications 
simultaneously, this does not yet allow truncating the stable log 
tile, as other applications may still need “old” parts of the log file. 
The client marks the progress for the installed application in the 
active application table by setting its RedoMSN entry to the MSN 
of the installation point. (For convenience, installation points are 
viewed as messages here, so that they can be identified by an 
MSN. We also tag installation points with the MSN of their 
associated log record.) The minimum RedoMSN among all active 
applications then determines the part of the log tile that the client 
needs to keep. To reconstruct the minimum RedoMSN after a 
failure without having to scan the entire log, the client periodically 
generates a checkpoint log record that contains the active 
application table. This is a standard technique of database-style 
logging and recovery, applied here to application message 
logging. The applications play the role of dirty database pages. 

Server logfile truncation based on client stability notifications 

As the server does not itself install applications, it has no direct 
information about when it can safely discard log records and thus 
truncate its log file. The server relies on the clients notifying it 
about their steps that allow it to discard log records. These 
stability notifications need not incur extra messages as the 
relevant information is piggybacked on the next request message. 
The client steps that trigger a stability notification are an 
application installation or the writing of reply log records to the 
client stable log tile. In both cases, the client increases its 
StableMSN, and it is this that is sent to the server. Upon receiving 
a stability notification with StabIeMSN m, the server discards all 
entries of its message lookup table with MSN’s smaller than or 
equal to m. The server also sets the application’s RedoMSN in 
the active application table to the smallest MSN higher than m and 
adjusts the corresponding system RedoLSN accordingly. 

The server needn’t make the changes to its message lookup table 
and active application table stable. It should, however, generate a 
log record to mark this event in the log, but this (very short) log 
record need not be forced. Consequently, when the server fails, it 
may not remember that it effectively truncated its log file and it 
may scan the log starting from overly old RedoMSN’s. This does 
not affect correctness and the stale RedoMSN information will 
usually be updated soon by the next stability notification from the 
client. 

The only case where a stale RedoMSN could result in a permanent 
and critical problem is the server loss of a stability notification 
from a terminating application that will not send more 
notifications. Log records for this application would become 
permanently unreclaimed garbage, forever preventing the server 
from truncating its log. Thus, we require that stability notifications 
for application termination be specially tagged. The server must 
force a “term-IP” log record to the log or generate a checkpoint 
record with an updated copy of the entire active application table. 
The client must await an acknowledgment from the server before 
it can remove the application from its own active application table 
and thus commit the termination. 

3.4 Restart Algorithms 

3.4.1 Server Algorithm 

After a server failure, the server restarts by performing an analysis 
pass and a redo pass over the stable log tile. The analysis pass 
starts from the most recent checkpoint log record (found by 
looking up the bootstrap file) and scans all log records until the 
end of the log. For application recovery, this pass rebuilds the 
active application table. This table is re-initialized from the 
checkpoint log record, and is then updated whenever the log scan 
encounters an installation point log record for an application. At 
the end of the analysis pass, the server knows for which 
applications it may have to recreate replies. It also knows a 
RedoMSN and a corresponding RedoLSN for each application, 
bounding the part of the log that contains the required reply log 
records. 

The redo pass then starts from the minimum of RedoMSN’s 
among active applications or the minimum RedoLSN among dirty 
database pages, whichever is older. For client application 
recovery, we focus on the redo of the message log records, 
understanding that request execution can write to pages of the 
database, and hence that we must, in this redo scan, do normal 
database redo as well. The server redo pass rebuilds the message 
lookup table, restoring it to its state as of the crash. The server 
can then deliver logged replies to re-submitted requests in case a 
client application has failed and is itself restarting. 

A case that needs special consideration is the handling of 
incomplete request executions where the server has logged redo 
steps for database writes of a request. Then the request log record 
itself and corresponding undo or read log records are guaranteed 
to be on the stable log file at their original points in the interleaved 
request-execution history. We consider two cases. 
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. Undo log records permit the server to undo the database 
writes of all incomplete requests, subsequently re-executing 
these requests as if they were new requests, and re-generating 
the corresponding replies (option 1. in Section 3.3.1, valid for 
isolated request-reply interactions only.). 

. Read log records permit the server to deterministically replay 
the partial execution of the incomplete requests and then 
continue executing the requests to completion (options 2. and 
3. of Section 3.3.1). 

The replies are then handled like replies during normal operation: 
they are inserted into the message lookup table, forced to the 
stable log tile, and finally sent to the client. From this point on the 
server is in its normal operation mode. Client requests that are 
lost because the request log record is not forced are re-executed 
when the client re-submits the request. 

3.4.2 Client Algorithm 

Client restart also consists of analysis and redo passes over its 
stable log file. The analysis pass is identical to the server’s and 
rebuilds the active application table. The redo pass, however, 
differs from the server’s. The server “merely” rebuilds 
bookkeeping data that may be needed by failed clients. Client 
recovery actually restarts the applications active at the client 
failure, resuming their execution in a way that is transparent to the 
human user. This leads to the following differences. 

The RedoMSN of an application identifies the oldest log record 
needed for recovery, the installation point log record, or the 
application log record following it. Note that the RedoMSN 
determined by the analysis pass is a lower bound on the real 
RedoMSN. It is possible for an installation point to occur just 
before the system fails and for the log record describing it not to 
reach the stable log. In this case, a better RedoMSN can be 
determined from reading the application installation point and 
examining its tag MSN. 

The redo pass scans the log from the oldest RedoMSN of all 
applications in the reconstructed active application table. We 
process the log records of all applications at this client in a single 
pass over the log as opposed to making a separate pass per 
application. This is an important optimization for clients running 
“middle-tier” application services with a large number of 
concurrently active applications. Each application is re-incarnated 
upon encountering its analysis-determined RedoMSN log record 
(i.e., the lower bound for the RedoMSN) during the redo pass. 
The MSN that tags the application installation point is then used 
to determine the true RedoMSN, which may be later because the 
system may have failed before the stable writing of the log record 
for this installation point. All log records for the application are 
ignored until the true RedoMSN is encountered. This is the 
application analog to the way that updates to data pages are 
bypassed when the log record LSN for the update is less than the 
LSN stored on the page. 

An application then re-executes asynchronously to the further 
redo processing of the log (i.e., in a separate process or thread). 
As in normal operation, application requests are intercepted. At 
these points, either client recovery has already encountered the 
corresponding reply log record or the application process pauses 

until it is encountered. If the reply has been encountered, then it is 
replayed. Otherwise the application waits and replays the reply 
when it shows up on the log. Application replay proceeds after 
the reply has been redone. Note that with asynchronous 
application re-execution, restart is substantially faster, which is 
especially important if applications perform long computations 
between server interactions. 

The redo pass over the log file proceeds in parallel with 
application re-execution. It re-creates the message lookup table to 
the state as of the last stable log record. During the application re- 
execution, user input messages are consumed from the message 
lookup table, and output messages to the user can be re-created as 
part of the application re-execution. A11 output messages which 
are known to be followed by a log record of that application are 
suppressed (i.e., not sent to the user) as they would be duplicated. 

There is a chance of repeating the very last output message or of 
missing the very last input message. Regardless of how quickly 
we force the log, a system failure can occur between the time of 
the input and the time when the input is logged. The best that we 
can do is to reduce the probability that this will occur. Similarly, 
on output, it is possible for the output to be lost before the user 
sees it, even if it were “sent”. Regardless of logging, it is 
impossible to tell whether the user has seen the output or not until 
the user “acks” the message in some way. Thus, one has to re- 
present the last (un-ack’d) output. 

For requests and replies, the client’s analysis pass also 
reconstructs the StableMSN for each active application. So the 
redo pass knows which log records it will eventually encounter on 
its stable log file. All other, more recent reply log records have to 
be retrieved from the server. However, the client does not know 
its exact point of failure. Therefore, it does not know if there are 
additional log records on the server. When application re- 
execution reaches the last locally logged reply, application 
execution simply continues beyond this point and re-enters normal 
operation. The client executes the application until the next 
interception point and sends the request to the server. The client 
cannot (and does not have to) tell whether this request is a re-send 
or if it is the original send. On a re-send, the server sends back a 
previously logged reply. For a new request, the server does its 
normal request execution. An obvious optimization is to ask the 
server, right after the client’s analysis pass, to asynchronously 
ship the reply log records that are more recent than the client’s 
StableMSN. This approach is more complicated and therefore not 
pursued here. 

4 Additional Considerations 

4.1 Further Optimizations 

Here we briefly discuss further potential improvements for 
handling the logging required for application recovery. 
. Server log truncation: When the RedoMSN of an active 

application becomes too old, it prevents log file truncation, 
hence increasing recovery time. To deal with this without 
client help, the server appends again the log record identified 

468 



by RedoMSN to the stable log tail. This changes the 
RedoLSN of the application, but not the RedoMSN. It 
allows the server to advance the redo scan start point and 
truncate the log. The server can iterate this technique, 
garbage-collecting interspersed obsolete log records by 
copying the “live” ones to the log tail. The message log 
records of an application now no longer appear in MSN order 
on the stable log file, but this is not a problem. At restart, the 
redo pass entirely rebuilds (the non-obsolete part of) the 
message lookup table anyway before resuming normal 
operation. 

. Separately storing large replies: We expect most request and 
reply messages to be short, but some applications may use 
very large parameter values in their messages, for example, 
when dealing with images or large documents. Such large log 
records increase the log processing time during a server 
restart, even when they are already obsolete but not yet 
truncated. Thus, it can be beneficial to separate message 
contents from the message log record. Such a log record 
contains only a pointer to a file (or disk address) where the 
message body is kept as an “extension”. Finally, these 
extensions can be garbage-collected earlier because they are 
not interspersed with other log records. 

. Regenerating replies via replay: One way to avoid large 
reply log records is not to log message replies. If the total 
size of the request log record and all its read log records is 
significantly shorter than the reply log record, the server can 
choose to log that information instead of the reply. We 
preserve the server reply logging advantage of a single forced 
log I/O per request-reply. One can think of this as a way of 
“compressing” the reply message log record. 

. Out-of-order client message logging: The client can reduce 
its logging costs at the cost of complicating the server’s log 
truncation by relaxing the order in which it writes log 
records. For example, the client may avoid writing large log 
records to its stable log file, instead writing shorter but more 
recent log records. Since the client’s logging is “lazy”, the 
large log record might never be made stable since an 
application installation might make this unnecessary. 
However, “out-of-order” log writing complicates both server 
log tile truncation and client restart. Client stability 
notifications to the server must now contain explicit MSN’s 
of stable log records rather than merely its StableMSN. The 
server is potentially more restricted in truncating the log. 
Client restart has to identify replies from the server explicitly 
rather than with a “high-water mark”. 

. Strenuous measures for difficult clients: The server must 
keep all “un-ack’d” reply log records. When a client does 
not send any stability notifications for an extended time, the 
server is sorely “inconvenienced”. The server can ease this 
inconvenience with the techniques for server log truncation 
and the storing of large replies discussed above. 
Alternatively, at the cost of no longer masking an application 
failure, the server can discard such an application’s log 
records. If the client fails and application restart takes 
unusually long, when application restart eventually asks the 
server for a reply log record, the server sends back a return 
code indicating a “cancellation” of that application. This 
does not do much harm if it is sufficiently infrequent. This 
seems appropriate, as a long application outage is no longer 
masked from the user. 

4.2 State Installation 

We have implicitly assumed that application state can be captured 
and installed at the client. This is essentially the stateless server 
model, i.e., the server holds no state for the client. However, 
database systems are not stateless servers. Clients have sessions 
(connections) with databases; sessions may have temporary tables, 
cursors, and a variety of additional state. There is nothing 
conceptually difficult in dealing with this. However, there can be 
substantial practical difficulties. 

There are two generic approaches. 
. The server permits the client to ‘Ye-install” server state when 

client redo recovery needs to instantiate the application state. 
Such server state includes, e.g., session-related information 
like session id, which are required if the server is to preserve 
any part of this state for the client. 

. The server recovers these elements of client application state 
during its recovery. These elements are thus present for the 
client as part of the server state. Things like temporary tables 
or cursors are very difficult for the client to log or include in 
an application’s installation point. 

Further, we have assumed that request executions are independent 
and short enough so that we do not have to deal with installing 
intermediate states at the server. If this should be a problem, then 
we would need installation points for request executions as well as 
client applications. Such installation points are implemented 
using the same techniques as for client applications. 

4.3 Extensions to Other Architectures 

We have focused on an architecture where multiple clients interact 
with one server. It is straightforward, however, to generalize our 
approach to multiple servers. Each server simply employs the 
server reply logging algorithm, and on the client side, the data 
structures of the algorithm have to be instantiated and maintained 
for each server connection. No other extensions are needed. 

Three-tier systems have a middle-tier service such as SAP R/3 
with multiple client applications that interact with each other as 
well as with servers. Even more general architectures are possible 
with workflow management. A workflow engine is a middle-tier 
service that uses a database server to store the workflow state. It 
also interacts with “invoked applications” that run on different 
servers and in turn interact with other database servers or even 
other workflow engines. This leads to servers that may also be 
clients of other servers. As long as the client side of such a 
“mixed” architecture isolates all its execution threads and the 
threads do not issue asynchronous requests to other servers, our 
approach generalizes in a straightforward manner. Essentially 
each “mixed” application executes both the client and the server 
logging and recovery algorithms. However, if such a process has 
itself shared state among its concurrent executions or arbitrarily 
interleaves its executions with its requests to other servers, then 
our original assumption of piece-wise deterministic clients no 
longer holds. Providing transparent application recovery for this 
general architectural setting requires more research. We consider 
this an important direction for computer science. 
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5 Summary 

We have analyzed the problem of making transparent application 
recovery efficient. Our algorithm for a client/server architecture, 
server reply logging, has a number of unique and novel properties: 

. It substantially reduces the log I/O costs compared to 
conventional approaches based on persistent queues or 
message logging. It requires only one forced log I/O by the 
server before a reply is sent. Contrast this with the forced 
I/OS in the queuing approach, two each in three distributed 
transactions. 

. 

. 

. 

. 

It allows the server to recover and resume normal work 
independently of the clients. 
It ensures fast server restart consistent with modem database 
recovery techniques that perform a single redo pass over the 
log tile (in addition to a short analysis pass). In addition, it 
facilitates continuous log truncation to bound the restart time. 
Although independence and restart performance of client 
application recovery is less important than for server 
recovery, the algorithm permits the client to make trade-offs. 
It supports fast application restart by allowing the client to 
“eagerly” log work to reduce its dependency on the server 
during a restart. 
The algorithm can be easily combined with a standby- 
process approach where a backup process is initialized and 
advanced using the logged messages to eliminate rebooting 
and process launching delays during restart. The backup 
process is typically run on a different processor, cluster node, 
or other unit of fault containment, and the failover is 
accomplished by shipping log records. 

Our approach provides transparent application recovery. By its 
fast client restart, it can mask application failures to the human 
user. It is the first method that ensures an exactly-once semantics 
for applications as an affordable “commodity-feature”. 
Transactions, on the other hand, provide atomicity in the “all-or- 
nothing” sense, where the “nothing” case requires explicit 
programming to re-initiate an application. Our approach allows 
none, one, or multiple transactions inside an application. Thus, it 
is more general than purely transactional applications. We believe 
that we have accomplished an important step towards providing 
“TP-monitor-class” system guarantees to arbitrary client 
applications. 
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