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Abstract 
We present a pattern-mining algorithm that scales roughly linearly 
in the number of maximal patterns embedded in a database irre- 
spective of the length of the longest pattern. In comparison, previ- 
ous algorithms based on Apriori scale exponentially with longest 
pattern length. Experiments on real data show that when the pat- 
terns are long, our algorithm is more efficient by an order of magni- 
tude or more. 

1. Introduction 
Finding patterns in databases is the fundamental operation behind 
several common data-mining tasks including association rule [l] 
and sequential pattern mining [4]. For the most part, pattern mining 
algorithms have been developed to operate on databases where the 
longest patterns are relatively short. This leaves data outside this 
mold unexplorable using current techniques. Interesting data-sets 
with long patterns include those composed of questionnaire results 
(oeople tend to answer similarly to many questions), sales 
transactions detailing the purchases made by regular customers 
over a laree time window. and biological data from the fields of 
DNA and- protein analysis. Most categorically-valued data-sets 
used for classification problems (e.g. targeted marketing 
campaigns) also tend to have long patterns because they contain 
many frequently occurring items and have a wide average record 
length. 
Almost every recently-proposed pattern-mining algorithm is a 
variant of Apriori [2]. Two recent papers have demonstrated that 
Apriori-like algorithms are inadequate on data-sets with long 
patterns. Brin et al. [6] applied their association-rule miner DIC to a 
data-set composed of PUMS census records. To reduce the 
difftculty of this data-set, they removed all items appearing in over 
80% of the transactions yet still could only mine efficiently at high 
support. We [5] previously applied an Apriori-inspired algorithm to 
several data-sets from the Irvine Machine Learning Database 
Repository. In order to mine efftciently, this algorithm had to 
sometimes apply pruning strategies that rendered the search 
incomplete. 
Apriori involves a phase for finding patterns called frequent 
itemsets. A frequent itemset is a set of items appearing together in a 
number of database records meeting a user-specified threshold. 
Apriori employs a bottom-up search that enumerates every single 
frequent itemset. This implies in order to produce a frequent itemset 
of length 1, it must produce all 2’ of its subsets since they too must 
be frequent. This exponential complexity fundamentally restricts 
Apriori-like algorithms to discovering only short patterns. 
To address this problem, this paper proposes the Max-Miner 
algorithm for efftciently extracting only the maximal frequent 
itemsets, where an itemset is maximal frequent if it has no superset 
that is frequent. Because any frequent itemset is a subset of a 
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maximal frequent itemset, Max-Miner’s output implicitly and 
concisely represents all frequent itemsets. Max-Miner is shown to 
result in two or more orders of magnitude in performance 
improvements over Apriori on some data-sets. On other data-sets 
where the patterns are not so long, the gains are more modest. In 
practice, Max-Miner is demonstrated to run in time that is roughly 
linear in the number of maximal frequent itemsets and the size of 
the database, irrespective of the size of the longest frequent itemset. 
Max-Miner is successful because it abandons a strict bottom-up 
traversal of the search space, and instead always attempts to “look 
ahead” in order to quickly identify long frequent itemsets. By 
identifying a long frequent itemset early on, Max-Miner can prune 
all its subsets from consideration. Max-Miner uses a heuristic to 
tune its search in an effort to identify long frequent itemsets as early 
as possible. It also uses a technique that can often determine when a 
new candidate itemset is frequent before accessing the database. 
The idea is to use information gathered during previous database 
passes to compute a good lower-bound on the number of 
transactions that contain the itemset. 
The techniques we introduce in this paper are flexible and can be 
extended in various ways and applied to other algorithms. To 
demonstrate this point, we optimize Apriori with the lower- 
bounding technique mentioned above. While the fundamental 
limitations of Apriori with respect to pattern length remain, 
performance is improved by an order of magnitude on several data- 
sets. We also show how Max-Miner can be extended to exploit 
additional pattern constraints during its search by creating a variant 
that identities only the longest of the maximal frequent itemsets in a 
data-set. This algorithm efficiently identifies all of the longest 
maximal frequent itemsets even when the space of all maximal 
frequent itemsets is itself intractably large. 

1.1 Related Work 
There are many variants of Apriori that differ in how they check 
“candidate” itemsets against the database. Aoriori in its purest form 
checks itemsets of length I for frequency during database pass 1. 
DIC r61 is more eaeer and beeins checkine an itemset shortlv after 
all its’ subsets have”been det&rnined freqient, rather than waiting 
until the database pass completes. Partition [I l] identifies all 
frequent-itemsets in memory-sized partitions of the database, and 
then checks these against the entire database during a final pass. 
DIC considers the same number of candidate itemsets as Apriori, 
and Partition can consider more but never fewer candidate itemsets 
than Apriori, potentially exacerbating problems associated with 
long patterns. 
Park et al. [9] enhance Apriori with a hashing scheme that can 
identify (and thereby eliminate from consideration) some 
candidates that will turn up infrequent if checked against the 
database. It also uses the hashing scheme to re-write a smaller 
database after each pass in order to reduce the overhead of 
subsequent passes. Still, like Apriori, it considers every frequent 
itemset. 
Gunopulos et al. [7] present a randomized algorithm for identifying 
maximal frequent itemsets in memory-resident databases. Their 
algorithm works by iteratively attempting to extend a working 
pattern until failure. A randomized version of the algorithm that 
does not guarantee every maximal frequent itemset will be returned 
is evaluated and found to efftciently extract long frequent itemsets. 
Unfortunately, it is not clear how this algorithm would be scaled to 
disk resident data-sets since each attempt at extending an itemset 
requires a scan over the data. It also remains to be seen how the 
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proposed complete version of the algorithm would perform in 
practice. 
Zaki et al. 1161 present the algorithms MaxEclat and MaxClique 
for identifying maximal frequent itemsets. These algorithms are 
similar to Max-Miner in that they also attempt to look ahead and 
identify long frequent itemsets early on to help prune the space of 
candidate itemsets considered. The important difference is that 
Max-Miner attempts to look ahead throughout the search,, whereas 
MaxEclat and MaxCliaue look ahead onlv durine an inmalization 
phase prior to a p&ely bottom-up Apriori-Kke search with 
exponential scaling. The initialization phase of MaxEclat is also 
prone to problems with long frequent itemsets since it uses a 
dynamic programming algorithm for finding maximal cliques in a 
graph whose largest clique is at least as large as the length of the 
longest frequent itemset. 
Concurrent to our work, Lin and Kedem [8] have proposed an 
algorithm called Pincer-Search for mining long maximal frequent 
itemsets. Like Max-Miner, Pincer-Search attempts to identify long 
patterns throughout the search. The difference between these 
algorithms is primarily in the long candidate itemsets considered 
by each. Max-Miner uses a simple, polynomial time candidate 
generation procedure directed by heuristics, while Pincer-Search 
uses an NP-hard reduction phase to ensure no long candidate 
itemset contains any known infrequent itemset. Our comparison 
with Pincer-Search is thus far only preliminary, and more work is 
needed to fully understand the advantages offered by each 
technique. 

1.2 Overview 
Section 2 begins with an introduction into the basic search strategy 
used by Max-Miner and the techniques used to restrict the search 
space. Section 3 formalizes these techniques through pseudo-code, 
provides implementation details, and establishes Max-Miner’s 
correctness and efficiency characteristics. Section 4 discusses and 
exploits a technique for lower-bounding the support of candidate 
itemsets. Section 5 discusses the integration of additional pattern 
constraints into the search, culminating in a description of the 
Max-Miner-LO algorithm for finding only the longest maximal 
frequent itemsets. The algorithms are evaluated experimentally in 
Section 6 followed by a summary of contributions and avenues for 
future work in Section 7. 

2. Introducing Max-Miner 
We begin with defining the necessary terminology for describing 
the Max-Miner algorithm. For simplicity of presentation, we will 
be dealing only with the problem of identifying frequent itemsets. 
The application of our techniques to finding other patterns (e.g. 
sequential patterns) is similar. 
A data-set is a set of transactions that are sets over a finite item 
domain. Transactions can represent things such as the supermarket 
items purchased by a customer during a shopping visit, or the 
characteristics of a person as described by his or her replies in a 
census questionnaire. A set of items is more succinctly called an 
itemset, and a frequent itemset is one that is contained in a number 
of transactions above or equal to the minimum support (minsup) 
specified by the user. An itemset with k items will be more 
succinctly referred to as a k -itemset. The support of an itemset I, 
denoted sup(f), is the number of transactions that contain it. The 
minsup parameter will sometimes be specified as a percentage of 
the transactions in the data-set instead of as an absolute number of 
transactions. 
Max-Miner can be described using Rymon’s generic set- 
enumeration tree search framework 1101. The idea is to exoand sets 
over an ordered and finite item domain as illustrated in’Figure 1 
where four items are denoted by their position in the ordering. The 
particular ordering imposed on the item domain affects the parent/ 
child relationships in the set-enumeration tree but not its 
completeness, The figure assumes a static lexical ordering of the 
items, hut later we describe an optimization that dramatically 
improves performance by heuristically ordering the items and 

dynamically reordering them on a per-node basis. Set-enumeration 
trees are not data-structures like the hash tree or trie, but instead 
are used to illustrate how sets of items are to be completely 
enumerated in a search problem. Note that the tree could be 
traversed depth-first, breadth first, or even best-first as directed by 
some heuristic. Max-Miner employs a purely breadth-first search 
of the set-enumeration tree in order to limit the number of passes 
made over the data. 

Figure 1. Complete set-enumeration tree over four items. 
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The key to an efficient set-enumeration search is the pruning 
strategies that are applied to remove entire branches from 
consideration. Without pruning, a set-enumeration tree search for 
frequent itemsets will consider every itemset over the set of all 
items. Max-Miner uses pruning based on subset infrequency, as 
does Apriori, but it also uses pruning based on superset frequency. 
To aid in our pruning efforts, we will represent each node in the set 
enumeration tree by what we call a candidate group. A candidate 
group g consists of two itemsets. The first, called the head and 
denoted h(g) , represents the itemset enumerated by the node. The 
second itemset, called the tail and denoted t(g), is an ordered set 
and contains all items not in h(g) that can potentially appear in 
any sub-node. For example, the node enumerating itemset { 1 } in 
the figure has h(g) = 11) and t(g) = { 2,3,4} . The ordering of 
tail items reflect how the sub-nodes are to be expanded. In the case 
of a static lexical ordering without pruning, the tail of any 
candidate group is trivially the set of all items following the 
greatest item in the head according to the item ordering. When we 
are applying pruning and dynamic item reordering, it becomes 
necessary to make the tail items explicit. 
When we say we are counting the support of a candidate group g , 
we are computing the support of itemsets h(g), h(g) u t(g), and 
h(g) u {i} for all i E t(g). The supports of itemsets other than 
h(g) are used for pruning. For example, consider first the itemset 
h(g) u t(g). Since h(g) u t(g) contains every item that appears in 
any viable sub-node of g, if it is frequent, then any itemset 
enumerated by a sub-node will also be frequent but not maximal. 
Superset-frequency pruning can therefore be implemented by 
halting sub-node expansion at any candidate group g for which 
h(g) u t(s) is frequent. Consider next the itemset h(g) u {i} for 
some i E t(g). If h(g) u { i) is infrequent, then any head of a sub- 
node that contains item i will also be infrequent. Subset- 
infrequency prunmg can therefore be implemented by simply 
removing any such tail item horn a candidate group before 
expanding its sub-nodes. 

3. Formalizing Max-Miner 
We now provide a pseudo-code description of Max-Miner 
followed by the motivation behind and description of the item 
ordering policy. Implementation details describing how Max- 
Miner can use the same data-structures as Apriori are provided in 
the following subsection, and the last subsection provides 
correctness and efficiency arguments. 

3.1 Pseudo-Code for Max-Miner 
The pseudo-code description of Max-Miner appears in figures 2 
through 4. The body (Figure 2) accepts a data-set and (implicitly) 
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the minimum support specified by the user. The while loop 
implements a breadth-first search of the set-enumeration tree that 
maintains every frequent itemset encountered so long as it is 
potentially maximal. The function Gen-Initial-Groups (Figure 3) 
performs the initial scan over the data-set to identify the item 
domain and seed the search at the second level of the tree. 
Superset-frequency based pruning is performed by only expanding 
the sub-nodes of a candidate g if h(g) u l(g) is infrequent. 
Another instance of superset-frequency pruning is any candidate 
group g is pruned if h(g) u r(g) is a subset of some already- 
know-to-be frequent itemset I. 
Sub-nodes are generated by Gen-Sub-Nodes in Figure 4. Subset- 
infrequency pruning is performed here through the removal of any 
tail item i from a candidate group g if h(g) u {i} is infrequent. 
Gen-Sub-Nodes and Gen-Initial-Groups return the sub-node with 
an empty tail as a frequent itemset instead of a candidate group 
since its frequency is already known and it has no children in the 
search tree. 

Figure 2. Max-Miner at its top level. 
MAX-MrNER(Data-set T) 

;; Returns the set of maximalfrequent itemsets present in T 
Set of Candidate Groups C t { } 
Set of Itemsets F t {GEN-INITIAL-GROUPS( T, C)} 
while C is non-empty do 

scan T to count the support of all candidate groups in C 
for each g E C such that h(g) u t(g) is frequent do 

F+-Fu{WutOl 
Set of Candidate Groups C,,, t { } 
for each g E C such that h(g) u t(g) is infrequent do 

F t F u { GEN-SUB-NODES& C,,,)} 
c + cnew 
remove from F any itemset with a proper superset in F 
remove from C any group g such that h(g) u t(g) 

has a superset in F 
return F 

Figure 3, Generating the initial candidate groups. 
GEN-INITIAL-GROuPS(Data-Set T, Set of Candidate Groups C) 

;; C is passed by reference and returns the candidate groups 
;; The return value of the function is a frequent I-itemset 
scan T to obtain F, , the set of frequent I -itemsets 
impose an ordering on the items in F, ;; see section 3.2 
for each item i in F, other than the greatest item do 

let g be a new candidate with h(g) = {i} 
and t(g) = Qp follows i in the ordering} 

CtCukl 
return the itemset in F, containing the greatest item 

Figure 4. Generating sub-nodes. 
GEN-SUB-NODES(Candidate Group g , Set of Cand. Groups C) 

;; C is passed by reference and returns the sub-nodes of g 
;; The return value of the function is a frequent itemset 
remove any item i from t(s) if h(g) u {i} is infrequent 
reorder the items in t(g) ;; see section 3.2 
for each i E t(g) other than the greatest do 

let g’ be a new candidate with h(g’) = h(g) u {i} 
and t(s’) = Ql j E t(g) andj follows i in t(g)} 

Ct cu {g’) 
return h(g) u (m} where m is the greatest item in t(g) , 

or h(g) if t(g) is empty. 

3.2 Item Ordering Policies 
The motivation behind item (re)ordering is to increase the 
effectiveness of superset-frequency pruning. Recall that superset- 
frequency pruning can be applied when a candidate group g is 
found such that h(g) u t(g) is frequent. We therefore want to make 
it likely that many candidate groups will have this property. A 
good heuristic for accomplishing this is to force the most frequent 
items to appear in the most candidate groups. This is simply 
because items with high frequency are more likely to be part of 
long frequent itemsets. Items that appear last in the ordering will 
appear in the most candidate groups. For instance, item 4 from 
Figure I appears either in the head or tail of every single node. 
Item ordering is therefore used to position the most frequent items 
last. 
Gen-Initial-Groups orders the items in increasing order of 
sup({ i}) . Items in the tails of candidate groups are re-ordered 
prior to sub-node generation in Gen-Sub-Nodes. This function 
orders the tail items of a group g in increasing order of 
sup(h(g) u (i}) . This strategy tunes the frequency heuristic by 
having it consider only the subset of transactions relevant to the 
given node. 
Interestingly, the same item reordering heuristic is used by Slagel 
et al. [12] in a set-enumeration algorithm for identifying prime 
implicants in CNF propositional logic expressions. The fact that 
the same policy works well for both problems is likely due to their 
close relationship. Finding prime implicants in CNF expressions is 
similar to the problem of generating hypergraph transversals, and 
Gunopulos et al. [7] have previously shown that hypergraph 
transversal algorithms can be used as a component of an algorithm 
for mining maximal frequent itemsets. 
3.3 Implementation Details 
Max-Miner can use the same data-structures as Apriori (as detailed 
in [3]) for efficiently computing itemset supports. The primary 
data-structure used by Apriori is the hash tree to index candidate 
itemsets. Max-Miner uses the hash tree to index only the head of 
each candidate group. For each transaction in the data-set, Max- 
Miner uses the hash tree to quickly look up all candidate groups 
whose head appears in the transaction. Then, for each candidate 
group g identified, it traverses down its tail items one by one, 
incrementirm the support of h(g) u { i} if tail item i is present in 
the transacti&. If every tail it% appears in the transaciion, then 
the support of h(p) u t(n) is also incremented. We found this 
implementation to%e sut%antially faster than individually storing 
each itemset within the hash tree. Hash trees are also used by our 
implementation of Max-Miner for efficiently identifying the 
subsets of frequent itemsets in F and C . 
Our implementation of Max-Miner diverges from the pseudo-code 
description in only one way. During the second pass over the data- 
set, we use a two-dimensional array for quickly computing the 
support of all 2-itemsets as suggested in [3], and do not compute 
the support of the long itemsets h(g) u t(s). We have found that 
the long itemsets h(g) u t(g) almost always turn up infrequent at 
this stage, so computing their support offers no benefit. 
3.4 Correctness and Effkiency Claims 
THEOREM (CORRECTNESS): Max-Miner returns all and only the 

maxima1 frequent itemsets in the given data-set. 
Proof? The fact that Max-Miner identifies and stores every 

maximal frequent itemset follows from the completeness of a 
set-enumeration tree search and the fact that branches of the 
set-enumeration tree are pruned if and only if they lead to only 
infrequent itemsets or non-maximal frequent itemsets. The fact 
that Max-Miner returns only those itemsets that are maximal 
frequent follows from the operation within the body of Max- 
Miner that continuously removes any itemset I if a frequent 
superset of I is known. 0 

Max-Miner, like Apriori, easily handles disk-resident data because 
it requires only one transaction at a time in memory. Also like 
Apriori, the number of passes over the data made by Max-Miner is 
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bounded by the length of the longest frequent itemset. For Apriori 
this bound is nearly tight. Max-Miner, on the other hand, often 
performs substantially fewer database passes, as will be 
demonstrated in our evaluation. 
THEOREM (EFFICIENCY): Max-Miner makes at most I+ 1 passes 

over the data-set, where 1 denotes the length of the longest 
frequent itemset. 

Proof We establish the claim by demonstrating why Max-Miner 
terminates after pass I + 1 if it happens to get that far. By the 
manner in which Max-Miner generates candidate groups, it is 
easy to see that during pass k , the head of any candidatk group 
has exactlv k- I items. After oass l+ I . for anv candidate 
group g &d any of its tail [terns i, h(g) u {I) will be 
infrequent otherwise we would have a frequent itemset longer 
than I. This implies that the next set of candidate groups will 
be empty, in which case the algorithm terminates. 0 

4. Support Lower-Bounding 
This section first describes a general technique that can be used to 
obtain a lower-bound on the support of an itemset by exploiting the 
support information provided by its subsets. The subsequent 
subsections describe how this technique is used to improve the 
performance of Max-Miner and Apriori. 
4.1 Computing Support Lower-Bounds 
The idea behind our method of computing a lower-bound on the 
support of an itemset is to exploit, as much as possible, the 
available support information provided by its subsets. The 
following function is useful in this endeavor, as established by the 
subsequent theorem. The function computes the number of 
transactions that are “dropped” from the supporting set of an 
itemset when it is extended with a given item. 
DEFIJVITION: drop(l,, i) = sup(/,)-sup@, u (d}) , where i is an 

item not in itemset I,F . 

Figure 5. Illustration of support drop resulting from extending 
itemsets I and I, with i . 

Because sup(f u {i}) = sup(f)-drop(l, i), we can get a lower- 
bound on the value of sup(1 u { i}) given the value of sup(I) and 
an upper-bound on drop(l, i) . This fact is exploited by our next 
theorem. 
THEOREM (SUPPORT LOWER-BOUNDING): sup(l) - drop(l., i) is a 

lower-bound on the support of items&t I J ii} when‘f. & I, 
Proof We show that drop(I.. i) is an unner-bound on &oD(I. i) 

fcom which the claim %db&s. The argument is geomet& &h 
is illustrated in Figure 5. The outer square represents the space 
of all transactions supporting itemset I,, and the inner square 
the space of all transactions supporting ltemset I. Because the 
space occupied by I is entirely contained within the space 
occupied by Z,, , the set of transactions dropped by extending 
itemset I with i must be a subset of the transactions dropped 
by extending itemset I, with i . The fact that drop(l,, i) is an 
upper-bound on drop(d i) is immediate. 0 

The support lower-bounding theorem, as stated, can only be 
annlied to lower-bound the SUDDO~~ of a k-itemset if we have the 
s;pport of one of its k- I item subsets. Below we generalize the 
theorem to apply when only the supports of smaller subsets are 
available. 

THEOREM (GENERALIZED SUPPORT LOWER-BOUNDING): The 
following equation computes a lower-bound on the support of 
itemset lu T where 7’ is an itemset disjoint from I and 
I,, c I , 

sup(l) - c drop(l,, i) 
ieT 

Proof The equation is simply the result of applying the previous 
theorem repeatedly for each item i in T. q 

4.2 SuDnort Lower-Bounding in Max-Miner 
Support iower-bounding can be use; by Max-Miner within the 
Gen-Sub-Nodes function for additional suoerset-fieauencv 
pruning (Figure 6). If sub-nodes of a candidate grdup are ge<erateh 
while traversing the tail items in item order, a sub-node g2 
generated after ,g, will have the DroDertv that 
x(g,) u t(g,) c h&,)-6 t(g,) . This means if /~(g’~) b &,) is a 
freauent itemset. then anv sub-node generated after P. can lead 
only to non-maiimal ite&ets. Max-h?iner thus avoid; ienerating 
sub-nodes following any sub-node g for which h(g) u t(g) can be 
lower-bounded above minsup. 

Figure 6. Generating sub-nodes with support lower-bounding. 
GEN-SUB-NODES(Candidate Group g , Set of Cand. Groups C) 

;; C is passed by reference and returns the sub-nodes of g 
;; The return value of the function is a frequent itemset 
remove any item i from t(g) if h(g) u {i} is infrequent 
reorder the items in t(s) 
for each i E t(g) in increasing item order do 

let g’ be a new candidate with h(g’) = h(g) u {i} 
and t(g’) = tilti E t(g)) andifollows i in l(g)} 

if COMPUTE-LB(g’ , h(g) ) 2 minsup 
then return h(g’) u t(g’) ;; this itemset is frequent 

else Ct Cu {g’} 
return h(g) ;; This case arises only if t(g) is empty 

Figure 7. Computing the support lower-bound. 
XlPuTE-LB(Candidate Group g , Itemset Z, ) 

;; Returns a lower-bound on the support of h(g) u r(g) 
;; Itemset tr is a proper subset of h(g) 
Integer d t 0 
for each i E t(g) do 

d t d + drop(I,,, i) 
return sup(h(g)) -d 

Figure 7 shows how Max-Miner computes a lower-bound on 
h(g) u t(g) using only support information provided by its 
subsets. The function directly applies the generalized support 
lower-bounding theorem. Note that the support values required for 
this computation are available through the itemsets whose supports 
were computed while counting the support of the parent node. 
4.3 Support Lower-Bounding in Apriori 
Apriori generates candidate itemsets of length k whose supports 
are computed during database pass k. An itemset is made a 
candidate if every k - I item subset was found frequent during the 
previous database pass. Suppose we are using Apriori to identify 
the maximal frequent itemseta. If Apriori can be made to lower- 
bound the support of a candidate itemset above or equal to minsup, 
then its support does not have to be explicitly counted. However, 
the candidate itemset cannot be entirely pruned because it must 
remain present for the subsequent candidate generation phase. 
Nevertheless, the savings that result from counting the support of 
fewer candidate itemsets can be substantial. Also, for a particular 
database pass, if ever Apriori can lower-bound the support of all 
candidate itemsets above minsup, then it can skip the database pass 
altogether. 
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A support lower-bound can be obtained on a candidate itemset 1, 
by plugging into the support lower-bounding theorem any proper 
subset I of I , and any proper subset [F of I. The tightest bounds 
will be obtaiied by using only subsets with one less item. If the 
candidate itemset I, has k items, there are then (k- l)(k-2) 
subset combinations for lower-bounding the support of !c. Our 
lower-bounding enhanced Apriori algorithm, Aprtori-LB, 
considers every one of these possibilities and compares the best 
(largest) bound obtained to minsup. 
Apriori-LB does not always have access to the exact support of 
every proper subset of a candidate because one or more subsets of 
a candidate itemset may have been left uncounted due to previous 
lower-bounding efforts. When this is the case, Apriori-LB uses a 
new Rmction to bound support drop. The new function, drop-b, 
uses support bounds instead of exact support values. Because 
drop-b clearly computes an upper-bound on the value of drop 
given the same arguments, it can be used in place of drop in the 
lower-bounding theorems. 
DEFINITION: drop-b(l,Y, i) = ub-sup(1.J - lb-sup(l,, u {i}) , where 

ub-sup(f) is the best-known upper-bound on sup(l), and 
lb-sup(l) is the best-known lower-bound on sup(l). 

The support of an itemset can be upper-bounded by the support (or 
upper-bound on support) of any of its subsets. Apriori-LB sets 
ub-sup(Z) of an uncounted itemset I with k items to the smallest 
of the support upper-bounds or (if computed) support values of 
each of its k- 1 item subsets. 

5. Exploiting Additional Constraints 
Though the frequent patterns themselves are often of interest to the 
end-user, often they need to be digested further before being 
presented. Association rules are digested frequent itemsets that can 
be useful for prediction. The confidence of an association rule 
i,, i2, ., ik + i, is equal to the support of the itemset 
ii,,+, . . ..ikJ divided by the support of the itemset 
{iI, i,, . . . . i,, ic} . Typically the user is interested in finding only 
those association rules with high confidence and support, and these 
are produced by searching the entire space of frequent itemsets. 
Another database pass is required after finding all maximal 
frequent itemsets in order to obtain the supports of all frequent 
itemsets for producing association rules. If the frequent itemsets 
are long, even if implemented efficiently using specialized data 
structures, this step is hopelessly intractable. 
Max-Miner can be used to identify many, though not all, high- 
confidence association rules during its execution. After counting 
the support of a candidate group g, Max-Miner has all the 
supports necessary to compute the confidence of any association 
rule of the form h(g) + i, where i, E t(g). Another approach at 
incomplete rule-mining could be to use the set of maximal frequent 
itemsets to define the space of rules searched by a randomized 
algorithm. 
Though incomplete techniques at association rule mining may 
sometimes be sufficient, completeness is more desirable. We 
believe that incorporating additional constraints into the search for 
frequent patterns is the only way to achieve completeness on 
complex data. Association rule confidence is a constraint that 
Bayardo [5] uses to prune some itemsets from consideration. Other 
constraints that have been used during the search for patterns 
include item constraints [ 151 and information-theoretic constraints 
[ 131. Interestingness constraints thus far applied only during post- 
processing (e.g. [6]) might also be exploitable during search to 
improve efficiency. 
Max-Miner provides a framework in which additional constraints 
can often be easily integrated into the search. Consider as an 
example the problem of finding only the longest frequent itemsets. 
This constraint is quite powerful because data sets with long 
frequent itemsets usually have very many maximal frequent 
itemsets, of which only a small fraction are longest. We have 
implemented a version of Max-Miner that exploits this constraint 
called Max-Miner-LO (“Longest Only”). It determines the 

cardinal&y 1 of the longest itemset in the set of frequent itemsets 
F after each database pass. Any frequent itemsets in F that are 
shorter than 1 are then pruned, as are any candidate groups g in C 
such that Ih(g) u t(g)/ < I. 

6. Evaluation 
We selected data-sets from several domains for evaluating the 
performance of Max-Miner, all but one of them being publicly 
accessible through the web. The data-set that is not publicly 
available was provided by a retailer. This data-set contains records 
listing all of the items purchased by a customer over a period of 
time. We produced another of our data-sets from PUMS census 
data available at http://augustus.csscr.washington.edu/census/ 
camp-Ol3.html. Following Brin et al. [6], we discretized 
continuous attributes and removed uninformative attributes. We 
created another version of the data-set where all items with 80% or 
greater support were discarded. The raw data from the web 
consists of both housing and person records, but we extracted only 
the person records. The remaining data-sets used in our evaluation 
were taken from the Irvine Machine Learning Database Repository 
(http:Nwww,ics.uci.edu/-mleam/MLRepository.html). We favored 
those with categorically-valued attributes, relatively wide record 
length, and a substantial number of records. These data-sets 
include connect-4, chess, splice, and mushroom. The splice data 
set contains DNA data, the mushroom database contains records 
describing the characteristics of various mushroom species, and 
Connect-4 and chess are compiled from game state information. 
Table 1 lists the width and height of each of these data-sets. 
Pumsb* is the same data set as pumsb minus all items with 80% or 
more support. 

Table 1. Width and height of the evaluation data-sets. 

Data-set Records Avg. Record Width 
chess 3,196 37 
connect-4 67,557 43 
mushroom 8,124 23 
pumsb 49,046 74 
pumsb* 49,046 50 
retail 213,972 31 
splice 3,174 61 

The data-set with the longest patterns was pumsb. This data-set 
also had the most maximal frequent patterns -- intractably many 
even at relatively high levels of support. We thus focus on pumsb* 
for evaluating Max-Miner, and use pumsb only to evaluate Max- 
Miner-LO. Even though items with 80% or more support are 
removed, pumsb* still a challenging data set with long frequent 
itemsets. A similar but smaller data-set was used by Brin et al. to 
evaluate DIC, though only at supports of 36% and higher. Their 
data-set was not available to us at the time of this writing, so we 
created pumsb* to use in its place. 
All experiments were performed on a lightly loaded 200MHz 
Power-PC with 256 megabytes of RAM. The algorithms were 
implemented in C++ atop the same optimized hash tree 
implementation. Apriori and Apriori-LB were optimized for 
finding only maximal frequent itemsets by having them discard 
from memory any frequent itemset that was found to be non- 
maximal. The Max-Miner algorithm evaluated here uses support 
lower-bounding. In subsection 6.3 we describe the effects of 
disabling this and other optimizations. 
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Figure 8. CPU time on pumsb*. 
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Figure 9. CPU time on mushroom. 
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Figure 10. CPU time on chess. 
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Figure 11. CPU time on connect-4. 
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6.1 Max-Miner versus Apriori and Apriori-LB 
Figures 8 through 11 compare the performance of Max-Miner, 
Apriori-LB, and Apriori on the most difftcult of the evaluation 
data-sets. While Apriori-LB is performing far better than Apriori 
with respect to run-time (note the logarithmically scaled y axes), 
because of its space complexity, we were unable to run it at lower 
support than Apriori without exceeding the memory of our 
machine. At several data points, Max-Miner is over two orders of 
magnitude faster than Apriori at identifying maximal frequent 
patterns, and an order of magnitude faster than Apriori-LB. Had 
we allowed Apriori to perform candidate paging, the speedups at 
lower supports would be even more substantial. Even though these 
data sets are from distinctly different domains, the performance 
trends are all identical. What these data-sets all have in common 
are long patterns at relatively high values of support. 

Figure 12. CPU time on retail. 
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Figure 13. CPU time on splice. 
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The two remaining evaluation data-sets, retail and splice, have 
comparatively small patterns at low support levels. Even so, Max- 
Miner still outperforms both Apriori and Apriori-LB. We plot only 
the performance of Apriori on these data sets, since Apriori-LB 
offered no advantages. Apriori-LB appears to be more effective at 
tightly lower-bounding support when the patterns are long. Most of 
the maximal frequent itemsets in these data sets are of length 2 to 
4, and the longest are of .length 8 in splice and 6 in retail at the 
lowest support values. The superior performance of Max-Miner on 
these data-sets arises from considering fewer candidate itemsets 
and reduced index overhead resulting from the indexing of 
candidate groups using only head items. This suggests that Apriori 
should also index candidate itemsets that share a common prefix as 
a group rather than individually. We are currently investigating 
whether this optimization pays off more generally. 
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Figure 14. CPU time per maximal frequent itemset. 
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6.2 Max-Miner Scaling 
For every data set at the support levels we looked at, the lower the 
support, the more maximal-frequent patterns were found. Figure 
14 plots the amount of time spent by Max-Miner per maximal 
frequent itemset against the number of maximal frequent itemsets 
found during a given run of the algorithm. The support values used 
to generate this data are the same ones that appear in the previous 
graphs. Max-Miner’s performance per maximal frequent itemset 
remains relatively constant as the number of maximal frequent 
itemsets increases, even though the size of the longest itemsets 
varies significantly. For instance, for the pumsb* data set, the Jeft- 
most point arises from a run at 35% support where the longest 
frequent itemsets contain I5 items. The right-most point is for a 
run at 5% support where the longest frequent itemsets contain 40 
items. Even so, the performance per maximal frequent itemset 
varies no more than 25%, indicating Max-Miner is scaling roughly 
linearly with the number of maximal frequent itemsets. 
The chess data-set exhibits the most non-linear increase in 
difficulty with the number of maximal frequent itemsets, though 
this increase is still relatively subdued (within a factor of 2.5) 
considering the large increase in the number of maximal Frequent 
itemsets and their length. It is possible that the curve for the chess 
data-set would begin to decrease had we mined at even lower 
levels of support. We were unable to determine this because of the 
explosion in the number of maximal frequent itemsets at low 
supports -- already there are over half a million maximal frequent 
itemsets at a minsup of 20%. The other data-sets all begin to get 
easier as the number of maximal frequent patterns increases 
beyond some point. This is certainly in part due to the fact that 
itemsets with lower support incur less overhead since they are 
contained by fewer database transactions. However, as support 
decreases, maximal frequent itemsets become longer, which leads 
to an increase in storage and indexing overhead. 
Figure 15. Number of candidate groups considered per maximal 
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To remove the effect of indexing and support-counting overhead 
on runtime scaling, and to demonstrate how Max-Miner scales in 
its space consumption, we also compared the number of candidate 
groups whose support was counted to the number of maximal 
frequent sets identified (Figure 15)‘. For every data-set there is a 
strong linear relationship. In fact, the number of candidates 
considered is always within a small (at most 3.7 on pumsb*) 
constant of the number of maximal frequent itemsets. 

Figure 16. Database passes performed by Max-Miner compared to 
the longest frequent itemset. 

40 - 
chess +< 

connect. 
35 - 

q..L . . . 
pqrjb'i .o.-.- - 
ssdice * 

30 
t : 

ny.droom -- - ..’ retail -=.- i 

5 10 15 20 25 30 35 40 
Length of longest pattern 

Figure I6 plots the number of database passes performed by Max- 
Miner against the length of the longest patterns identified during 
each run. The worst-case number of passes is represented by the 
diagonal. While the number of database passes increases with 
pattern length, it is usually far from the worst-case. Though not 
illustrated, Apriori-LB was often able to skip one or two database 
passes because all candidates were lower-bounded above minsup. 
This had a relatively small effect on performance compared to the 
amount of reduction in overhead from computing the support of 
fewer candidates. The reductions in database passes tended not to 
have as dramatic an effect on performance as might be expected 
from experiments on small-pattern data because the overhead of 
candidate itemset lookup largely exceeded that of data access. 

6.3 Effects of Max-Miner Optimizations 
Support lower-bounding is a beneficial optimization on the data- 
sets with long patterns for Max-Miner as well as Apriori. For 
example, after turning off support lower-bounding, Max-Miner’s 
performance dropped by approximately four-fold at all levels of 
support on the chess data-set due to a four-fold increase in the 
number of candidate groups to be counted. On the retail data-set, 
the optimization’s effects were negligible. The item-(re)ordering 
heuristic was beneficial, usually dramatically so, on every data-set 
we looked at. For example, at 80% support on the chess data set, 
turning off item ordering (which caused the algorithm to default to 
a static lexical item ordering) resulted in an order of magnitude 
decrease in performance, with the performance gap widening even 
further as support was decreased. The decrease in performance was 
due to an increase in candidate groups resulting primarily from less 
opportunities for superset-frequency pruning. 

The plot for the connect-4 data-set is difficult to make out because 
it lies directly along the lower-left portion of the plot for chess. 
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6.4 Max-Miner-LO 
Figure 17 shows the runtime of Max-Miner-LO on the data sets 
with the longest frequent itemsets. We chose very low support 
values for these runs to illustrate how additional constraints can 
make mining feasible even when the number of maximal frequent 
itemsets is too large. Note that Max-Miner-LO can mine on the 
pumsb data-set without removing items with 80% or more support. 
The longest frequent itemsets in pumsb at .I % support contain 72 
items. Frequent itemsets were very long even at 10% support 
where they contained 61 items. For most of these data points, the 
number of longest frequent itemsets was under 300. 
6.5 Comparison with Pincer-Search 
Because our work was done concurrently, we have thus far only 
had the opportunity to perform a preliminary comparison with Lin 
and Kedem’s Pincer-Search algorithm IS]. We have run Max- 
Miner on the data-set from their evahtation with the longest 
freauent itemsets (T20.115.DlOOK). Unfortunatelv. it was not 
challenging enough for either algorithm to draw any solid 
conclusions. The only clear case of one algorithm appearing 
superior over the other is at 8% minsup where Pincer-Search 
requires over 20,000 seconds and considers over 150,000 
candidate itemsets. At this same support value Max-Miner requires 
125 seconds and considers less than 22,000 candidate itemsets 
(within 4,894 candidate groups)‘. 
Pincer-Search uses a candidate itemset generation procedure that 
couples Apriori candidate generation with another technique for 
generating long candidate itemsets used for superset-frequency 
pruning. The long candidate generation procedure is seeded with 
one itemset that contains every frequent item. For each infrequent 
itemset encountered after a database pass, any long itemset 
containing the infrequent itemset is replaced by itemsets that do 
not contain the infrequent itemset. The new itemsets are formed by 
removing a single item from the original, and keeping only those 
itemsets that are not subsets of any other long candidate itemset. 
The process is iterated until no long itemset contains any known 
infrequent itemset. 
After the second database pass, the Pincer-Search long candidate 
itemset generation procedure amounts to identifying all the 
maximal cliques in a graph where the nodes are the frequent l- 
itemsets and the edges are the frequent 2-itemsets, much as Zaki’s 
MaxClique algorithm [ 161. Unlike MaxClique, Pincer-Search uses 
a top-down instead of bottom-up approach for finding the cliques. 
But due to the fact that the problem is NP-hard, any approach at 
generating candidates in this manner may be prone to performance 
problems when the frequent itemsets (and hence the maximal 
cliques) are long. 

’ Candidate itemset counts for both Pincer-Search and Max-Miner 
do not include the 1 and 2-itemsets. Runtimes are not directly 
comparable due to differences in hardware and implementation 
details. 

Though similar in principle, Max-Miner and Pincer-Search are 
quite different in their details. We look forward to performing a 
more exhaustive comparison and feel it is likely that the algorithms 
will prove complementary. 

7. Conclusions 
We have presented and evaluated the Max-Miner algorithm for 
mining maximal frequent itemsets from large databases. Max- 
Miner applies several new techniques for reducing the space of 
itemsets considered through superset-frequency based pruning. 
The result is orders of magnitude in performance improvements 
over Apriori-like algorithms when frequent itemsets are long, and 
more modest though still substantial improvements when frequent 
itemsets are short. Max-Miner is also easily made to incorporate 
additional constraints on the set of frequent itemsets identified. 
Incorporating these constraints into the search is the only way to 
achieve tractable completeness at low supports on complex data- 
sets. It is therefore these extensions which we feel warrant the most 
future work. In particular, we hope there exists a clean way to 
exploit many of the wide variety of interestingness constraints 
during the search rather than applying them only in a post- 
processing filtering step. 
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