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Abstract 

Association rule mining recently attracted strong attention. 
Usually, the classification hierarchy over the data items is 
available. Users are interested in generalized association 
rules that span different levels of the hierarchy, since some- 
times more interesting rules can be derived by taking the 
hierarchy into account. 

In this paper, we propose the new parallel algorithms for 
mining association rules with classification hierarchy on a 
shared-nothing parallel machine to improve its performance. 
Our algorithms partition the candidate itemsets over the 
processors, which exploits the aggregate memory of the sys- 
tem effectively. If the candidate itemsets are partitioned 
without considering classification hierarchy, both the items 
and its all the ancestor items have to be transmitted, that 
causes prohibitively large amount of communications. Our 
method minimizes interprocessor communication by consid- 
ering the hierarchy. Moreover, in our algorithm, the avail- 
able memory space is fully utilized by identifying the fre- 
quently occurring candidate itemsets and copying them over 
all the processors, through which frequent itemsets can be 
processed locally without any communication. Thus it can 
effectively reduce the load skew among the processors. Sev- 
eral experiments are done by changing the granule of copying 
itemsets, from the whole tree, to the small group of the fre- 
quent itemsets along the hierarchy. The coarser the grain, 
the easier the control but it is rather difficult to achieve the 
sufficient load balance. The finer the grain, the more com- 
plicated the control is required but it can balance the load 
quite well. 

We implemented proposed algorithms on IBM SP-2. Per- 
formance evaluations show that our algorithms are effective 
for handling skew and attain sufficient speedup ratio. 

1 Introduction 

Recently, Data Mining also known as knowledge &scovery 
in databases has attracted strong attention. Because of the 
progress of data collection tools such as POS, large amount 
of transaction data have been electronically generated. How- 
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ever such a data has been just archived and has not been 
used effectively. Data mining is the method of efficient dis- 
covery of useful information such as rules and previously 
unknown patterns existing between data items embedded in 
large databases, which allows more effective utilization of 
large amount of accumulated data. 

One of the most important problems in data mining is 
discovery of association rules within a large database. In or- 
der to extract association rules, the transaction databases 
have to be scanned repeatedly. In addition, in order to 
improve the quality of the rules, we have to handle large 
amount of raw transaction data instead of samples, which 
further increases the computation time: In general, it is 
difficult for a single processor system to provide reasonable 
response time. 

In our previous study, we proposed parallel algorithm for 
mining association rules on a shared-nothing environment, 
named HPA(Hash Partitioned Apriori)[SK96]. Association 
rules are the rules about what items are bought together 
within a transaction. In order to exploit the parallelism, our 
algorithm HPA partitions not only the transaction database 
but also the candidate itemsets among the processors. 

So far a few parallel algorithms for association rules are 
introduced[PCY95, CHN+96, AS96, CNFF96, HKK97]. How- 
ever, the algorithms such as CD(Count Distribution), PDM 
(Parallel Data Mining), FDM(Fast Distributed Mining) just 
partition the transaction database but do not partition the 
candidate itemsets. Only DD(Data Distribution[HKK97]) 
method partitions the candidate itemsets but it partition 
the candidates naively. Large amount of communication is 
required. After we proposed HPA[SK96], algorithms named 
IDD(Intelligent Data Distribution) and HD(Hybrid Distri- 
bution) are introduced [HKK97], which also partition the 
candidate itemsets. But these algorithms exchange all the 
transaction data among the processors. Thus communica- 
tion overheads are still large. On the other hand, commu- 
nication is minimized in HPA, since the transaction data 
is just sent to the processors which are assigned a relevant 
candidates. 

Usually, the classification hierarchy over the data items 
is available. Users are interested in generating association 
rules that span different levels of the classification hierar- 
chy, since sometimes more interesting rules can be derived 
by taking the hierarchy into account which otherwise could 
not be found out,. In [SA95], fundamental algorithm named 
cumulate was proposed to derive the generalized association 
rules with classification hierarchy which is a natural exten- 
sion of non-hierarchical association rule mining algorithm, 
Apriori[RR94]. The algorithm checks all the combination of 
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items between all the levels of hierarchy. Adding the classifi- 
cation hierarchy further increases the processing complexity, 
which results in long computation time. Parallel processing 
is essential to obtain reasonable response time. 

In this paper, we propose the parallel algorithms for 
mining generalized association rules with classification hi- 
erarchy on shared-nothing parallel machines. Three differ- 
ent algorithms named NPGM(Non Partitioned Generalized 
association rule Mining), HPGM(Hash Partitioned Gener- 
alized association rule Mining) and H-HPGM(Hierarchica1 
HPGM) are proposed. NPGM does not partition the can- 
didate itemsets. HPGM partitions the candidates using the 
hash function like HPA but it does not take the hierarchi- 
cally structural information into account. H-HPGM does 
utilize the hierarchical structure so that the communica- 
tion among the processors becomes much reduced. That 
is, H-HPGM allocates all the items of each individual hier- 
archy to a single processor. To generalize the rule of bottom 
level itemsets, the association of the ancestors of individ- 
ual itemset are examined. In H-HPGM, the inter-processor 
communication can be eliminated, since the unit of alloca- 
tion is each hierarchy. In addition, we also propose another 
three different algorithms to exploit the parallelism more 
efficiently. Although the H-HPGM can reduce the commu- 
nication overhead significantly, the granule of the candidate 
allocation is too coarse to balance the load among the pro- 
cessors. In order to obtain sufficiently high speed up ratio, 
we have to make the loads of each processor as even as pos- 
sible. Load skew is intrinsic to the data mining problem, 
since rules are derived due to the difference of occurring 
frequency of itemsets. We believe load balancing problem 
in parallel data mining is one of the most important and 
challenging issues. In the case the aggregate size of the 
candidate itemsets is smaller than the total capacity of the 
system memory, there remains free space. We could utilize 
this unused space to improve load balancing. We dupli- 
cate the frequently occurring itemsets to all the processors, 
through which communication caused by frequent itemset 
counting can be performed locally and the communication 
can be further reduced. In this paper, we designed three 
different algorithm by changing the size of duplication gran- 
ule, H-HPGM-TGD(H-HPGM with Tree Grain Duplicate), 
H-HPGM-PGD(H-HPGM with Path Grain Duplicate) and 
H-HPGM-FGD(H-HPGM with Fine Grain Duplicate). H- 
HPGM-TGD duplicates the candidate itemsets in the unit 
of hierarchy. When the size of free memory is small, H- 
HPGM-TGD cannot duplicate the candidate itemsets, since 
it copies the whole hierarchy and its size is really large. H- 
HPGM-PGD selects the frequently occurring leaf itemsets 
and duplicates them and their all ancestor itemsets. The 
duplication granule in H-HPGM-PGD is smaller compared 
with H-HPGM-TGD. Load can be better balanced. The 
final algorithm, H-HPGM-FGD, detects the frequently oc- 
curring candidate itemsets which consists of itemsets of any 
level. Although the granule of this algorithm is finest among 
three proposed algorithms and potentially it can balance the 
load in the finest way, the algorithm becomes more compli- 
cated. The coarser the granule, the simpler and the easier 
the algorithm to implement. 

We implemented these algorithms on a shared-nothing 
parallel machine to examine their tradeoff. Detail perfor- 
mance evaluation results are given and it shows that our 
final algorithm can exploits the parallelism most effectively 
and is very effective for handling skew. 

This paper is organized as follows. In next section, we 
explain the problem of mining generalized association rules 

with classification hierarchy. In section 3, we propose our 
parallel algorithms. Performance evaluations is given in sec- 
tion 4. Section 5 concludes the paper. 

2 Mining Generalized Association Rules with Clas- 
sification Hierarchy 

First we introduce some basic concepts of generalized asso- 
ciation rules, using the formalism presented in [SA95]. Let 
z = {il,iZ,. . . , im} be a set of literals, called items. Let 
‘T be a classification hierarchy on the items, which organize 
relationships of items in a tree form, shown in Figure 1. 

AA\ JB\ 
AC\ 

DE F 

G H 

Figure 1: The classification hierarchy 

An edge in 7 represents an is-o relationship. If there is 
an edge in ‘T from x to y, we call z a parent of y and y a child 
of z. If there is an edge from x to z in a transitive-closure, 
we call x an ancestor of z and z a descendant of x. In Figure 
1, A is a parent of C, C is a child of A, C is a parent of G 
and G is a child of C. Further A is an ancestor of G and 
G is a descendant of A. Since the classification hierarchy is 
acyclic, there is no item which is an ancestor of itself. Let 
v = {tl,tz , . . . , tn}(ti c 1) be a set of transactions, where 
each transaction t has an associated unique identifier called 
TID. We say a transaction t contains a set of items X, if X 
is in t or is an ancestor of some item in t. The itemset X has 
support s in the transaction set ?), if s% of transactions in 
2) contain X, here we denotes s = sup(X). An generalized 
association rules with classification hierarchy is an implica- 
tion of the form X a Y, where X, Y C Z, XnY = 4 and no 
item in Y is an ancestor of any item in X. Each rule has two 
measures of value, support and confidence. The support of 
the rule X + Y is sup(X U Y), The confidence c of the rule 
X * Y in the transaction set V means c% of transactions 
in D that contain X also contain Y, which can be written as 
the ratio sup(X U Y)/sup(X). Here a rule x + ancestor(x) 
is redundant, since its confidence is always 100%. 

The problem of mining generalized association rules with 
classification hierarchy is to find all the rules that satisfy 
a user-specified minimum support(min-sup) and minimum 
confidence(min-conf) on the assumption that we are given 
a set of transactions D and a classification hierarchy over 
the items. This problem can be decomposed into two sub- 
problems: 

1. Find all itemsets that have support above the user- 
specified minimum support. These itemsets are called 
the large itemsets and the other itemsets are called 
small itemsets. The items which contained large item- 
set are called large items and the other items are called 
small items. 

2. For each large itemset, derive all rules that have more 
than user-specified minimum confidence as follows: for 
large itemset X and any Y(Y C X), if support(X)/sup- 
port(X -Y) 2 minconf, then the rule (X -Y) * Y 
is derived. 

After finding all large itemsets, the association rules are 
derived in a straightforward manner. This second subprob- 
lem is not a big issue. However because of the large scale 

26 



of transaction data sets used in data mining, the first sub- 
problem is a nontrivial problem. 

Here we explain the Cumulate algorithm for finding all 
large itemsets, proposed in [SA95]. In the lirst pass (pass l), 
sup-cou for each item is counted by scanning the transaction 
database. Hereafter we prepare a field named sup-cou for 
each itemset, which is used to measure how many times 
the itemset contained in transactions. Since itemset here 
contains just single item, each item has a sup-cou field. All 
the items which satisfy the minimum support are picked 
out. These items are called large item (Li). Hereafter k- 
itemset is defines a set of k items. The second pass (pass 
2), the 2-itemsets are generated using L1 which is called the 
candidate 2-itemsets (Cz), and delete any candidate in Cz 
that consists of an item and its ancestor. Note that we need 
not count any itemset which contains both an item and its 
ancestor. Delete any ancestors in 7 that are not present in 
any of the candidates in Cz. Note that we can drop ancestors 
that are not present in any of the candidates at the same 
time. Then the sup-cou of Cz is counted by scanning the 
transaction database. Here sup.cou of the itemset means the 
number of transactions which contain the itemset. At the 
end of scanning the transaction data, the large 2-itemsets 
(Lz) which satisfy minimum support are determined. The 
following denotes the k-th iteration, pass k (k 2 2). 

Generate candidate itemsets: 
The candidate k-itemsets (Ck) are generated using large 
(k-I)-itemsets (&-I) as follows: join J&i with Lk-1 
and delete all the k-itemsets whose some of the (k-l)- 
itemsets are not in L&i. If k is 2, delete any candi- 
dates in Cz that consists of an item and its ancestor. 
Delete any ancestors in ‘T that are not present in any 
of the candidates in Ck. 

Count support: 
Read the transaction database, add all ancestors of 
the items in a transaction t that are present in 7 to t. 
Increment the sup-cou of all candidates in Ck that are 
contained in t. 

Determine large itemsets: 
The candidate k-itemsets are checked for whether they 
satisfy the minimum support or not, the large k-itemsets 
(Lk) which satisfy the minimum support are deter- 
mined. 

This procedure terminates when the large itemset be- 
comes empty. 

3 Parallel Algorithms 

In this section, we describe parallel algorithms for the first 
subproblem defined in the previous section, which we call 
count support processing hereafter. In the sequential al- 
gorithm, the count support processing requires the longest 
computation time, where the transaction database is scanned 
and a large number of candidate itemsets are examined. 

If the size of all the candidate itemsets is smaller than 
the size of the memory of each processor, all the processor 
can hold whole candidate itemsets. In such a case, paral- 
lelization is straightforward. By partitioning the transaction 
database over all the nodes, the transaction data can be read 
and candidate itemsets can be counted in parallel. However 
for large scale transaction data sets, this assumption does 
not hold. In mining generalized association rules, the associ- 
ations between all the possible ancestors of items have to be 

examined. Thus the amount of candidate itemsets becomes 
considerably larger compared with usual non-hierarchical 
association rule mining. In the case where the candidate 
itemsets do not fit in the local memory of a single node, the 
candidate itemsets are partitioned into fragments, each of 
which fits in the memory size of a node. The transaction 
database has to be scanned for each fragment. Thus such 
repetitive scanning of transaction database incurs the exces- 
sive I/O’s and degrades the performance significantly. Our 
algorithms partition the candidate itemsets over the mem- 
ory space of all the nodes to exploit the aggregate memory 
of the system. For simplicity, we assume that the size of the 
candidate itemsets is larger than the size of local memory 
of single node but is smaller than the sum of the memory 
space of all the nodes. It is easy to expand this algorithm to 
handle the candidate itemsets whose size exceeds the sum 
of all the nodes memories. 

3.1 Non Partitioned Generalized association rule 
Mining : NPGM 

In NPGM, the candidate itemsets are copied over all the 
nodes, each node can work independently and the final statis- 
tics are gathered into a coordinator node where minimum 
support conditions are examined. Figure 2 gives the behav- 
ior of pass k of the n-th node, using the notation in Table 
1. 

lk ] Set of all the large k-itemsets. 
CL. .” I Set of all the candidate k-itemsets. 1 
C 
d 

1 The size of Ck in bytes. 
The size of main memory in bytes. 

Vn Transactions stored in the local disk of the n-th 
node. 

C,” Sets of fragment of candidate k-itemsets. 
Each fragment fits in the local memory of a node. ] 
(d=l,...,[lCkj/M], C& =uy"' ,__ 

ICfl The size of C? in bvtes. 
i c:j I 

1 Lf 1 Sets of large k-itemsets derived from C,“. 

Table 1: Notation 

Each node works as follows: 

Generate the candidate itemsets: 
Each node generates the candidate k-itemsets (Ck) us- 
ing the large (k - I)-itemsets (&I). If k is 2, delete 
the candidates that contains an items and its ancestor. 
Insert Ck into the hash table, and delete any ancestors 
in 7 that are not present in any of the candidates in 
ck. 

Scan the transaction database and count the sup-cou 
value: 
Each node reads the transaction database from its lo- 
cal disk, generates extended transaction t’ by adding 
all ancestors of the items in a transaction t that are 
present in 7 to t’. 
Increment the sup-cou of all candidates in Ck that are 
contained in t’. 

Determine the large itemsets: 
After reading all the transaction data, all node’s sup-cou 
are gathered into the coordinator node and checked to 
determine whether the minimum support condition is 
satisfied or not. 
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k>2 
ck := The candidates of size k generated from .&.I. 
if (k = 2) then 

Delete the candidates that contains an items and its 
ancestor. 

Delete any ancestors in 7 that are not present in Ck. 
{I$}:= Partition Ck into fragments each of in a node’s 

local memory(d=l,..., [jCkI/A41). 

for @=I; d< [l&l/M]; d++) do 
forall t E V” do 

t/:= Add all ancestors of item r(E t) that are 
present in the candidates in Ck. 

Increment the sup-cou of all candidates in C,” that 
are contained in 0. 

end 
Send the sup-cou of C,” for to the coordinator node. 
/* Coordinator node determine L$ which satisfy */ 
/* user-specified minimum support in C,” and broad- */ 
/* cast Lf to all nodes. *I 
Receive Lt from the coordinator node. 

end 
Lk := ,,, L$ 

Figure 2: NPGM algorithm 

4. If large k-itemset is empty, the algorithm terminates. 
Otherwise the coordinator node broadcasts large k- 
itemsets to all the nodes, k := k + 1 and goto “1”. 

This algorithm is very simple and easy to implement, 
where no transaction data have to be exchanged among the 
nodes in the countsupport phase. However, if the size of all 
the candidate itemsets exceeds the local memory of a single 
node, the candidate itemsets are partitioned into fragments, 
each of which can fits within the local memory of a single 
node, and the above process is repeated for each fragment. 
In the Figure 2, the first level for-loop shows this. The 
disk I/O becomes prohibitively costly when the candidate 
itemsets becomes large. 

3.2 Hash Partitioned Generalized association rule 
Mining : HPGM 

In NPGM, the candidate itemsets are not partitioned but 
just copied among the nodes. However the candidate item- 
sets usually becomes too large to fit within the local memory 
of a single node. If it is partitioned naively, transaction data 
has to be broadcast to all the other nodes. HPGM parti- 
tions the candidate itemsets among the nodes using a hash 
function like in the hash join, which eliminate broadcasting. 
Figure 3 gives the behavior of pass k by the n-th node, using 
the notation in Table 2. 

& Set of all the large k-itemsets. 
C 
$ 

Set of all the candidate k-itemsets. 
Transactions stored in the local disk of the n-th 
node. 

n ck Sets of candidate k-itemsets whose hashed value 
is corresnonding to n-th node. 
(ck = u;=, ck”>- N means the number of nodes) 

Lt Sets of large k-itemsets derived from C,“. 

Table 2: Notation 

k>2 
Ck :=The candidates of size k generated from L&l. 
if (k = 2) then 

Delete the candidates that contains an items and its 
ancestor. 

Delete any ancestors in 7 thar are not present in Ck. 
{Cc) := All the candidate k-itemsets, whose hashed value . .._ 

corresponding to the n-th node. 
forall t E Vn do 

t’:= Add all ancestors of Z(E t) that are present in the 
candidates in Ck. 

forall k-itemset z E t/ do 
Determine the destination node ID by applying the 
same hash function which is used in item partition- 
ing, and send that k-itemset to it. If it is its own 
id, increment the sup-cou for the itemset. 
Receive k-itemset from the other nodes and incre- 
ment the sup-cou for that itemset. 

end 
end 
{ Lz} :=A11 the candidates in C,” with minimum support. 
Send LE to the coordinator node. 
1% Coordinator node make up .& := U, Lt and broad- */ 
/* cast to all the nodes. *I 
Receive Lk from the coordinator node. 

Figure 3: HPGM algorithm 

Each node works as follows: 

Generate candidate itemsets: 
Each node generates the candidate k-itemsets (Ck) us- 
ing the large (k - 1)-itemsets (&-I). If k is 2, delete 
the candidates that contains an items and its ancestor. 
Delete any ancestors in 7 that are not present in any 
of the candidates in ck. 
Apply the hash function to the candidates in Ck and 
determine the destination node ID. If the ID is its own, 
insert it into the hash table. 

Scan the transaction database and count the sup..cou 
value: 
Each node reads the transaction database from its 
local disk and generates extended transaction t’ by 
adding all ancestors of the items in a transaction t 
that are present in 7. 
Generate k-itemsets from t’ and apply the same hash 
function used in phase 1. Derive the destination node 
ID and send the k-itemset to it. For the itemsets re- 
ceived from other nodes and those locally generated 
whose ID equals the node’s own ID, search the hash 
table. If hit, increment its sup-cou value. 

Determine the large itemsets: 
After reading all the transaction data, each node can 
determine individually whether each candidate in C,” 
satisfy minimum support or not. Each node send LE 
to the coordinator node, where all the large k-itemsets 
Lk := U, Li are derived. 

If large k-itemset is empty, the algorithm terminates. 
Otherwise the coordinator node broadcasts large k- 
itemsets to all the nodes, k := k + 1 and goto “1”. 

In this algorithm, the candidate itemsets are partitioned 
among the nodes. However, classification hierarchy is not 
taken into account at all. Each node has to send all the 
ancestor itemsets in addition to the leaf level itemsets. The 
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destination node for each item is randomly determined just 
by hashing. This incurs considerable communication cost. 
Figure 4 shows an example of HPGM. 

Node 2: Transaction (10,12,14) 

J3 add ance~ton 

(L2.4.5.6, 101 

(1,2),[2,4],(2,10),(4,5J,[5,10)~ SendtoNodeO 
iL6l. (2St. (46). 16,101 - Send to Node 1 
(5.6) * count support 

Figure 4: Example of HPGM 

Example 1: Assuming there are three nodes in a system. 
Let the large items, derived at pass 1, be LI = { 1,2,3,4,5,6, 
7,8,9,10,15}, which organize the classification hierarchy in 
Figure 4. Let the hash function be ha&(X, Y) = ((item code 
of X)*lO+(item code of Y)) mod 3 where (item code of X) 
5 (item code of Y). Therefor, the candidate itemsets are 
partitioned as shown in Figure 4. Suppose Node 2 reads the 
transaction t = {10,12,14}. Then, Node 2 adds all the an- 
cestors in t and generate new transaction t’ = {1,2,4,5,6,10}. 
Node 2 generates P-item&s from t’ and applies the same 
hash function used at the candidate partitioning. For ex- 
ample, since { 1,2} is generated and its derived hashed value 
is 0, Node 2 sends {1,2} to Node 0. For this transaction, 
Node 2 sends 18 items to the other nodes. Thus a lot of 
communication is required. 

3.3 Hierarchical HPGM : H-HPGM 

H-HPGM partitions the candidate itemsets among the nodes 
taking the classification hierarchy into account so that all 
the candidate itemsets whose root items are identical be 
allocated to the identical node, which eliminates communi- 
cation of the ancestor items. Thus the communication over- 
head can be reduced significantly compared with original 
HPGM. 

Figure 5 gives the behavior of pass k by n-th node, using 
the notation in Table 3. 

.& Set of all the large k-itemsets. 
C 
D’ 

Set of all the candidate k-itemsets. 
Transactions stored in the local disk of the n-th 

I node. 
n I Sets of candidate k-itemsets whose hashed value 1 & ,I 

I I calculated with their root item is corresponding 
I 

to n-th node. 
L; 1 Sets of large k-itemsets derived from Ci. I 

(1) k 2 2 
(2) Ck:=The candidates of size k generated from &-I. 
(3) if (k = 2) then 
(4) Delete the candidates that contains an item and its 

ancestor. 
(5) Delete any ancestors in 7 that are not present in Ck. 
(6) {CF}:= All the candidate k-itemsets, whose hashed 

value calculated with its root items corre- 
sponding to the n-th node. 

(7) forall t E D” do 
(8) t’:= Replace the item in t with the large item in 

its ancestors which is closest to the bottom if 
there are small items. 

(9) foreach n-th node do 
(10) t” := Select all items whose root items are allo- 

cated to n-th node. 

;:2; 
if (n = own node ID) then 

Generate k-itemset from t”, and increment the 
sup-cou for the itemset and all its ancestor can- 
didates. 

[:ej 
else 

Send t” to n-th node. 

[ii{ 
Receive items from the other nodes. 
Generate k-itemset from receive items, and in- 
crement the sup-cou for the itemset and all its 
ancestor candidates . 

(17) end 
(18) end 
(19) {Lg}:= All the candidates in Ct with minimum sup- 

port. 
(20) Send Lt to the coordinator node. 
(21) /* Coordinator node make up & := U, LF and :\ 

/* broadcast to all the nodes. 
(22) Receive Lk from the coordinator node. 

Figure 5: H-HPGM algorithm 

If k is 2, delete the candidates that contains an items 
and its ancestor. 
Delete any ancestors in 7 that are not present in any 
of the candidates in Ck. 
Apply the hash function to the candidate itemsets in 
Ck. Here each item of the candidate itemset is replaced 
by its root items, then hash function is applied and 
destination node ID is determined. If the ID is its 
own, insert it into the hash table. 

2. Scan the transaction database and count the sup-cou 
value: 
Each node reads the transaction database from its lo- 
cal disk and generates extended transaction t’ by re- 
placing the item in t with the large item in its ancestors 
which is closest to the bottom, if there are small items. 
For each node n, select all items in t’ whose root item 
is allocated to n-th node and send them to n-th node. 
For the itemsets received from other nodes and those 
locally generated whose root item is allocated to own, 
generate k-itemset from the itemsets and increment 
the sup-cou value of this k-itemset and its all ancestor 
candidates. 

Table 3: Notation 
3. - 4. Same as in HPGM. 

Each node works as follows: 

1. Generate candidate itemsets: 
Each node generates Ck using Lk- 1. 

In Figure 6, Example 2 illustrates the reduction of com- 
munications in H-HPGM under the same condition at Ex- 
ample 1. 
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Node 2: Transaction (IO, 12.14) 

43 replace 10 the large item which is closest 10 the bottom of the hwarchy 

15,6, 101 

I5.6.10) - Send to Node 0 
(5,lOt mP- Count support 

Node 0: Receive (5.6. 10) 

a count s”ppon 

(5,6) -- {1,2t, 11.6). [2,5} 
(6,lOt -- 12,101. l4.6t 

Figure 6: Example of H-HPGM 

Example 2: Let the hash function be ha&(X, Y) = ((root 
item code of X) * 10 + (root item code of Y)) mod 3 zuhere 
(root item code of X) 5 (root item code of Y). Therefore, 
the candidate itemsets whose root candidate is { 1,2} are 
allocated to Node 0. The other candidate itemsets are allo- 
cated in the same way. As a result, the candidate itemsets 
are partitioned as shown in Figure 6. Suppose Node 2 reads 
the transaction t = {10,12,14}. Then, Node 2 generates 
extended transaction {5,6, lo}, sends the itemset {5,6,10} 
to Node 0, and increments the sup-cou of (6,lO) and its 
all ancestor candidates (2, lo}, {4,6}. Then Node 2 gener- 
ates extended transaction {5,6, lo}, increments the sup-cou 
value of {6,10} and its all ancestor candidates (2, lo}, {4,6}. 
Since the root item of (5) and (10) are (1) and (6) is (2) 
and the root candidate { 1,2} is allocated to Node 0, Node 2 
sends the itemset {5,6,10} to Node 0. Node 0 receives the 
itemsets {5,6,10} from Node 2, generates 2-itemsets {5,6}, 
(6, lo}, and increments the sup-cou of {5,6}, (6,lO) and 
their all ancestor candidates. 

In H-HPGM, Node 2 sends 3 items to the other nodes for 
this transaction. On the other hand, Node 2 sends 18 items 
for the same transaction in HPGM. This shows that it is very 
effective to take the classification hierarchy information into 
account on the candidate itemset partitioning for reducing 
the communication overhead. 

3.4 Skew Handling 

In the case the size of the candidate itemsets is smaller than 
the available system memory, H-HPGM does not use the re- 
maining free space. Since H-HPGM partitions the candidate 
itemsets in the unit of hierarchy of the candidate itemsets, 
the grain is too coarse to achieve a flat workload distribu- 
tion. If the transaction data is skewed, that is, there are 
some itemsets which appear very frequently in the trans- 
action data, the node which is allocated such itemsets will 
receive a lot of transaction data, which incurs a system bot- 
tleneck. 

In this section, we present three methods to handle this 
problem by identifying such frequent itemsets and treating 
them in an appropriate manner. 

3.4.1 H-HPGM with Tree Grain Duplicate 
: H-HPGM-TGD 

H-HPGM partitions the candidate itemsets among the nodes 
so that all the candidate itemsets whose root items are the 
same be allocated to the identical node. That is, H-HPGM 
divides the candidate itemsets into the hierarchy of the can- 
didate itemsets and allocates such whole hierarchy to a node. 
Thus the granule is a hierarchy, that is, a tree. H-HPGM- 
TGD detects the tree whose candidate itemsets contain very 
frequently occurred items, duplicates them among the nodes 
and counts the sup-cou locally for those itemsets like in 
NPGM. The behavior of pass k of the n-th node is obtained 
by replacing the lines (6), (8) and (21) in Figure 5 with 
Figure 7, using the notation in Table 3 and 4. 

n ck Sets of candidate k-itemsets whose hashed value 
calculated with their root item is corresponding 
to n-th node. 

n Lk Sets of large k-itemsets derived from C,“. 

CL Sets of candidate k-itemsets which are copied all 
the nodes. 

ff Lk Sets of large k-itemsets derived from Cf. 

(6.0) 

(f-5.1) 
(6.2) 

(6.3) 

(f-5.4) 

f:$ 

(8.0) 

(8.1) 

Table 4: Notation 

Count the number of descendant candidate for each 
root k-itemset and the number of candidates allo- 
cated for each node by generating the k-itemsets 
using Lk. 
Generate k-itemsets from root items. 
Sort the root itemsets based on their frequency of 
appearance. 
{Cf}:=All the root k-itemsets whose frequency is 

high so as to use the memory space fully. 
{Cf}:=All the candidate k-itemsets whose root 

itemset is contained in CF. 

Delete the candidates in Cf from ck. 
{CF}:= All the candidate k-itemsets in ck, whose 

hashed value calculated with its root items 
corresponding to the n-th node. 

t’:=Replace the items in t with the large item in its 
ancestors which is closest to the bottom, if there 
are small items. 

Increment the sup-cou of all candidates in Cf that 
are contained in t’. 

(21.0) Send the sup-cou of C$’ to the coordinator. 
(21.1) /* Coordinator determine Lf which satisfy user- */ 

/* specified minimum support in CkD. *I 
(21.2) /* Coordinator node make up & := Lf + U, L: */ 

/* and broadcast to all the nodes. *I 

Figure 7: Algorithm H-HPGM-TGD 

Each node works as follows: 

1. Generate the candidate itemsets: 

(a) Count the number of descendant candidates for 
each root k-itemset and the number of candidates 
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(b) 

(cl 

(4 

(e) 

allocated for each node by generating the k-itemsets 
using Lk- 1. 

Generate k-itemsets from root items. Here, these 
k-itemsets contain the itemsets consisting of the 
same items, such as {l,l}. 
Sort the root itemsets based on whose item’s fre- 
quency of appearance. 

Choose the most frequently occurring root item- 
sets and insert them and their descendant candi- 
date itemsets to Cf so that all the memory space 
is used. 

Apply the hash function to the remaining candi- 
date itemsets and determine the destination node 
ID. If the ID is its own, insert it into the hash ta- 
ble (Cz). 

2. Scan the transaction database and count the sup-cou 
value: 
Each node reads the transaction database from its lo- 
cal disk and generates extended transaction t’ by re- 
placing the item in t with the large item in its ancestors 
which is closest to the bottom, if there are small items. 
For each node n, select all items in t’ whose root item is 
allocated to n-th node and send them to the n-th node. 
For the itemsets received from the other nodes and lo- 
cally generated items whose root item is assigned to its 
own node to own, generate Ic-itemset from the itemsets 
and increment sup-cou value for this k-itemset and its 
all ancestors. 

3. Determine the large itemsets: 
After reading all the transaction data, each node can 
determine individually whether each candidate in Cz 
satisfy minimum support or not. Each node send Lz 
to the coordinator node. The sup-cou of Cp of all 
the nodes are gathered into the coordinator node. It 
is checked whether the minimum support condition is 
satisfied or not. The coordinator node determines the 
large k-itemset in Cf and derives all the large 
k-itemsets Lk = Lf + u, L;. 

4. Same as NPGM. 

Figure 8 shows an example of H-HPGM-TGD. 

Sup(l) > Sup(3) > Sup(Z) 

Figure 8: Example of H-HPGM-TGD 

Example 3: Assume the large items at pass 1, be LI = 
{1,2,3,4,5,6,7,8,9,10,15} which form the classification hi- 
erarchy as shown in Figure 8. H-HPGM-TGD picks up 
the root items and sorts the root items over the support 
value of each item. Let the support of each root item be 
Sup(l) > &p(3) > SUP(~). H-HPGM-TGD duplicates the 
candidate itemsets {4,5}, (5,lO) which are included in the 
tree of root item 1. When there still remains free space, the 
candidate itemsets which are generated by joining the items 
in the tree rooted by 1 and in the tree rooted by 3. 

3.4.2 H-HPGM with Path Grain Duplicate 
: H-HPGM-PGD 

H-HPGM-TGD duplicates the candidate itemsets in the unit 
of whole hierarchy. The granule is too coarse to obtain suf- 
ficient load balance when the size of free space is small. H- 
HPGM-PGD picks up the leaf large items and sorts them 
based on their support value. Then it chooses the most 
frequently occurring itemsets and copies them and their all 
ancestor itemsets over all the nodes. Since the granule em- 
ployed in H-HPGM-PGD is smaller than that of H-HPGM- 
TGD, it can balance the load among the nodes more effect- 
ing. The behavior of pass k of the n-th node is obtained by 
replacing the lines (6), (8) and (21) of Figure 5. with Figure 
9, using the notation in Table 3 and 4. 

(6.0) Count the number of candidates allocated for each 
node. 

(6.1) Sort the lowest large items based on their frequency 
of appearance. 

(6.2) Generate k-itemsets from the lowest items. 
(6.3) {C~}:=All the lowest candidate k-itemsets whose 

frequency is high and their ancestor candi- 
dates so as to use the memory space fully. 

(6.4) Delete the candidates in C$ from ck. 
(6.5) {CL}:= All the candidate k-itemsets, whose hashed 

value calculated with its root items corre- 
sponding to the n-th node. 

(8.0) t’:=Replace the items in t with the large item in its 
ancestors which is closest to the bottom, if there 
are small items. 

(8.1) Increment the sup-cou of all candidates in C’F that 
are contained in t. 

(21.0) Send the sup-cou of Cc to the coordinator. 
(21.1) /* Coordinator determine Lf which satisfy user-* 

/* specified minimum support in C[ 
(21.2) /* Coordinator node make up ,& := LF + U, 15:: 

/* and broadcast to all the nodes. * 

Figure 9: Algorithm H-HPGM-PGD 

Each node works as follows: 

1. Generate the candidate itemsets: 

(4 

(b) 

(cl 

(4 

Count up the number of candidates allocated for 
each node by generating the k-itemsets using ,&- 1. 

Pick up the large items in J!&i which is the clos- 
est to the bottom, and sort them based on their 
support value. 

Choose the first several most frequently occurring 
items using the sorted list derived at (b), and in- 
sert it and its all ancestor candidates to CkD so 
that the free memory space is occupied as much 
as possible. 

Delete the candidates in C,” from ck. Insert the 
candidates in ck if its root itemset’s hashed value 
is corresponding to own node ID. 

2. Scan the transaction database and count the sup-cou 
value: 
Each node reads the transaction database from its lo- 
cal disk and generates extended transaction t’ by re- 
placing items in t with the large item in its ancestors 
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which is closest to the bottom, if there are small items 
in t. Increment the sup-cou of all candidates in Cp 
that are contained in t’. For each node n, select all 
items in t’ whose root item is allocated to the n-th 
node and send them to the n-th node. For the itemsets 
received from the other nodes and locally generated 
items whose root is allocated to own node, generate 
k-itemset from the itemsets and increment sup-cou of 
this k-itemset and its all ancestors. 

3. - 4. 
Same as H-HPGM-TGD 

Figure 10 shows an example of H-HPGM-PGD for the 
same condition of Example 3. 

Sup@) > Sup(l0) > Sup(7) > Sup(S) > Sup(E) > Sup(9) 

Figure 10: Example of H-HPGM-PGD 

Example 4: H-HPGM-PGD picks up the leaf items and 
sorts the leaf items based on the sup-cou value. Let the 
support of leaf items be &p(8) > %&lo) > SUP(~) > 
Sup(5) > Sup(15) > Szlp(9). H-HPGM-PGD duplicates 
the candidate itemsets { 8,lO) and its all ancestor candidate 
itemsets {1,3}, {1,8}, {3,4}, (3, lo}, {4,8}. If there still re- 
mains free space, it further duplicates the candidate itemset 
(7,8} and its all ancestors. 

3.4.3 H-HPGM with Fine Grain Duplicate 
: H-HPGM-FGD 

H-HPGM-PGD duplicates the candidate itemsets with the 
smaller grain than H-HPGM-TGD. H-HPGM-PGD exam- 
ines the candidate itemsets based on the frequency of the 
leaf large item. It cannot attain good load distribution in 
the case that there are some internal items whose frequency 
is high but whose descendant item’s frequency is low. 

H-HPGM-FGD checks the frequently occurring itemsets 
which consists of the any level items. It duplicates them 
and their all ancestor itemsets over all the nodes. Thus only 
the frequent itemsets are duplicated. The granule becomes 
finer. But the algorithm is further complicated. 

The behavior of pass k by n-th node is obtained by re- 
placing the line (6), (8) and (21) of Figure 5 with Figure 11, 
using the notation in Table 3 and 4. 

Each node works as follows: 

1. Generate the candidate itemsets: 

(4 

(b) 

Cc) 

(4 

Count up the number of candidates allocated to 
each node by generating the k-itemsets using &-I. 

Sort the large items based on their count support 
value. 

Choose the first most frequently occurring candi- 
date itemsets, and insert them and their all an- 
cestor candidates to C,” so that free space be oc- 
cupied as much as possible. 

Delete the candidates in CF from Ck. Insert the 
candidates in CI, if its root itemset’s hashed value 
is corresponding to its own node ID. 

(6.0) 

(6.1) 

(6.2) 

(6.3) 

Count the number of candidates allocated for each 
node. 
Sort the large items based on their frequency of ap- 
pearance. 
Generate k-item&s from the large items. in order 
of the frequency of appearance. 
{C~}:=All the candidate k-itemsets whose fre- 

quency is high and their ancestor candidates 
so as to use the memory space fully. 

Delete the candidates in Cf from Ck. 
{CF}:= All the candidate k-itemsets, whose hashed 

value calculated with its root items corre- 
sponding to the n-th node 

(8.0) t’:=Replace the items in t with the large item in its 
ancestors which is closest to the bottom, if there 
are small items. 

(8.1) Increment the sup-cou of all candidates in Cf that 
are contained in t. 

(21.0) Send the sup-cou of Cf to the coordinator. 
(21.1) /* Coordinator determine J$ which satisfy user-*/ 

/* specified minimum support in C,“. *I 
(21.2) /* Coordinator node make up ck := Li + U, Li*/ 

/* and broadcast to all the nodes. z */ 
Figure 11: H-HPGM-FGD algorithm 

Scan the transaction database and count the sup-cou 
value: 
Each node reads the transaction database from its lo- 
cal disk and generates extended transaction t’ by re- 
placing items in t with the large item in its ancestors 
which is closest to the bottom if there are small items 
in t. Increment the sup-cou of all candidates in CF 
that are contained in t’. For each node n, select all 
items in t’ whose root item is allocated to the n-th 
node and send them to the n-th node. For the itemsets 
received from other nodes and locally generated item- 
sets whose root is allocated to its own node, generate 
k-itemset from the itemsets and increment sup-cou of 
this k-itemset and its all ancestors. 

- 4. 
Same as H-HPGM-TGD 

Figure 12 shows an example of H-HPGM-FGD under the 
same condition of Example 3. 

sup(l) > Sup(3) > Sup@) > SUP(~) > Sup(d) > SUP(~) 
> Sup(l0) > Sup(7) > Sup(S) > Sup(l5) > Sup(9) 

10 -l-l- -fz- +3--l-4 15 -l+r# 

Figure 12: Example of H-HPGM-FGD 

Example 5: Let the support of large items be Sup(l) > 
Sup(S) > Sup(2) > Sup(4) > &q(8) > &p(6) > Sup(l0) > 
Sup(7) > &p(5) > Sup(15) > Sup(S). H-HPGM-FGD du- 
plicates the candidate itemsets according to decreasing or- 
der of the support count value so that remaining free space 
can be occupied as much as possible. In this example, the 
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candidate itemsets {4,8}, {4,6}, {6,8} and their all ancestor 
candidate itemsets are duplicated. 

4 Performance Evaluation 

We implemented all the above algorithms on IBM 16-node 
SP-2 and measured the performance of each method. SP-2 
employs a shared-nothing parallel architecture. Each node 
contains a POWER2 processor, 256MB local memory and a 
2GB local disk drive. HPS(High-Performance Switch) inter 
connects the nodes together. 

To evaluate the performance of the proposed parallel al- 
gorithms, synthetic datasets emulating retail transactions 
are used. The generation procedure is based on the method 
described in [SA95]. Table 5 shows the meaning of the var- 
ious parameters and the characteristics of the dataset used 
in our experiments. 

4.1 Comparison of HPGM and H-HPGM 

First, we show the performance comparison between HPGM 
and H-HPGM. Figure 13 shows the execution time of HPGM 
and H-HPGM of pass 2 varying the value of minimum sup- 
port. 

Table 6 shows the average amount of received messages of 
HPGM and H-HPGM at pass 2 in each node, where the syn- 
thetic data R30F5 was used with 0.3% minimum support. 
As you can see from the Table, the amount of communi- 
cations of H-HPGM is much smaller than that of HPGM. 

Average amount of received messages (MB) 
# of nodes H-HPGM 

8 360.7 I 12.5 

I 12 16 I 251.9 193.3 I 9.6 7.8 I 

Table 6: Average amount of received messages on each node 

Since H-HPGM sends only the closest to the bottom of 
large item, the amount of communications is considerably 
reduced. On the other hand, HPGM has to transmit the 
itemsets which are generated from the items and their all 
ancestors, a large amount of communications are caused. 
Because the performance of HPGM is always much worse 
than H-HPGM, we omit the performance of HPGM in the 
following experiments. 

4.2 Evaluation of Proposed Algorithms 

Figure 14 shows the execution time of all the proposed par- 
allel algorithms, varying the minimum support. 16 nodes in 
SP-2 are activated in these experiments. The transaction 
data is evenly spread over the local disks of all the nodes. 
Although we shows the results at pass 2, the results of the 
other passes are also very similar to the behavior of pass 2. 

In NPGM, the execution time increases sharply when 
minimum support becomes small. When the candidate item- 
sets becomes large for small minimum support, the single 
node’s memory cannot hold the entire candidate itemsets. 
In such a case, NPGM has to divide the candidate item- 
sets into fragments, each node has to scan the transaction 
database repetitively for each fragment. Thus the perfor- 
mance of NPGM decreases significantly. 

When the minimum support set to be very small, the 
size of the candidate itemsets becomes large and most of the 
available memory space is occupied. Thus, the size of the 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Minimum support (o/o) 

R30F3 
25001 I 

HPGM - 
H-HPGM -+-- 

5oo- 

0 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Minimum support (‘%b) 

R30FlO 
25001 G 

2 

- I 
HPGM - 

H-I-II’GM -+-- 
8 2000 
'S 

500 

I 
-----+-------.... ~----.----------+-------------- 

0’ J 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Minimum support (%) 

Figure 13: Execution time of HPGM and H-HPGM 
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Parameter R30F5 R30F3 R30FlO 
Number of transactions 3200000 3200000 3200000 
Average size of the transactions 10 10 10 
Average size of the maximal potentially large itemsets 5 5 5 
Number of maximal potentially large itemsets 10000 10000 10000 
Number of items 30000 30000 30000 
Number of roots 30 30 30 
Number of levels 5-6 6-7 3-4 
Fanout 5 3 10 

Table 5: Parameters of datasets 

duplicated candidate itemsets becomes smaller as the min- 
imum support decreases. Since H-HPGM-TGD duplicates 
the candidate itemsets with a tree grain, it cannot copy the 
candidate itemsets at small minimum support, where it be- 
comes identical to H-HPGM. 

H-HPGM-PGD and H-HPGM-FGD significantly outper- 
form H-HPGM. Since they duplicate the candidate itemsets 
with small granule, they can more effectively balance the 
load among the nodes by filling utilizing almost all the free 
space. Especially, H-HPGM-FGD attain the best perfor- 
mance for all the range of the minimum support. Since 
H-HPGM-FGD employs the finest grain in our algorithms 
and utilizes most effectively the free space. 

4.3 Comparison of the Workload Distribution 

In this section, the workload distribution of H-HPGM, H- 
HPGM-TGD, H-HPGM-PGD and H-HPGM-FGD is exam- 
ined. Figure 15 shows the number of hash table probes to in- 
crement sup-cou value in each node at pass 2. The minimum 
support is set to 0.3%. In H-HPGM, the distribution of the 
number of probe is largely fractured. In H-HPGM-TGD, 
H-HPGM-PGD and H-HPGM-FGD, we duplicate the fre- 
quently candidate itemsets so that the communication can 
be eliminated. 

The grain employed in H-HPGM-TGD is too coarse, it 
cannot achieve sufficiently flat distribution at small mini- 
mum support. H-HPGM-PGD copies the candidate item- 
sets with path grain, it attains more flat workload distribu- 
tion than H-HPGM-TGD. However, it sometimes duplicates 
useless candidate itemsets, since it examines the frequent 
candidate itemsets at the closest to the leaf level. On the 
other hand, H-HPGM-PGD can absorb the influence of the 
transaction data skew effectively, since it duplicates the can- 
didate itemsets in finer grain than H-HPGM-PGD and does 
not duplicate useless candidate itemsets. This method can 
must effectively utilize the free space for load balancing. 

4.4 Speedup 

Figure 16 shows the speedup ratio varying the number of 
nodes used 4, 6, 8, 12 and 16. The curves are normalized 
by the 4 nodes execution time. Dataset R30F5 is used. The 
minimum support is set to 0.5% and 0.3%. 

H-HPGM-FGD and H-HPGM-PGD attain higher lin- 
earity than H-HPGM. Sophisticated load balancing mech- 
anism contributes to the improvement of linearity. Since 
H-HPGM does not duplicate the candidate itemsets, data 
skew significantly degrades the linearity. H-HPGM-TGD, 
H-HPGM-PGD and H-HPGM-FGD detect the frequent can- 
didate itemsets and copy them among all the nodes. When 
the available free space is small, H-HPGM-TGD cannot du- 
plicate the candidate itemsets. Thus it does not work well. 

On the other hand, H-HPGM-FGD employing fine grain du- 
plication strategy can more effectively achieve higher linear- 
ity. 

5 Conclusions 

In this paper, we proposed several kinds of parallel algo- 
rithms for mining association rules with classification hier- 
archy on an shared-nothing parallel machine. We examined 
their effectiveness through the implementation on 16 node 
parallel machine. 

If a single node can hold all the candidate itemsets, par- 
allelization is straightforward. It is sufficient to partition 
the transaction over the nodes. Each node can process the 
allocated transaction data in parallel. We named this algo- 
rithm NPGM. However when we generate association rules 
that span different levels of the classification hierarchy, the 
candidate itemsets tend to become too large to fit within 
the memory of a single node. Decreasing a small minimum 
support also increases the size of the candidate itemsets. 
As we decrease the minimum support, computation time 
grows rapidly. But in order to discover more interesting as- 
sociation rules, we usually have to decrease the minimum 
support, even though we just pick up high confidence rules. 

The algorithms, HPGM, H-HPGM, H-HPGM-TGD, H- 
HPGM-PGD and H-HPGM-FGD not only partition the trans- 
action data file among the nodes but partition the candidate 
itemsets. HPGM partitions the candidate itemsets without 
taking the classification hierarchy information into account. 
It has to exchange both the items that contained in the 
transaction data and its ancestor items, which causes large 
amount of communication overhead. H-HPGM partitions 
the candidate itemsets considering classification hierarchy 
so that all the candidate itemsets whose root candidate is 
identical be allocated to the same node. Since H-HPGM 
transmits only the leaf large items, the amount of communi- 
cations is considerably reduced. H-HPGM-TGD, H-HPGM- 
PGD and H-HPGM-FGD detect the frequently candidate 
itemsets and duplicate them so that the remaining free space 
can be utilized as much as possible. Support counting for 
frequent candidate can be locally processed which further 
reduce the communication overhead a lot. 

We implemented these algorithms on a shard-nothing 
parallel machine 16-node SP-2. Performance evaluations 
show that H-HPGM-FGD attains sufficiently high perfor- 
mance and achieves almost Aat load distribution. 

In [SA96], generalized sequential pattern mining with 
classification hierarchy is discussed. Since generalized se- 
quential pattern mining requires to examine the permuta- 
tion of items and to include the items across the different 
levels of classification hierarchy, the size of the candidate 
sets becomes much larger. In [SK98], we present the par- 
allelization of mining sequential patterns. Extension of our 
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Figure 16: Speedup ratio 

parallel algorithms to the mining of generalized sequential 
patterns is interesting study for future work. 
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