
Parallel Mining Algorithms for Generalized Association Rules
with Classification Hierarchy

Takahiko Shintani Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo institute of industrial Science, The University of Tokyo

shintani@tkl.iis.u-tokyo.ac.jp kitsure@tkl.iis.u-tokyo.ac.jp

Abstract

Association rule mining recently attracted strong attention.
Usually, the classification hierarchy over the data items is
available. Users are interested in generalized association
rules that span different levels of the hierarchy, since some-
times more interesting rules can be derived by taking the
hierarchy into account.

In this paper, we propose the new parallel algorithms for
mining association rules with classification hierarchy on a
shared-nothing parallel machine to improve its performance.
Our algorithms partition the candidate itemsets over the
processors, which exploits the aggregate memory of the sys-
tem effectively. If the candidate itemsets are partitioned
without considering classification hierarchy, both the items
and its all the ancestor items have to be transmitted, that
causes prohibitively large amount of communications. Our
method minimizes interprocessor communication by consid-
ering the hierarchy. Moreover, in our algorithm, the avail-
able memory space is fully utilized by identifying the fre-
quently occurring candidate itemsets and copying them over
all the processors, through which frequent itemsets can be
processed locally without any communication. Thus it can
effectively reduce the load skew among the processors. Sev-
eral experiments are done by changing the granule of copying
itemsets, from the whole tree, to the small group of the fre-
quent itemsets along the hierarchy. The coarser the grain,
the easier the control but it is rather difficult to achieve the
sufficient load balance. The finer the grain, the more com-
plicated the control is required but it can balance the load
quite well.

We implemented proposed algorithms on IBM SP-2. Per-
formance evaluations show that our algorithms are effective
for handling skew and attain sufficient speedup ratio.

1 Introduction

Recently, Data Mining also known as knowledge &scovery
in databases has attracted strong attention. Because of the
progress of data collection tools such as POS, large amount
of transaction data have been electronically generated. How-

Permission to make digital or hard copies of all or part of this work for
porsona~ or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first Page.

To copy otherwise, to republish. to poet on servers of t0

redistribute to lists, requires prior specific permission and/or 0 fee.

SIGMOD ‘98 Seattle, WA, USA
Q 1998 ACM 0-89791-995~6/981008...$5.00

ever such a data has been just archived and has not been
used effectively. Data mining is the method of efficient dis-
covery of useful information such as rules and previously
unknown patterns existing between data items embedded in
large databases, which allows more effective utilization of
large amount of accumulated data.

One of the most important problems in data mining is
discovery of association rules within a large database. In or-
der to extract association rules, the transaction databases
have to be scanned repeatedly. In addition, in order to
improve the quality of the rules, we have to handle large
amount of raw transaction data instead of samples, which
further increases the computation time: In general, it is
difficult for a single processor system to provide reasonable
response time.

In our previous study, we proposed parallel algorithm for
mining association rules on a shared-nothing environment,
named HPA(Hash Partitioned Apriori)[SK96]. Association
rules are the rules about what items are bought together
within a transaction. In order to exploit the parallelism, our
algorithm HPA partitions not only the transaction database
but also the candidate itemsets among the processors.

So far a few parallel algorithms for association rules are
introduced[PCY95, CHN+96, AS96, CNFF96, HKK97]. How-
ever, the algorithms such as CD(Count Distribution), PDM
(Parallel Data Mining), FDM(Fast Distributed Mining) just
partition the transaction database but do not partition the
candidate itemsets. Only DD(Data Distribution[HKK97])
method partitions the candidate itemsets but it partition
the candidates naively. Large amount of communication is
required. After we proposed HPA[SK96], algorithms named
IDD(Intelligent Data Distribution) and HD(Hybrid Distri-
bution) are introduced [HKK97], which also partition the
candidate itemsets. But these algorithms exchange all the
transaction data among the processors. Thus communica-
tion overheads are still large. On the other hand, commu-
nication is minimized in HPA, since the transaction data
is just sent to the processors which are assigned a relevant
candidates.

Usually, the classification hierarchy over the data items
is available. Users are interested in generating association
rules that span different levels of the classification hierar-
chy, since sometimes more interesting rules can be derived
by taking the hierarchy into account which otherwise could
not be found out,. In [SA95], fundamental algorithm named
cumulate was proposed to derive the generalized association
rules with classification hierarchy which is a natural exten-
sion of non-hierarchical association rule mining algorithm,
Apriori[RR94]. The algorithm checks all the combination of

25

items between all the levels of hierarchy. Adding the classifi-
cation hierarchy further increases the processing complexity,
which results in long computation time. Parallel processing
is essential to obtain reasonable response time.

In this paper, we propose the parallel algorithms for
mining generalized association rules with classification hi-
erarchy on shared-nothing parallel machines. Three differ-
ent algorithms named NPGM(Non Partitioned Generalized
association rule Mining), HPGM(Hash Partitioned Gener-
alized association rule Mining) and H-HPGM(Hierarchica1
HPGM) are proposed. NPGM does not partition the can-
didate itemsets. HPGM partitions the candidates using the
hash function like HPA but it does not take the hierarchi-
cally structural information into account. H-HPGM does
utilize the hierarchical structure so that the communica-
tion among the processors becomes much reduced. That
is, H-HPGM allocates all the items of each individual hier-
archy to a single processor. To generalize the rule of bottom
level itemsets, the association of the ancestors of individ-
ual itemset are examined. In H-HPGM, the inter-processor
communication can be eliminated, since the unit of alloca-
tion is each hierarchy. In addition, we also propose another
three different algorithms to exploit the parallelism more
efficiently. Although the H-HPGM can reduce the commu-
nication overhead significantly, the granule of the candidate
allocation is too coarse to balance the load among the pro-
cessors. In order to obtain sufficiently high speed up ratio,
we have to make the loads of each processor as even as pos-
sible. Load skew is intrinsic to the data mining problem,
since rules are derived due to the difference of occurring
frequency of itemsets. We believe load balancing problem
in parallel data mining is one of the most important and
challenging issues. In the case the aggregate size of the
candidate itemsets is smaller than the total capacity of the
system memory, there remains free space. We could utilize
this unused space to improve load balancing. We dupli-
cate the frequently occurring itemsets to all the processors,
through which communication caused by frequent itemset
counting can be performed locally and the communication
can be further reduced. In this paper, we designed three
different algorithm by changing the size of duplication gran-
ule, H-HPGM-TGD(H-HPGM with Tree Grain Duplicate),
H-HPGM-PGD(H-HPGM with Path Grain Duplicate) and
H-HPGM-FGD(H-HPGM with Fine Grain Duplicate). H-
HPGM-TGD duplicates the candidate itemsets in the unit
of hierarchy. When the size of free memory is small, H-
HPGM-TGD cannot duplicate the candidate itemsets, since
it copies the whole hierarchy and its size is really large. H-
HPGM-PGD selects the frequently occurring leaf itemsets
and duplicates them and their all ancestor itemsets. The
duplication granule in H-HPGM-PGD is smaller compared
with H-HPGM-TGD. Load can be better balanced. The
final algorithm, H-HPGM-FGD, detects the frequently oc-
curring candidate itemsets which consists of itemsets of any
level. Although the granule of this algorithm is finest among
three proposed algorithms and potentially it can balance the
load in the finest way, the algorithm becomes more compli-
cated. The coarser the granule, the simpler and the easier
the algorithm to implement.

We implemented these algorithms on a shared-nothing
parallel machine to examine their tradeoff. Detail perfor-
mance evaluation results are given and it shows that our
final algorithm can exploits the parallelism most effectively
and is very effective for handling skew.

This paper is organized as follows. In next section, we
explain the problem of mining generalized association rules

with classification hierarchy. In section 3, we propose our
parallel algorithms. Performance evaluations is given in sec-
tion 4. Section 5 concludes the paper.

2 Mining Generalized Association Rules with Clas-
sification Hierarchy

First we introduce some basic concepts of generalized asso-
ciation rules, using the formalism presented in [SA95]. Let
z = {il,iZ,. . . , im} be a set of literals, called items. Let
‘T be a classification hierarchy on the items, which organize
relationships of items in a tree form, shown in Figure 1.

AA\ JB\
AC\

DE F

G H

Figure 1: The classification hierarchy

An edge in 7 represents an is-o relationship. If there is
an edge in ‘T from x to y, we call z a parent of y and y a child
of z. If there is an edge from x to z in a transitive-closure,
we call x an ancestor of z and z a descendant of x. In Figure
1, A is a parent of C, C is a child of A, C is a parent of G
and G is a child of C. Further A is an ancestor of G and
G is a descendant of A. Since the classification hierarchy is
acyclic, there is no item which is an ancestor of itself. Let
v = {tl,tz , . . . , tn}(ti c 1) be a set of transactions, where
each transaction t has an associated unique identifier called
TID. We say a transaction t contains a set of items X, if X
is in t or is an ancestor of some item in t. The itemset X has
support s in the transaction set ?), if s% of transactions in
2) contain X, here we denotes s = sup(X). An generalized
association rules with classification hierarchy is an implica-
tion of the form X a Y, where X, Y C Z, XnY = 4 and no
item in Y is an ancestor of any item in X. Each rule has two
measures of value, support and confidence. The support of
the rule X + Y is sup(X U Y), The confidence c of the rule
X * Y in the transaction set V means c% of transactions
in D that contain X also contain Y, which can be written as
the ratio sup(X U Y)/sup(X). Here a rule x + ancestor(x)
is redundant, since its confidence is always 100%.

The problem of mining generalized association rules with
classification hierarchy is to find all the rules that satisfy
a user-specified minimum support(min-sup) and minimum
confidence(min-conf) on the assumption that we are given
a set of transactions D and a classification hierarchy over
the items. This problem can be decomposed into two sub-
problems:

1. Find all itemsets that have support above the user-
specified minimum support. These itemsets are called
the large itemsets and the other itemsets are called
small itemsets. The items which contained large item-
set are called large items and the other items are called
small items.

2. For each large itemset, derive all rules that have more
than user-specified minimum confidence as follows: for
large itemset X and any Y(Y C X), if support(X)/sup-
port(X -Y) 2 minconf, then the rule (X -Y) * Y
is derived.

After finding all large itemsets, the association rules are
derived in a straightforward manner. This second subprob-
lem is not a big issue. However because of the large scale

26

of transaction data sets used in data mining, the first sub-
problem is a nontrivial problem.

Here we explain the Cumulate algorithm for finding all
large itemsets, proposed in [SA95]. In the lirst pass (pass l),
sup-cou for each item is counted by scanning the transaction
database. Hereafter we prepare a field named sup-cou for
each itemset, which is used to measure how many times
the itemset contained in transactions. Since itemset here
contains just single item, each item has a sup-cou field. All
the items which satisfy the minimum support are picked
out. These items are called large item (Li). Hereafter k-
itemset is defines a set of k items. The second pass (pass
2), the 2-itemsets are generated using L1 which is called the
candidate 2-itemsets (Cz), and delete any candidate in Cz
that consists of an item and its ancestor. Note that we need
not count any itemset which contains both an item and its
ancestor. Delete any ancestors in 7 that are not present in
any of the candidates in Cz. Note that we can drop ancestors
that are not present in any of the candidates at the same
time. Then the sup-cou of Cz is counted by scanning the
transaction database. Here sup.cou of the itemset means the
number of transactions which contain the itemset. At the
end of scanning the transaction data, the large 2-itemsets
(Lz) which satisfy minimum support are determined. The
following denotes the k-th iteration, pass k (k 2 2).

Generate candidate itemsets:
The candidate k-itemsets (Ck) are generated using large
(k-I)-itemsets (&-I) as follows: join J&i with Lk-1
and delete all the k-itemsets whose some of the (k-l)-
itemsets are not in L&i. If k is 2, delete any candi-
dates in Cz that consists of an item and its ancestor.
Delete any ancestors in ‘T that are not present in any
of the candidates in Ck.

Count support:
Read the transaction database, add all ancestors of
the items in a transaction t that are present in 7 to t.
Increment the sup-cou of all candidates in Ck that are
contained in t.

Determine large itemsets:
The candidate k-itemsets are checked for whether they
satisfy the minimum support or not, the large k-itemsets
(Lk) which satisfy the minimum support are deter-
mined.

This procedure terminates when the large itemset be-
comes empty.

3 Parallel Algorithms

In this section, we describe parallel algorithms for the first
subproblem defined in the previous section, which we call
count support processing hereafter. In the sequential al-
gorithm, the count support processing requires the longest
computation time, where the transaction database is scanned
and a large number of candidate itemsets are examined.

If the size of all the candidate itemsets is smaller than
the size of the memory of each processor, all the processor
can hold whole candidate itemsets. In such a case, paral-
lelization is straightforward. By partitioning the transaction
database over all the nodes, the transaction data can be read
and candidate itemsets can be counted in parallel. However
for large scale transaction data sets, this assumption does
not hold. In mining generalized association rules, the associ-
ations between all the possible ancestors of items have to be

examined. Thus the amount of candidate itemsets becomes
considerably larger compared with usual non-hierarchical
association rule mining. In the case where the candidate
itemsets do not fit in the local memory of a single node, the
candidate itemsets are partitioned into fragments, each of
which fits in the memory size of a node. The transaction
database has to be scanned for each fragment. Thus such
repetitive scanning of transaction database incurs the exces-
sive I/O’s and degrades the performance significantly. Our
algorithms partition the candidate itemsets over the mem-
ory space of all the nodes to exploit the aggregate memory
of the system. For simplicity, we assume that the size of the
candidate itemsets is larger than the size of local memory
of single node but is smaller than the sum of the memory
space of all the nodes. It is easy to expand this algorithm to
handle the candidate itemsets whose size exceeds the sum
of all the nodes memories.

3.1 Non Partitioned Generalized association rule
Mining : NPGM

In NPGM, the candidate itemsets are copied over all the
nodes, each node can work independently and the final statis-
tics are gathered into a coordinator node where minimum
support conditions are examined. Figure 2 gives the behav-
ior of pass k of the n-th node, using the notation in Table
1.

lk] Set of all the large k-itemsets.
CL. .” I Set of all the candidate k-itemsets. 1
C
d

1 The size of Ck in bytes.
The size of main memory in bytes.

Vn Transactions stored in the local disk of the n-th
node.

C,” Sets of fragment of candidate k-itemsets.
Each fragment fits in the local memory of a node.]
(d=l,...,[lCkj/M], C& =uy"' ,__

ICfl The size of C? in bvtes.
i c:j I

1 Lf 1 Sets of large k-itemsets derived from C,“.

Table 1: Notation

Each node works as follows:

Generate the candidate itemsets:
Each node generates the candidate k-itemsets (Ck) us-
ing the large (k - I)-itemsets (&I). If k is 2, delete
the candidates that contains an items and its ancestor.
Insert Ck into the hash table, and delete any ancestors
in 7 that are not present in any of the candidates in
ck.

Scan the transaction database and count the sup-cou
value:
Each node reads the transaction database from its lo-
cal disk, generates extended transaction t’ by adding
all ancestors of the items in a transaction t that are
present in 7 to t’.
Increment the sup-cou of all candidates in Ck that are
contained in t’.

Determine the large itemsets:
After reading all the transaction data, all node’s sup-cou
are gathered into the coordinator node and checked to
determine whether the minimum support condition is
satisfied or not.

27

k>2
ck := The candidates of size k generated from .&.I.
if (k = 2) then

Delete the candidates that contains an items and its
ancestor.

Delete any ancestors in 7 that are not present in Ck.
{I$}:= Partition Ck into fragments each of in a node’s

local memory(d=l,..., [jCkI/A41).

for @=I; d< [l&l/M]; d++) do
forall t E V” do

t/:= Add all ancestors of item r(E t) that are
present in the candidates in Ck.

Increment the sup-cou of all candidates in C,” that
are contained in 0.

end
Send the sup-cou of C,” for to the coordinator node.
/* Coordinator node determine L$ which satisfy */
/* user-specified minimum support in C,” and broad- */
/* cast Lf to all nodes. *I
Receive Lt from the coordinator node.

end
Lk := ,,, L$

Figure 2: NPGM algorithm

4. If large k-itemset is empty, the algorithm terminates.
Otherwise the coordinator node broadcasts large k-
itemsets to all the nodes, k := k + 1 and goto “1”.

This algorithm is very simple and easy to implement,
where no transaction data have to be exchanged among the
nodes in the countsupport phase. However, if the size of all
the candidate itemsets exceeds the local memory of a single
node, the candidate itemsets are partitioned into fragments,
each of which can fits within the local memory of a single
node, and the above process is repeated for each fragment.
In the Figure 2, the first level for-loop shows this. The
disk I/O becomes prohibitively costly when the candidate
itemsets becomes large.

3.2 Hash Partitioned Generalized association rule
Mining : HPGM

In NPGM, the candidate itemsets are not partitioned but
just copied among the nodes. However the candidate item-
sets usually becomes too large to fit within the local memory
of a single node. If it is partitioned naively, transaction data
has to be broadcast to all the other nodes. HPGM parti-
tions the candidate itemsets among the nodes using a hash
function like in the hash join, which eliminate broadcasting.
Figure 3 gives the behavior of pass k by the n-th node, using
the notation in Table 2.

& Set of all the large k-itemsets.
C
$

Set of all the candidate k-itemsets.
Transactions stored in the local disk of the n-th
node.

n ck Sets of candidate k-itemsets whose hashed value
is corresnonding to n-th node.
(ck = u;=, ck”>- N means the number of nodes)

Lt Sets of large k-itemsets derived from C,“.

Table 2: Notation

k>2
Ck :=The candidates of size k generated from L&l.
if (k = 2) then

Delete the candidates that contains an items and its
ancestor.

Delete any ancestors in 7 thar are not present in Ck.
{Cc) := All the candidate k-itemsets, whose hashed value . .._

corresponding to the n-th node.
forall t E Vn do

t’:= Add all ancestors of Z(E t) that are present in the
candidates in Ck.

forall k-itemset z E t/ do
Determine the destination node ID by applying the
same hash function which is used in item partition-
ing, and send that k-itemset to it. If it is its own
id, increment the sup-cou for the itemset.
Receive k-itemset from the other nodes and incre-
ment the sup-cou for that itemset.

end
end
{ Lz} :=A11 the candidates in C,” with minimum support.
Send LE to the coordinator node.
1% Coordinator node make up .& := U, Lt and broad- */
/* cast to all the nodes. *I
Receive Lk from the coordinator node.

Figure 3: HPGM algorithm

Each node works as follows:

Generate candidate itemsets:
Each node generates the candidate k-itemsets (Ck) us-
ing the large (k - 1)-itemsets (&-I). If k is 2, delete
the candidates that contains an items and its ancestor.
Delete any ancestors in 7 that are not present in any
of the candidates in ck.
Apply the hash function to the candidates in Ck and
determine the destination node ID. If the ID is its own,
insert it into the hash table.

Scan the transaction database and count the sup..cou
value:
Each node reads the transaction database from its
local disk and generates extended transaction t’ by
adding all ancestors of the items in a transaction t
that are present in 7.
Generate k-itemsets from t’ and apply the same hash
function used in phase 1. Derive the destination node
ID and send the k-itemset to it. For the itemsets re-
ceived from other nodes and those locally generated
whose ID equals the node’s own ID, search the hash
table. If hit, increment its sup-cou value.

Determine the large itemsets:
After reading all the transaction data, each node can
determine individually whether each candidate in C,”
satisfy minimum support or not. Each node send LE
to the coordinator node, where all the large k-itemsets
Lk := U, Li are derived.

If large k-itemset is empty, the algorithm terminates.
Otherwise the coordinator node broadcasts large k-
itemsets to all the nodes, k := k + 1 and goto “1”.

In this algorithm, the candidate itemsets are partitioned
among the nodes. However, classification hierarchy is not
taken into account at all. Each node has to send all the
ancestor itemsets in addition to the leaf level itemsets. The

28

destination node for each item is randomly determined just
by hashing. This incurs considerable communication cost.
Figure 4 shows an example of HPGM.

Node 2: Transaction (10,12,14)

J3 add ance~ton

(L2.4.5.6, 101

(1,2),[2,4],(2,10),(4,5J,[5,10)~ SendtoNodeO
iL6l. (2St. (46). 16,101 - Send to Node 1
(5.6) * count support

Figure 4: Example of HPGM

Example 1: Assuming there are three nodes in a system.
Let the large items, derived at pass 1, be LI = { 1,2,3,4,5,6,
7,8,9,10,15}, which organize the classification hierarchy in
Figure 4. Let the hash function be ha&(X, Y) = ((item code
of X)*lO+(item code of Y)) mod 3 where (item code of X)
5 (item code of Y). Therefor, the candidate itemsets are
partitioned as shown in Figure 4. Suppose Node 2 reads the
transaction t = {10,12,14}. Then, Node 2 adds all the an-
cestors in t and generate new transaction t’ = {1,2,4,5,6,10}.
Node 2 generates P-item&s from t’ and applies the same
hash function used at the candidate partitioning. For ex-
ample, since { 1,2} is generated and its derived hashed value
is 0, Node 2 sends {1,2} to Node 0. For this transaction,
Node 2 sends 18 items to the other nodes. Thus a lot of
communication is required.

3.3 Hierarchical HPGM : H-HPGM

H-HPGM partitions the candidate itemsets among the nodes
taking the classification hierarchy into account so that all
the candidate itemsets whose root items are identical be
allocated to the identical node, which eliminates communi-
cation of the ancestor items. Thus the communication over-
head can be reduced significantly compared with original
HPGM.

Figure 5 gives the behavior of pass k by n-th node, using
the notation in Table 3.

.& Set of all the large k-itemsets.
C
D’

Set of all the candidate k-itemsets.
Transactions stored in the local disk of the n-th

I node.
n I Sets of candidate k-itemsets whose hashed value 1 & ,I

I I calculated with their root item is corresponding
I

to n-th node.
L; 1 Sets of large k-itemsets derived from Ci. I

(1) k 2 2
(2) Ck:=The candidates of size k generated from &-I.
(3) if (k = 2) then
(4) Delete the candidates that contains an item and its

ancestor.
(5) Delete any ancestors in 7 that are not present in Ck.
(6) {CF}:= All the candidate k-itemsets, whose hashed

value calculated with its root items corre-
sponding to the n-th node.

(7) forall t E D” do
(8) t’:= Replace the item in t with the large item in

its ancestors which is closest to the bottom if
there are small items.

(9) foreach n-th node do
(10) t” := Select all items whose root items are allo-

cated to n-th node.

;:2;
if (n = own node ID) then

Generate k-itemset from t”, and increment the
sup-cou for the itemset and all its ancestor can-
didates.

[:ej
else

Send t” to n-th node.

[ii{
Receive items from the other nodes.
Generate k-itemset from receive items, and in-
crement the sup-cou for the itemset and all its
ancestor candidates .

(17) end
(18) end
(19) {Lg}:= All the candidates in Ct with minimum sup-

port.
(20) Send Lt to the coordinator node.
(21) /* Coordinator node make up & := U, LF and :\

/* broadcast to all the nodes.
(22) Receive Lk from the coordinator node.

Figure 5: H-HPGM algorithm

If k is 2, delete the candidates that contains an items
and its ancestor.
Delete any ancestors in 7 that are not present in any
of the candidates in Ck.
Apply the hash function to the candidate itemsets in
Ck. Here each item of the candidate itemset is replaced
by its root items, then hash function is applied and
destination node ID is determined. If the ID is its
own, insert it into the hash table.

2. Scan the transaction database and count the sup-cou
value:
Each node reads the transaction database from its lo-
cal disk and generates extended transaction t’ by re-
placing the item in t with the large item in its ancestors
which is closest to the bottom, if there are small items.
For each node n, select all items in t’ whose root item
is allocated to n-th node and send them to n-th node.
For the itemsets received from other nodes and those
locally generated whose root item is allocated to own,
generate k-itemset from the itemsets and increment
the sup-cou value of this k-itemset and its all ancestor
candidates.

Table 3: Notation
3. - 4. Same as in HPGM.

Each node works as follows:

1. Generate candidate itemsets:
Each node generates Ck using Lk- 1.

In Figure 6, Example 2 illustrates the reduction of com-
munications in H-HPGM under the same condition at Ex-
ample 1.

29

Node 2: Transaction (IO, 12.14)

43 replace 10 the large item which is closest 10 the bottom of the hwarchy

15,6, 101

I5.6.10) - Send to Node 0
(5,lOt mP- Count support

Node 0: Receive (5.6. 10)

a count s”ppon

(5,6) -- {1,2t, 11.6). [2,5}
(6,lOt -- 12,101. l4.6t

Figure 6: Example of H-HPGM

Example 2: Let the hash function be ha&(X, Y) = ((root
item code of X) * 10 + (root item code of Y)) mod 3 zuhere
(root item code of X) 5 (root item code of Y). Therefore,
the candidate itemsets whose root candidate is { 1,2} are
allocated to Node 0. The other candidate itemsets are allo-
cated in the same way. As a result, the candidate itemsets
are partitioned as shown in Figure 6. Suppose Node 2 reads
the transaction t = {10,12,14}. Then, Node 2 generates
extended transaction {5,6, lo}, sends the itemset {5,6,10}
to Node 0, and increments the sup-cou of (6,lO) and its
all ancestor candidates (2, lo}, {4,6}. Then Node 2 gener-
ates extended transaction {5,6, lo}, increments the sup-cou
value of {6,10} and its all ancestor candidates (2, lo}, {4,6}.
Since the root item of (5) and (10) are (1) and (6) is (2)
and the root candidate { 1,2} is allocated to Node 0, Node 2
sends the itemset {5,6,10} to Node 0. Node 0 receives the
itemsets {5,6,10} from Node 2, generates 2-itemsets {5,6},
(6, lo}, and increments the sup-cou of {5,6}, (6,lO) and
their all ancestor candidates.

In H-HPGM, Node 2 sends 3 items to the other nodes for
this transaction. On the other hand, Node 2 sends 18 items
for the same transaction in HPGM. This shows that it is very
effective to take the classification hierarchy information into
account on the candidate itemset partitioning for reducing
the communication overhead.

3.4 Skew Handling

In the case the size of the candidate itemsets is smaller than
the available system memory, H-HPGM does not use the re-
maining free space. Since H-HPGM partitions the candidate
itemsets in the unit of hierarchy of the candidate itemsets,
the grain is too coarse to achieve a flat workload distribu-
tion. If the transaction data is skewed, that is, there are
some itemsets which appear very frequently in the trans-
action data, the node which is allocated such itemsets will
receive a lot of transaction data, which incurs a system bot-
tleneck.

In this section, we present three methods to handle this
problem by identifying such frequent itemsets and treating
them in an appropriate manner.

3.4.1 H-HPGM with Tree Grain Duplicate
: H-HPGM-TGD

H-HPGM partitions the candidate itemsets among the nodes
so that all the candidate itemsets whose root items are the
same be allocated to the identical node. That is, H-HPGM
divides the candidate itemsets into the hierarchy of the can-
didate itemsets and allocates such whole hierarchy to a node.
Thus the granule is a hierarchy, that is, a tree. H-HPGM-
TGD detects the tree whose candidate itemsets contain very
frequently occurred items, duplicates them among the nodes
and counts the sup-cou locally for those itemsets like in
NPGM. The behavior of pass k of the n-th node is obtained
by replacing the lines (6), (8) and (21) in Figure 5 with
Figure 7, using the notation in Table 3 and 4.

n ck Sets of candidate k-itemsets whose hashed value
calculated with their root item is corresponding
to n-th node.

n Lk Sets of large k-itemsets derived from C,“.

CL Sets of candidate k-itemsets which are copied all
the nodes.

ff Lk Sets of large k-itemsets derived from Cf.

(6.0)

(f-5.1)
(6.2)

(6.3)

(f-5.4)

f:$

(8.0)

(8.1)

Table 4: Notation

Count the number of descendant candidate for each
root k-itemset and the number of candidates allo-
cated for each node by generating the k-itemsets
using Lk.
Generate k-itemsets from root items.
Sort the root itemsets based on their frequency of
appearance.
{Cf}:=All the root k-itemsets whose frequency is

high so as to use the memory space fully.
{Cf}:=All the candidate k-itemsets whose root

itemset is contained in CF.

Delete the candidates in Cf from ck.
{CF}:= All the candidate k-itemsets in ck, whose

hashed value calculated with its root items
corresponding to the n-th node.

t’:=Replace the items in t with the large item in its
ancestors which is closest to the bottom, if there
are small items.

Increment the sup-cou of all candidates in Cf that
are contained in t’.

(21.0) Send the sup-cou of C$’ to the coordinator.
(21.1) /* Coordinator determine Lf which satisfy user- */

/* specified minimum support in CkD. *I
(21.2) /* Coordinator node make up & := Lf + U, L: */

/* and broadcast to all the nodes. *I

Figure 7: Algorithm H-HPGM-TGD

Each node works as follows:

1. Generate the candidate itemsets:

(a) Count the number of descendant candidates for
each root k-itemset and the number of candidates

30

(b)

(cl

(4

(e)

allocated for each node by generating the k-itemsets
using Lk- 1.

Generate k-itemsets from root items. Here, these
k-itemsets contain the itemsets consisting of the
same items, such as {l,l}.
Sort the root itemsets based on whose item’s fre-
quency of appearance.

Choose the most frequently occurring root item-
sets and insert them and their descendant candi-
date itemsets to Cf so that all the memory space
is used.

Apply the hash function to the remaining candi-
date itemsets and determine the destination node
ID. If the ID is its own, insert it into the hash ta-
ble (Cz).

2. Scan the transaction database and count the sup-cou
value:
Each node reads the transaction database from its lo-
cal disk and generates extended transaction t’ by re-
placing the item in t with the large item in its ancestors
which is closest to the bottom, if there are small items.
For each node n, select all items in t’ whose root item is
allocated to n-th node and send them to the n-th node.
For the itemsets received from the other nodes and lo-
cally generated items whose root item is assigned to its
own node to own, generate Ic-itemset from the itemsets
and increment sup-cou value for this k-itemset and its
all ancestors.

3. Determine the large itemsets:
After reading all the transaction data, each node can
determine individually whether each candidate in Cz
satisfy minimum support or not. Each node send Lz
to the coordinator node. The sup-cou of Cp of all
the nodes are gathered into the coordinator node. It
is checked whether the minimum support condition is
satisfied or not. The coordinator node determines the
large k-itemset in Cf and derives all the large
k-itemsets Lk = Lf + u, L;.

4. Same as NPGM.

Figure 8 shows an example of H-HPGM-TGD.

Sup(l) > Sup(3) > Sup(Z)

Figure 8: Example of H-HPGM-TGD

Example 3: Assume the large items at pass 1, be LI =
{1,2,3,4,5,6,7,8,9,10,15} which form the classification hi-
erarchy as shown in Figure 8. H-HPGM-TGD picks up
the root items and sorts the root items over the support
value of each item. Let the support of each root item be
Sup(l) > &p(3) > SUP(~). H-HPGM-TGD duplicates the
candidate itemsets {4,5}, (5,lO) which are included in the
tree of root item 1. When there still remains free space, the
candidate itemsets which are generated by joining the items
in the tree rooted by 1 and in the tree rooted by 3.

3.4.2 H-HPGM with Path Grain Duplicate
: H-HPGM-PGD

H-HPGM-TGD duplicates the candidate itemsets in the unit
of whole hierarchy. The granule is too coarse to obtain suf-
ficient load balance when the size of free space is small. H-
HPGM-PGD picks up the leaf large items and sorts them
based on their support value. Then it chooses the most
frequently occurring itemsets and copies them and their all
ancestor itemsets over all the nodes. Since the granule em-
ployed in H-HPGM-PGD is smaller than that of H-HPGM-
TGD, it can balance the load among the nodes more effect-
ing. The behavior of pass k of the n-th node is obtained by
replacing the lines (6), (8) and (21) of Figure 5. with Figure
9, using the notation in Table 3 and 4.

(6.0) Count the number of candidates allocated for each
node.

(6.1) Sort the lowest large items based on their frequency
of appearance.

(6.2) Generate k-itemsets from the lowest items.
(6.3) {C~}:=All the lowest candidate k-itemsets whose

frequency is high and their ancestor candi-
dates so as to use the memory space fully.

(6.4) Delete the candidates in C$ from ck.
(6.5) {CL}:= All the candidate k-itemsets, whose hashed

value calculated with its root items corre-
sponding to the n-th node.

(8.0) t’:=Replace the items in t with the large item in its
ancestors which is closest to the bottom, if there
are small items.

(8.1) Increment the sup-cou of all candidates in C’F that
are contained in t.

(21.0) Send the sup-cou of Cc to the coordinator.
(21.1) /* Coordinator determine Lf which satisfy user-*

/* specified minimum support in C[
(21.2) /* Coordinator node make up ,& := LF + U, 15::

/* and broadcast to all the nodes. *

Figure 9: Algorithm H-HPGM-PGD

Each node works as follows:

1. Generate the candidate itemsets:

(4

(b)

(cl

(4

Count up the number of candidates allocated for
each node by generating the k-itemsets using ,&- 1.

Pick up the large items in J!&i which is the clos-
est to the bottom, and sort them based on their
support value.

Choose the first several most frequently occurring
items using the sorted list derived at (b), and in-
sert it and its all ancestor candidates to CkD so
that the free memory space is occupied as much
as possible.

Delete the candidates in C,” from ck. Insert the
candidates in ck if its root itemset’s hashed value
is corresponding to own node ID.

2. Scan the transaction database and count the sup-cou
value:
Each node reads the transaction database from its lo-
cal disk and generates extended transaction t’ by re-
placing items in t with the large item in its ancestors

31

which is closest to the bottom, if there are small items
in t. Increment the sup-cou of all candidates in Cp
that are contained in t’. For each node n, select all
items in t’ whose root item is allocated to the n-th
node and send them to the n-th node. For the itemsets
received from the other nodes and locally generated
items whose root is allocated to own node, generate
k-itemset from the itemsets and increment sup-cou of
this k-itemset and its all ancestors.

3. - 4.
Same as H-HPGM-TGD

Figure 10 shows an example of H-HPGM-PGD for the
same condition of Example 3.

Sup@) > Sup(l0) > Sup(7) > Sup(S) > Sup(E) > Sup(9)

Figure 10: Example of H-HPGM-PGD

Example 4: H-HPGM-PGD picks up the leaf items and
sorts the leaf items based on the sup-cou value. Let the
support of leaf items be &p(8) > %&lo) > SUP(~) >
Sup(5) > Sup(15) > Szlp(9). H-HPGM-PGD duplicates
the candidate itemsets { 8,lO) and its all ancestor candidate
itemsets {1,3}, {1,8}, {3,4}, (3, lo}, {4,8}. If there still re-
mains free space, it further duplicates the candidate itemset
(7,8} and its all ancestors.

3.4.3 H-HPGM with Fine Grain Duplicate
: H-HPGM-FGD

H-HPGM-PGD duplicates the candidate itemsets with the
smaller grain than H-HPGM-TGD. H-HPGM-PGD exam-
ines the candidate itemsets based on the frequency of the
leaf large item. It cannot attain good load distribution in
the case that there are some internal items whose frequency
is high but whose descendant item’s frequency is low.

H-HPGM-FGD checks the frequently occurring itemsets
which consists of the any level items. It duplicates them
and their all ancestor itemsets over all the nodes. Thus only
the frequent itemsets are duplicated. The granule becomes
finer. But the algorithm is further complicated.

The behavior of pass k by n-th node is obtained by re-
placing the line (6), (8) and (21) of Figure 5 with Figure 11,
using the notation in Table 3 and 4.

Each node works as follows:

1. Generate the candidate itemsets:

(4

(b)

Cc)

(4

Count up the number of candidates allocated to
each node by generating the k-itemsets using &-I.

Sort the large items based on their count support
value.

Choose the first most frequently occurring candi-
date itemsets, and insert them and their all an-
cestor candidates to C,” so that free space be oc-
cupied as much as possible.

Delete the candidates in CF from Ck. Insert the
candidates in CI, if its root itemset’s hashed value
is corresponding to its own node ID.

(6.0)

(6.1)

(6.2)

(6.3)

Count the number of candidates allocated for each
node.
Sort the large items based on their frequency of ap-
pearance.
Generate k-item&s from the large items. in order
of the frequency of appearance.
{C~}:=All the candidate k-itemsets whose fre-

quency is high and their ancestor candidates
so as to use the memory space fully.

Delete the candidates in Cf from Ck.
{CF}:= All the candidate k-itemsets, whose hashed

value calculated with its root items corre-
sponding to the n-th node

(8.0) t’:=Replace the items in t with the large item in its
ancestors which is closest to the bottom, if there
are small items.

(8.1) Increment the sup-cou of all candidates in Cf that
are contained in t.

(21.0) Send the sup-cou of Cf to the coordinator.
(21.1) /* Coordinator determine J$ which satisfy user-*/

/* specified minimum support in C,“. *I
(21.2) /* Coordinator node make up ck := Li + U, Li*/

/* and broadcast to all the nodes. z */
Figure 11: H-HPGM-FGD algorithm

Scan the transaction database and count the sup-cou
value:
Each node reads the transaction database from its lo-
cal disk and generates extended transaction t’ by re-
placing items in t with the large item in its ancestors
which is closest to the bottom if there are small items
in t. Increment the sup-cou of all candidates in CF
that are contained in t’. For each node n, select all
items in t’ whose root item is allocated to the n-th
node and send them to the n-th node. For the itemsets
received from other nodes and locally generated item-
sets whose root is allocated to its own node, generate
k-itemset from the itemsets and increment sup-cou of
this k-itemset and its all ancestors.

- 4.
Same as H-HPGM-TGD

Figure 12 shows an example of H-HPGM-FGD under the
same condition of Example 3.

sup(l) > Sup(3) > Sup@) > SUP(~) > Sup(d) > SUP(~)
> Sup(l0) > Sup(7) > Sup(S) > Sup(l5) > Sup(9)

10 -l-l- -fz- +3--l-4 15 -l+r#

Figure 12: Example of H-HPGM-FGD

Example 5: Let the support of large items be Sup(l) >
Sup(S) > Sup(2) > Sup(4) > &q(8) > &p(6) > Sup(l0) >
Sup(7) > &p(5) > Sup(15) > Sup(S). H-HPGM-FGD du-
plicates the candidate itemsets according to decreasing or-
der of the support count value so that remaining free space
can be occupied as much as possible. In this example, the

32

candidate itemsets {4,8}, {4,6}, {6,8} and their all ancestor
candidate itemsets are duplicated.

4 Performance Evaluation

We implemented all the above algorithms on IBM 16-node
SP-2 and measured the performance of each method. SP-2
employs a shared-nothing parallel architecture. Each node
contains a POWER2 processor, 256MB local memory and a
2GB local disk drive. HPS(High-Performance Switch) inter
connects the nodes together.

To evaluate the performance of the proposed parallel al-
gorithms, synthetic datasets emulating retail transactions
are used. The generation procedure is based on the method
described in [SA95]. Table 5 shows the meaning of the var-
ious parameters and the characteristics of the dataset used
in our experiments.

4.1 Comparison of HPGM and H-HPGM

First, we show the performance comparison between HPGM
and H-HPGM. Figure 13 shows the execution time of HPGM
and H-HPGM of pass 2 varying the value of minimum sup-
port.

Table 6 shows the average amount of received messages of
HPGM and H-HPGM at pass 2 in each node, where the syn-
thetic data R30F5 was used with 0.3% minimum support.
As you can see from the Table, the amount of communi-
cations of H-HPGM is much smaller than that of HPGM.

Average amount of received messages (MB)
of nodes H-HPGM

8 360.7 I 12.5

I 12 16 I 251.9 193.3 I 9.6 7.8 I

Table 6: Average amount of received messages on each node

Since H-HPGM sends only the closest to the bottom of
large item, the amount of communications is considerably
reduced. On the other hand, HPGM has to transmit the
itemsets which are generated from the items and their all
ancestors, a large amount of communications are caused.
Because the performance of HPGM is always much worse
than H-HPGM, we omit the performance of HPGM in the
following experiments.

4.2 Evaluation of Proposed Algorithms

Figure 14 shows the execution time of all the proposed par-
allel algorithms, varying the minimum support. 16 nodes in
SP-2 are activated in these experiments. The transaction
data is evenly spread over the local disks of all the nodes.
Although we shows the results at pass 2, the results of the
other passes are also very similar to the behavior of pass 2.

In NPGM, the execution time increases sharply when
minimum support becomes small. When the candidate item-
sets becomes large for small minimum support, the single
node’s memory cannot hold the entire candidate itemsets.
In such a case, NPGM has to divide the candidate item-
sets into fragments, each node has to scan the transaction
database repetitively for each fragment. Thus the perfor-
mance of NPGM decreases significantly.

When the minimum support set to be very small, the
size of the candidate itemsets becomes large and most of the
available memory space is occupied. Thus, the size of the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Minimum support (o/o)

R30F3
25001 I

HPGM -
H-HPGM -+--

5oo-

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Minimum support (‘%b)

R30FlO
25001 G

2

- I
HPGM -

H-I-II’GM -+--
8 2000
'S

500

I
-----+-------.... ~----.----------+--------------

0’ J

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Minimum support (%)

Figure 13: Execution time of HPGM and H-HPGM

33

Parameter R30F5 R30F3 R30FlO
Number of transactions 3200000 3200000 3200000
Average size of the transactions 10 10 10
Average size of the maximal potentially large itemsets 5 5 5
Number of maximal potentially large itemsets 10000 10000 10000
Number of items 30000 30000 30000
Number of roots 30 30 30
Number of levels 5-6 6-7 3-4
Fanout 5 3 10

Table 5: Parameters of datasets

duplicated candidate itemsets becomes smaller as the min-
imum support decreases. Since H-HPGM-TGD duplicates
the candidate itemsets with a tree grain, it cannot copy the
candidate itemsets at small minimum support, where it be-
comes identical to H-HPGM.

H-HPGM-PGD and H-HPGM-FGD significantly outper-
form H-HPGM. Since they duplicate the candidate itemsets
with small granule, they can more effectively balance the
load among the nodes by filling utilizing almost all the free
space. Especially, H-HPGM-FGD attain the best perfor-
mance for all the range of the minimum support. Since
H-HPGM-FGD employs the finest grain in our algorithms
and utilizes most effectively the free space.

4.3 Comparison of the Workload Distribution

In this section, the workload distribution of H-HPGM, H-
HPGM-TGD, H-HPGM-PGD and H-HPGM-FGD is exam-
ined. Figure 15 shows the number of hash table probes to in-
crement sup-cou value in each node at pass 2. The minimum
support is set to 0.3%. In H-HPGM, the distribution of the
number of probe is largely fractured. In H-HPGM-TGD,
H-HPGM-PGD and H-HPGM-FGD, we duplicate the fre-
quently candidate itemsets so that the communication can
be eliminated.

The grain employed in H-HPGM-TGD is too coarse, it
cannot achieve sufficiently flat distribution at small mini-
mum support. H-HPGM-PGD copies the candidate item-
sets with path grain, it attains more flat workload distribu-
tion than H-HPGM-TGD. However, it sometimes duplicates
useless candidate itemsets, since it examines the frequent
candidate itemsets at the closest to the leaf level. On the
other hand, H-HPGM-PGD can absorb the influence of the
transaction data skew effectively, since it duplicates the can-
didate itemsets in finer grain than H-HPGM-PGD and does
not duplicate useless candidate itemsets. This method can
must effectively utilize the free space for load balancing.

4.4 Speedup

Figure 16 shows the speedup ratio varying the number of
nodes used 4, 6, 8, 12 and 16. The curves are normalized
by the 4 nodes execution time. Dataset R30F5 is used. The
minimum support is set to 0.5% and 0.3%.

H-HPGM-FGD and H-HPGM-PGD attain higher lin-
earity than H-HPGM. Sophisticated load balancing mech-
anism contributes to the improvement of linearity. Since
H-HPGM does not duplicate the candidate itemsets, data
skew significantly degrades the linearity. H-HPGM-TGD,
H-HPGM-PGD and H-HPGM-FGD detect the frequent can-
didate itemsets and copy them among all the nodes. When
the available free space is small, H-HPGM-TGD cannot du-
plicate the candidate itemsets. Thus it does not work well.

On the other hand, H-HPGM-FGD employing fine grain du-
plication strategy can more effectively achieve higher linear-
ity.

5 Conclusions

In this paper, we proposed several kinds of parallel algo-
rithms for mining association rules with classification hier-
archy on an shared-nothing parallel machine. We examined
their effectiveness through the implementation on 16 node
parallel machine.

If a single node can hold all the candidate itemsets, par-
allelization is straightforward. It is sufficient to partition
the transaction over the nodes. Each node can process the
allocated transaction data in parallel. We named this algo-
rithm NPGM. However when we generate association rules
that span different levels of the classification hierarchy, the
candidate itemsets tend to become too large to fit within
the memory of a single node. Decreasing a small minimum
support also increases the size of the candidate itemsets.
As we decrease the minimum support, computation time
grows rapidly. But in order to discover more interesting as-
sociation rules, we usually have to decrease the minimum
support, even though we just pick up high confidence rules.

The algorithms, HPGM, H-HPGM, H-HPGM-TGD, H-
HPGM-PGD and H-HPGM-FGD not only partition the trans-
action data file among the nodes but partition the candidate
itemsets. HPGM partitions the candidate itemsets without
taking the classification hierarchy information into account.
It has to exchange both the items that contained in the
transaction data and its ancestor items, which causes large
amount of communication overhead. H-HPGM partitions
the candidate itemsets considering classification hierarchy
so that all the candidate itemsets whose root candidate is
identical be allocated to the same node. Since H-HPGM
transmits only the leaf large items, the amount of communi-
cations is considerably reduced. H-HPGM-TGD, H-HPGM-
PGD and H-HPGM-FGD detect the frequently candidate
itemsets and duplicate them so that the remaining free space
can be utilized as much as possible. Support counting for
frequent candidate can be locally processed which further
reduce the communication overhead a lot.

We implemented these algorithms on a shard-nothing
parallel machine 16-node SP-2. Performance evaluations
show that H-HPGM-FGD attains sufficiently high perfor-
mance and achieves almost Aat load distribution.

In [SA96], generalized sequential pattern mining with
classification hierarchy is discussed. Since generalized se-
quential pattern mining requires to examine the permuta-
tion of items and to include the items across the different
levels of classification hierarchy, the size of the candidate
sets becomes much larger. In [SK98], we present the par-
allelization of mining sequential patterns. Extension of our

34

NPGM -
H-HPGM -+--

H-HPGM-TGD -*-
H-HPGM-PGD “*‘--

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Minimum support (%)

R30F3

NPGM -
-c-m..-- H-HPGM -+--

H-@~&f-~D - -‘p.__ _
H-HPGM-PGD “I--
H-HPGM-FGD +.-.

200-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Minimum support (%)

R30FlO
1000 8 1 ’ 8 8 8 1 8

z NPGM -

i 800-
H-HPGM -+--

H-HPGM-TGD .a....

;
H-HPGM-PGD “I(‘-
H-HPGM-FGD A-’

4 600-
w

01
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Minimum support (%)
0 2 4 6 8 10 12 14

Node ID

Figure 14: Execution time of HPGM and H-HPGM Figure 15: The number of candidate probes for pass 2

4OOr
R30F5

I

350

300

250

200

150

100

50
I

0’ I
0 2 4 6 8 10 12 14

Node ID

R30F3
5001 I

0 2 4 6 8 10 12 14
Node ID

R30FlO

35

0.30%

H-HPGM -
-+--

.9 3.5 - 34 H-HPGM-TGD .* H-HPGM-PGD
2

3-
H-HPGM-Fi2GDl”‘“”

B

& 2.5 -

4 6 8 10 12 14 16
of nodes

4

.p 3.5
3
1” 3 a
8

’ 2.5

0.50%

H-HPGM -
H-I-IPGM-TGD -+--

4 6 8 10 12 14 16
of nodes

Figure 16: Speedup ratio

parallel algorithms to the mining of generalized sequential
patterns is interesting study for future work.

Acknowledgments

This work is supported by the Ministry of Education, Sci-
ence, Sports and Culture, Japan by the grant of Scientific
Research on Priority Areas for ” Research and Development
of Advanced Database Systems for Integration of Media and
User Environments”.

References

[AS961 R. Agrawal and J. C. Shafer. Parallel mining
of association rules. In IEEE Transactions on
Knowledge and Data Engineering, Vol.8, No.6,
pages 962-969, December 1996.

[CHN+96] D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, and
Y. Fu. A fast distributed algorithms for mining
association rules. In Proceedings of IEEE 4th
International Conference on Parallel and Dis-
tributed Information Systems, pages 31-42, De-
cember 1996.

[CNFF96] D. W. Cheung, V. T. Ng, A. W. Fu, and
Y. Fu. Efficient mining of association rules in
distributed databases. In IEEE fiansactions on
Knowledge and Data Engineering, Vo1.8, No.&
pages 911-922, December 1996.

[HKK97] E. H. Han, G. Karypis, and V. Kumar. Scalable
parallel data mining for association rules. In Pro-
ceedings of 1997 ACM SIGMOD International
Conference on Management of Data, pages 277-
288, 1997.

[PCY95] J. S. Park, M. S. Chen, and P. S. Yu. Efficient
parallel data mining for association rules. In
Proceedings of the 4th Conference on Informa-
tion and Knowledge Management, pages 31-36,
November 1995.

[RR941 R.Agrawal and RSrikant. Fast algorithms for
mining association rules. In Proceedings of the
20th International Conference on Very Large
Data Bases, pages 487-499, September 1994.

[SA95] R. Srikant and R. Agrawal. Mining generalized
association rules. In Proceedings of 20th Inter-
national Conference on Very Large Data Bases,
pages 407-419, September 1995.

[SA96] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance im-
provements. In Proceedings of the 5th Interna-
tional Conference on Extending Database Tech-
nology, March 1996.

[SK961 T. Shintani and M. Kitsuregawa. Hash based
parallel algorithms for mining association rules.
In Proceedings of IEEE 4th International Con-
ference on Parallel and Distributed Information
Systems, pages 19-30, December 1996.

[SK981 T. Shintani and M. Kitsuregawa. Mining algo-
rithms for sequential patterns in parallel : Hash
based approach. to be published in the Second
Pacific-Asia Conference on Knowledge Discov-
ery and Data mining, April 1998.

36

