
Repositories and Object Oriented Databases1

Philip A. Bernstein
Microsoft Corp.

One Microsoft Way
Redmond, WA 98052-6399

philbe@microsoft.com

1 This is a slightly updated version of a paper originally published as Bernstein, P.A., “Repositories and Object-Oriented
Databases,” Datenbanksysteme in Buro, Technik und Wissenschaft (Proceedings of BTW Conference, March 1997, Ulm,
Germany), Klaus R. Dittrich and Andreas Geppert (editors), Springer-Verlag, Berlin, March 1997, pp. 34-46. It is reprinted with
permission from Springer Verlag.

Abstract
A repository is a shared database of information about
engineered artifacts. An object-oriented repository has
many of the same features as an object-oriented
database: properties, relationships, and versioning.
However, the two technologies are different for two
reasons. First, a repository system has built-in
information models, which are database schemas or
object models that cover both generic and tool-specific
kinds of information. Second, the features of a
repository are often more functional than similar
features supported by object-oriented databases. This
paper is primarily a survey of the latter features,
drawing attention to capabilities that distinguish
repositories from object-oriented databases.

1 Introduction
A repository is a shared database of information about
engineered artifacts, such as software, documents,
maps, information systems, and discrete manufactured
components and systems (e.g., electronic circuits,
airplanes, automobiles, industrial plants). Designing
such engineered artifacts requires using software tools.
The goal of a repository is to store models and contents
of these artifacts to support these tools. For example, a
repository that supports software development and
deployment tools could store database descriptions,
form definitions, controls, documents, interface
definitions, source code, help text, executables, icons,
and the contents of makefiles.

Today’s software system architectures are object-
oriented, to promote better software productivity and
reuse. To exploit these architectures and gain their
benefits, many existing tools and virtually all new tools
are written in an object-oriented way. Since repositories
support these tools, new repository systems are nearly

all object-oriented too. That is, these repository systems
allow tools to store, access, and manipulate objects,
rather than records, rows, or entities. In this sense, a
repository is an object-oriented database. Indeed, many
object-oriented database systems have been marketed
primarily as support for software tools.

There are differences between an object-oriented
database system (OODBMS) and a repository system.
One important difference is the repository system’s
Information Model, which specifies a model of the
structure and semantics of the artifacts that are stored in
the repository. In database terms, the information
model is a schema for the repository. In object-oriented
terms, an information model is an object model for the
objects in the repository. Tools use the information
model to interpret the repository’s contents.

select all

cust
emp
dept

dno
dna Bill

C usto mer

U pda te
Ma rket ing

Inv ento ry

Au th ori ze
Cr edi t

Ord er
E nt ry

Sc he dule

De l iv ery

Customer

Order

Scheduled
Delivery

Product

Salesperson

SpecSpec

TablesTables

VC ++ CodeVC++ Code

ArchitectureArchitecture

VB CodeVB Code

ERDERDCustomer

Order

Scheduled
Delivery

Product

Salesperson

FormsForms

Database
System

Repository
Manager

Information
 Model

ToolsTools

The information model is implemented on top of a
repository engine, which offers services to access and
manage the repository itself and the information it
stores. The repository engine could be an unadorned
database system product, such as an OODBMS. But
often it’s a layer of software on top of the database
system, such as a layer that adds object (or entity) and
relationship functionality on a relational database
system.

Database system developers normally consider the
information model to be part of the application.
However, tool developers usually consider it as part of
the storage system, because it is generic across all
tools or within a given field.

There are generic object management functions that are
common to all tools but are not typically part of a
repository engine. For example, a team development
model that covers workspaces, checkout/checkin, and
versioned configurations is usually beyond the scope of
the repository engine, even if that engine supports basic
versioning functionality [10]. Another example is an
object reuse model that covers functions to group
objects into catalogs, assign keywords to objects, and
connect objects in libraries to the projects that use them
[8]. A third example is a workflow model to track the
development of an artifact through an engineering
process [9]. These generic object management
functions can be captured in information models that
are shared by all tool developers.

Within a given area of engineering there are standard
types of objects and standard ways to manipulate them.
For example, in the software engineering area, there’s
general agreement on what constitutes a database
definition and an interface definition, and there is
growing agreement on what constitutes an object model
in an object-oriented analysis and design tool. There’s
no technical reason why each tool developer needs to
develop such an information model from scratch.
Moreover, if a tool developer produces a customized
model instead of sharing a model with others, then the
model won’t allow his or her tools to share data with
other tools produced by other vendors, since they will
use different information models. In many fields, such
standard information models are being defined, such as
the SQL and CDIF standards for database objects and
the current OMG’s Unified Modeling Language (UML)
standard for analysis and design [13]. A repository
system can save tool developer effort and promote
sharing between tools by including an information
model that covers areas where there is some industry-
wide agreement.

As in all areas of system software, there is some
uncertainty about which functions should be in which
layers, so these functions tend to move around over
time [1]. For example, when functions in the
information model become well accepted with
generally agreed-upon semantics and are identified as
heavy resource consumers, it’s worthwhile to drive
them down into lower layers, that is, into the repository
engine. Indeed, the desire to move information model
and tool function into lower layers helped prompt the
development of OODBMSs in the first place.

Although both repository engines and OODBMSs have
evolved from the trend to drive tool functions into the
underlying storage system, they have not arrived in
exactly the same place: Repository engines usually
support higher level semantics than OODBMSs. For
example, they often use relationships that carry more
semantics, type systems that are more extensible, and
richer version and configuration models. Justifying this
claim would require a careful comparison of features in
OODBMSs and repository engines, which is more than
we will attempt to do here. Instead, we take just one
step down that road by explaining many of the features
supported by repository engines. Readers familiar with
OODBMS products will recognize that many of these
features are higher level than those supported by any
OODBMSs. However, we will stop short of making
specific claims of difference between OODBMSs and
repository engines, since that would suggest a more
thorough feature analysis of products than we have
done.

2 Repository Engine Functions
The main functions of a repository engine are:

• Object management - Store each object’s state (i.e.
its properties or attributes) and provide access to
its methods. Every repository object has a type that
describes it.

• Dynamic extensibility - The repository’s
information model consists of type definitions and
classes that implement them. It must be easy and
efficient to add new type definitions and classes,
and modify existing ones.

• Relationship management - Models of engineered
artifacts are rich with information about
relationships between objects. Tools make heavy
use of these relationships. The repository should
support powerful relationship semantics, to relieve
tools of commonly needed relationship functions.

• Notification - An operation on an object may need
to trigger operations on other objects and/or send
an event to a tool that registered interest in changes
to that object.

• Version management - Engineering design
information is usually developed according to
some engineering process that relies on versions to
manage the evolution of designs. Tools need help
in managing versioned design objects.

• Configuration management - A tool user normally
works within the narrow context of the objects that

are relevant to the problem at hand. Similarly, a
component or product model usually contains only
some of the objects in the repository. This requires
grouping versioned objects into configurations,
which are themselves versioned.

We describe each of these functions in turn. Our goal is
two-fold: to explain the main facilities offered by
repository engines and to show that many of these
facilities are beyond what’s supported by most
OODBMSs.

2.1 Object Management
Objects are in-memory representations of the
information held in the repository database. An object
offers methods to manipulate the object’s state. In
particular, it offers operations to read and write the
values of its public state variables, called properties.
Properties can be stored or computed. The latter are
much like a relational view.

Properties can be single-valued or multi-valued. A
multi-valued property is a collection, which is an object
that supports methods to insert, delete, scan, and
randomly access values in the collection. A collection
might also be sequenced, duplicate-free, or scrollable
(i.e. can scan in both directions).

It is valuable if objects can be accessed by database
queries, in addition to being navigable by object-at-a-
time operations. To leverage the repository engine’s
underlying database system, properties must be stored
in a queriable format. For example, a SQL table can be
used to store objects, with columns representing
properties. For properties that are only occasionally
used, a table with columns ObjectID, PropertyName,
PropertyValue saves space over the previous design.
However, the latter table is not queriable via SQL if
PropertyValue can have more than one type (such as
integer or string).

For an object to be in the repository, the object
management layer must be able to load it into memory
(including its persistent state), delete it, and store it
persistently. The object management layer must also
offer methods to create a new object in the repository.

Usually, the programming model for creating, loading,
deleting and storing objects and for invoking their
methods is defined by the programming language (such
as C++ or Java) or by the underlying computing
architecture (such as COM, DSOM, or OMG CORBA).
Ideally, the repository offers the same, or a
straightforward extension of, the programming model
offered by the programming language and/or

computing architecture used by tools. This is an
especially challenging design goal if the repository
must support more than one such model.

For some design objects, part or most of their state is
stored in a different storage manager than the
repository, such as a file or tool-private repository. To
use the repository for some of the object’s state, a
surrogate object is stored in the repository. In addition
to storing the object’s repository state, the surrogate has
a property that points to the object’s external state. For
example, the property might contain a pathname that
identifies the file that contains the object’s external
state.

The above object management facilities are the same in
both an object-oriented database system and repository.

2.2 Dynamic Extensibility
Every object in the repository has a type that describes
its interface(s), such as its methods and properties. It’s
what a client can count on about an object before it
actually sees the object itself. Type information is also
used to drive the repository’s implementation of
objects. For example, if you define a type “user” that
has string-valued properties “name” and “password,”
the repository can create and manipulate instances of
“user” using the type definition as a template. Given the
importance of type information, it must be easy to
access and manipulate. This is in contrast to many
OODBs, whose type information is largely embedded
in applications and not easy to find in the OODB itself.

A class is an implementation of a type, that is, a body
of code that implements the type’s interface. A type
may have more than one class that implements it. This
capability of multiple classes per type is quite
important, because it enables different vendors to
implement the same type independently, yet have their
tools be able to share each other’s objects, since tools
only depend on an object’s type, not its class.

Repository type definitions must be easy to extend, so
that a tool vendor can add state information and
behavior to existing type definitions. Such an extension
should not break existing tools that are oblivious to the
extension, yet tools that are aware of the extension
should be able to exploit it. Moreover, tools that exploit
the extension should still be able to manipulate old
objects that conform to the non-extended definition.
This allows extensions to be added piecemeal, rather
than having to install a new revision of the information
model and all tools that depend on the extended types
at the same time. These requirements are not commonly
met by the type systems of OODBMSs.

One way to meet these requirements is offered by
Microsoft’s Component Object Model (COM) [14]. In
COM, an object can have multiple interfaces, each of
which defines a set of methods and their signatures and
has a globally unique 16-byte interface identifier (IID).
An interface specification is immutable, so to extend an
interface, you implement a new interface with another
IID. By convention, interface names begin with “I”.

Every COM object supports the interface IUnknown.
The method QueryInterface on IUnknown asks
an object if it supports a particular interface, given the
interface’s IID. The object either returns a pointer to
the interface, or null if it doesn’t support the interface.
Suppose an interface I1 was extended, creating the
interface I2. If a tool knows about the extension and is
given an object, it can exploit the new behavior by
calling QueryInterface for I2. If
QueryInterface returns null, the tool can call
QueryInterface for I1. Old tools that don’t know
about I2 just call QueryInterface for I1. Similarly,
a new object is implemented to support both I1 and I2,
so that both old and new tools can use it.

Another benefit of this interface approach is that
different vendors can group the same interfaces into
different classes (essentially, multiple inheritance of
interfaces). For example, one vendor can support the
interface ICatalogItem on a class Library, while another
vendor supports it on a class DevelopmentProject. If a
tool is programmed against interfaces (e.g.
ICatalogItem) rather than classes, then it can
manipulate objects produced by those different vendors
without knowing anything about their classes. If a
vendor adds yet another class that supports
ICatalogItem, the tool can, without modification,
manipulate objects of that class too.

This interface approach to information model definition
is used in Microsoft’s repository system, which initially
shipped in Microsoft Visual Basic 5.0 [4].

2.3 Relationship Management
A relationship is a connection between two objects. It
could simply be an object-valued property, as in the
ODMG model [6], possibly with a cardinality
constraint, such as one-to-one or one-to-many. Or the
relationship could be an object that can have its own
behavior, such as properties or methods. This provides
a richer mechanism for modeling relationships than
object-valued properties, which is often important in
repositories. For example, a system management tool
may need to record properties of the relationship
between a communications controller and the computer
it’s connected to, such as the date it was inserted and

the speed at which it operates. If relationships could not
have properties, then this would require representing
the relationship as another full-blown repository object,
which is heavier weight than a relationship object
(since it needs to support relationships, be versionable,
etc.) and more verbose to manipulate.

Like properties, relationships should have type
definitions, should be queriable, can be single- or
multi-valued, and can be stored or computed.

Most repository systems restrict relationships to be
binary and functional (one-to-many) and exploit these
assumptions to simplify and speed up the
implementation. Some models allow n-ary
relationships, such as the OMG relationship service.

Usually, relationships are bi-directional, meaning that
they can be traversed from either object they connect.
However, this implies that both objects must know
about the relationship (otherwise, how could they
provide access to it?). Thus, to add a new relationship
type to an object without changing the object’s type
definition, the relationship cannot be bi-directional. For
example, one kind of relationship supported by the
OMG relationship service is between objects that are
oblivious to the relationship, so the service does not
support access to the relationship via the objects it
connects.

Often, one wants to define relationships on non-
instantiable types, and have them be inherited by
classes that inherit that type. For example, one could
define a Contains relationship that connects the abstract
classes Container and ContainedItem, which are
inherited by concrete classes, such as JavaPackage and
JavaClass. Using the interface approach described
earlier, this can be done by defining relationships on
interfaces, such as the interfaces IContainer and
IContainedItem; any class that supports one of these
interfaces “inherits” the relationship.

An important capability of a relationship is to
propagate operations that are applied to an object at
one end of the relationship. For example, if a
relationship models physical containment (e.g. a table
definition contains a column definition), then deleting a
container object should cause the deletion of its
contained objects (i.e. those connected by a
containment relationship). A general approach to this
problem was proposed in [15], where one specifies for
each operation and relationship type whether the
operation applies to relationships of that type (e.g.
copying the object implies copying the incident
relationships) and/or applies to objects at the other end
of the relationship (e.g. copying the object implies
creating a relationship to a new copy of the object at

the other end). However, repository engines usually
only implement propagation for a fixed set of
relationship types and operations. For example, the
PCTE model allows propagation using the relationship
attributes composition, existence, reference, implicit,
and designation [16]. Most OODBMSs are much less
functional than repository engines in this area.

An interesting special case of operation propagation is
pendant delete, where deleting the last relationship to
an object causes the object to be deleted. This can be
complicated by the need to avoid deleting an object that
has other references to it. For example, deleting the last
project that references a module causes the module to
be deleted, unless the module is called by another
module. There is also the question of the conditions
under which you can create an object that is the
destination of a relationship that propagates pendant
delete, since it has no instances of that relationship
pointing to it at the time it is created.

It’s convenient to be able to name objects in a
repository using conventional path names, such as
A/B/C, even though the relationships in a repository are
not limited to being a hierarchy. Suppose each
repository database has a unique root object, each
object has a name, and each object type has a unique
relationship type that is used for name resolution. Then
the path “A/B” can be interpreted as “find an object
named A connected to the root object by the root’s
naming relationship type, then find the object named B
connected to A by A’s naming relationship type.”

There are many variations of this naming scheme. For
example, you could explicitly identify the relationship
used to dereference each name in the path, such as
“A/R:B”, which says to find the object named B
connected to A by relationship type R. Another
variation is to attach names to relationships, rather than
objects, so that an object can have different names in
different relationship contexts. For example, to
dereference “A/B”, from the root follow the naming
relationship labeled by A, and then from “A” follow the
naming relationship labeled by B. The same object,
A/B, may have other names, such as C/D. For example,
this context-dependent naming could be used to give a
database different names in different applications that
use it.

2.4 Notification
Since tools share data, they need to be notified when
certain operations (typically updates) are applied to
objects of interest. These notifications are essentially
triggers in a SQL database or event-condition-action
rules in an active database [7]. Typically, a notification

rule is attached to a type definition. If a method
executes (i.e. an event occurs) on an object that
conforms to the type definition, and that method
triggers the notification rule, then the rule is invoked.
The rule checks whether its conditions hold and, if so,
invokes the action. The rule indicates whether the
invoked action executes in the context of the
transaction that generated the event (which is useful in
workflow systems to log a state transition) or in a
separate transaction (usually the best approach for
events that propagate to tools that are active).

Notifications usually propagate to tools in the form of
events, just like events on display devices, such as
mouse button operations. (This use of the term “event”
has a different meaning than in event-condition-action
rules.) Generally, a tool needs to hear such events only
if it is active. Thus, when it becomes active, it registers
itself with an event service, which mediates between
the notification rules and the tools. For example,
ActiveX Connection Points and the OMG Event
Service work this way. If a rule wants to notify certain
tools that an operation has taken place, then its action is
to send an event to the event service, which forwards it
to all the tools that are registered to receive that event.

2.5 Version Management
Versions track the lineage of changes to an object over
time. Versioning is usually implemented by connecting
successive versions of an object by a Succeeds
relationship. If version B succeeds version A, then B
was derived from A. In most version models, A must be
frozen (i.e. immutable or stabilized) at the time that B is
created. Otherwise, the Succeeds relationship would
not reflect “is derived from.”

We believe that a basis set of methods on a version are
freeze, create-version, delete-version, and merge.
Freeze simply changes a version’s state from unfrozen
to frozen. Some properties and relationships on an
object can be marked as mutable (in the object’s type
definition), meaning they are not frozen when a version
of the object is frozen. For example, it may be useful to
update a property that tells the state of a version
relative to testing (e.g. untested, unit-tested, system-
tested), even if the version is frozen. In a system with
binary relationships, relationships may have a direction,
from origin to destination, where an update to a
relationship is regarded as a change to the origin
(which must be unfrozen) but not to the destination
(which may be frozen). For example, the relationship
Program References DatabaseDefinition may be
updated even if the DatabaseDefinition is frozen, but
not if Program is frozen; that is, the relationship is

regarded as part of a Program but not of a
DatabaseDefinition.

Create-version on version V creates a new successor
version V′ to V with the same state as V. One needs to
decide which of V’s relationships are copied to V′. A
common rule is to copy each relationship for which V
is the origin. Create-version may also propagate to
destination objects, for example, along relationships
that model physical containment. For example, since
column definitions are private to table definitions in
SQL, creating a new version of a table definition
should create a new version of all of its column
definitions. Similarly, create-version might propagate
to an external object that is supported by a surrogate.
However, since databases are shared by applications,
creating a new version of an application does not create
a new version of the databases it references; it only
copies to the new version the previous application
version’s relationships to databases.

Delete-version deletes the version and re-routes
successor relationships around the deleted version.

If V already has a successor when create-version is
executed, then V′ begins another branch, that is, a new
line of descent from V. Merge is used to bring two
branches back together. Given two versions U and V,
neither of which is an ancestor of the other via the
Succeeds relationship, then applying Merge to U and V
makes V a successor of U. That is, Merge transforms
state (a) to state (b) below:

V

U

...
...

V

U

...
...

Succ

T T

(a) before Merge(U,V) (b) after Merge(U,V)

Usually, Merge updates the state of V to reflect
changes known to U but not to V or V’s other
predecessor(s). For example, if U and V are text files,
Merge may apply to V all changes that were made on
U’s branch after U and V’s latest common ancestor.

The states of versions along a branch are often saved as
deltas from a base value either forward deltas from
an initial value, or reverse deltas from a final value.
The latter is usually preferable since it enables fast
access to the latest version. The mechanism for
computing and interpreting deltas, and the related
algorithm for merging, is often type- or class-specific

(i.e. it’s different for text, binary, and structures). So
version operations need to be parameterized by these
type-specific mechanisms on the type of object being
versioned. For example, a set of interfaces to such type-
specific mechanisms is documented by
IReconcilableObject and related ActiveX
interfaces [11].

Some relationships are version-independent. For
example, it is common to have a relationship to the
latest version along a branch, such as a relationship
from a C++ makefile to a file it references by a
#include, meaning that the latest version of the included
file should be used.

It may also be useful to store properties that apply to a
version set, that is, to the set of all versions of an
object. Each version in the version set implicitly has the
same value of these properties.

A variety of naming schemes is used for versioning, no
one of which seems especially compelling. Version
names could simply be assigned sequentially. They may
be constructed by concatenating the branch name with a
sequential version number within the branch, such as
1.1 and 1.2 for two branches that succeed 1, and 1.1.1.1
and 1.1.1.2 for two branches that succeed 1.1, as in
Intersolv’s PVCS. The branch name could be a suffix
of the version name, such as V3.Unix and
V3.Windows, where Unix and Windows are branches
of the root version. Major/minor version numbers could
be used, even within a single branch, such as 1.1, 1.2,
2.0, and 3.0.

Version semantics could be implemented in the
information model, outside the repository engine. But
often, versioning is supported by the engine to optimize
certain behavior, such as storage efficiency of
relationships or speed of computing version-
independent relationships. Most repository engines
implement their own versioning semantics even if
they’re implemented on an OODBMS that supports
versioning. It would be interesting to understand better
why this is true. Do the OODBMSs specify too much
policy? Are they insufficiently general? Too slow for
certain operations? Etc.

2.6 Configuration Management
A configuration represents a set of objects, such as a
project’s components, a catalog of reusable objects, or
a workspace. A configuration contains configuration
items, which can be versioned or non-versioned
objects. A configuration itself can be a configuration
item, that is, configurations can be nested. And

configurations can be versioned, as is common for a
development project.

The main operations on a configuration are to attach
and detach configuration items. Like other elementary
repository operations, the attach method may propagate
across relationships. For example, attaching a table
definition to a configuration implicitly attaches the
column definitions and index definitions that it
contains. For example, this is called the “expansion” of
the object (i.e. table definition) in Sterling Software’s
(formerly Texas Instruments) Composer tool for
application development.

There is usually a get-contents method to get the
contents of a configuration, which takes a transitive
closure. Again, some relationships propagate get-
contents, such as project attaches database definition,
database definition contains table definition, table
definition contains column definition, and column
definition has index. This transitive containment
implies that detach doesn’t always remove an object
from a configuration. For example, if a project attaches
a database definition and attaches a table definition,
and the database definition contains the table definition,
then detaching the table definition from the project
does not remove the table definition from the contents
of the project.

Some tools require that they work in a version-free
manner. That is, they want to use a configuration whose
contents include only one version of each object and
they want to access those objects without referring to
version names. This can be done by assigning a
precedence to each relationship of a given type
emanating from an object. Get-contents can therefore
select the version of each object whose path has higher
precedence than any other path to the object.

For the most part, basic object and version operations
applied to configurations can use their standard
semantics, though there are some special cases to
consider.

• Applying the create-version and copy operations to
a configuration copies attached relationships but
not the objects on the other end of those
relationships.

• Since the configuration is the origin of its attaches
relationships, you cannot attach an object to a
frozen configuration.

• Freezing a configuration should propagate to its
attached objects. An alternative semantics is that
all of a configuration’s attached objects must be

frozen before the configuration can be successfully
frozen.

• Deleting a configuration does not propagate to its
attached objects (since they may be shared by other
configurations).

• Merging a configuration C1 into another
configuration C2 implies merging the
configuration items that appear in both. Care is
needed with a configuration item that appears in
only one of the configurations, since it may have
been explicitly detached from the other and should
not be reintroduced.

Some models use a relationship type to capture
configuration semantics, rather than using configuration
and configuration item as object types. For example, in
PCTE, composite links (“link” = “relationship”) serve
this function. Composite links have pendant delete
semantics, and you can’t add a composite link to a
stable (i.e. frozen) origin object. Embedding
configuration semantics in a relationship type rather
than an object type has some advantages: it can avoid
the need for a special attaches relationship type and can
simplify the specification of the get-contents method.
Instead, each relationship type is simply tagged as
composite, meaning that it has containment semantics
and propagates get-contents.

In some systems, configurations are implicitly
versioned. For example, in Microsoft’s Visual
SourceSafe, a new version of a configuration (called a
“project”) is implicitly created whenever a file (i.e.
object) is added to or deleted from the configuration,
and whenever a new version is created of a file in the
configuration. Ordinarily, users reference the latest
state of a configuration. However, since every
operation has a timestamp, an older version of a
configuration can be selected based on timestamp.

Configurations are often used to scope the objects a
tool is working on. For example, a configuration could
be used as a workspace, in the same way that a file
directory is used for file-based tools. Therefore, it is
often desirable that, when following a relationship, only
relationships to other objects in the configuration are
returned. This requires some performance optimization,
since a popular object may have a huge number of
relationships to objects outside the configuration. Other
operations might also be scoped by the configuration.
For example, create-version could replace the previous
version of the object in the configuration. Create-object
could attach the new object to the configuration. A
query could be applied only to the content of the
configuration. Etc. Some of these operations are
challenging to implement efficiently.

A configuration that is used as a workspace usually gets
its content from larger shared configurations, such as
ones containing all the objects in an application or in a
database definition. When the workspace is initialized
and every time it is opened, you want to get the latest
versions of the relevant objects. A configuration
definition can be useful for this purpose. The definition
is essentially a query. When executed, it identifies
objects to be added to the configuration.

2.7 Other Database System
Amenities

A repository engine is a persistent storage manager, so
it should have the usual amenities that come with any
database system. For example, it should support the
following features:

• a query language, preferably a dialect of SQL that
is a superset of the standard.

• transactions if not nested transactions, then at
least it should count nested invocations of the
begin-transaction operation and treat them as null
operations, so that a method that brackets a
transaction does not actually start a new
transaction if it is called from within a transaction.

• a robust fine-grained security model, such as
associating privileges with users and access control
lists with objects or configurations.

• distribution, such as relationships that connect
objects in different repository databases.

• replication, with similar functionality to the
primary site and multi-master methods offered by
today’s relational database systems [5].

Most repository engines and OODBMSs have
incomplete support in this area when compared to
relational database systems. This has driven many
vendors to layer their repository engines on relational
DBMSs, to immediately gain many of these features.

3 Information Models
As we discussed in the introduction, an important
distinguishing feature of repository systems compared
to OODBMSs is the information models they offer.
This has always been a controversial issue for tool
vendors. On the one hand, tool vendors do not want to
needlessly repeat the design of information models that
are already well understood. And tool vendors’
customers want tools purchased from different vendors

to interoperate. On the other hand, tool functionality is
intimately linked to the content of the underlying
information model, so including certain information in
a standard model reduces some vendors’ competitive
advantage. This cuts both ways if information is left
out of a standard information model, then a vendor’s
favorite feature may not work for customers that insist
on limiting themselves to the standard.

It is a fact of life that information models need to
change in response to changing tool requirements. It
therefore appears that the best approach is to have the
standard model include core functions that most tool
vendors and customers can agree to, and to have tool
vendors rely on information model extensibility to add
the key features that allow them to differentiate their
tools. Over time, the best vendor-specific concepts will
migrate into the standard model.

To work, this approach requires that the repository be
easy to extend independently by different vendors. In
practice, this is a hard requirement to satisfy. For
example, suppose two vendors want to add independent
properties and methods to the same standard class.
They can each create a subclass of the standard class.
But if a customer wants to use both vendors’ tools at
the same time, then one of the vendors needs to
subclass (i.e. extend) the other vendors’ class. Since the
vendors may be unaware of each other’s extensions, the
extension mechanism must allow each vendor to install
an extension to a class without knowing about
extensions made by other vendors to the same class.
Most repository engines are unable to satisfy this
requirement.

Whatever their extensibility story, all repository
products ship with information models, and over time,
the size of the information models exceeds that of the
engine.

4 Summary
In this paper, we explained how a repository system is
different than an object-oriented database system:

• it includes a repository engine that typically has
more function than an OODBMS, and

• it includes information models that extend the
repository with the shared semantics of specific
kinds of tools.

This casts some doubt on whether the database
community has found the right abstraction for
OODBMSs. It also points to an opportunity for further
research into database system features and interfaces.

That is, looking at repository engine functions that are
not in OODBMSs may suggest areas where further
innovation in OODBMS functionality would be
worthwhile.

Acknowledgments
This paper is based in part on my repository tutorial at
the 1995 International Conference on Very Large Data
Bases, in Zurich. Many people helped uncover and sort
out the issues described here, especially Thomas
Bergstraesser, John Cheesman, Bill Dawson, David
Maier, Paul Sanders, and David Shutt. I thank them all
for their help.

References
1. Bernstein, P.A., “Middleware,” Communications

of the ACM, Vol. 39, No. 2 (Feb. 1996), pp. 86-98

2. Bernstein, P.A., “The Repository: A Modern
Vision,” Database Programming and Design,
Miller Freeman, December 1996, pp. 28-35.

3. Bernstein, P.A., U. Dayal, “An Overview of
Repository Technology,” International Conference
on Very Large Data Bases, Morgan Kaufmann
Publishers, San Francisco, 1994, pp. 705-713.

4. Bernstein, P.A., B. Harry, P.J. Sanders, D. Shutt, J.
Zander, “The Microsoft Repository,” Invited
Keynote address, Proc. of 23rd International
Conference on Very Large Data Bases (Athens,
Greece), Morgan Kaufmann Publishers, San
Francisco, 1997, pp. 3-12.

5. Bernstein, P.A., E. Newcomer, Principles of
Transaction Processing, Chapter 10, Morgan
Kaufmann Publishers, San Francisco, 1996.

6. Cattell, R.G.G., D. Barry, D. Bartels, M. Berler, J.
Eastman, S. Gamerman, D. Jordan, A. Springer, H.
Strickland, D. Wade, “The Object Database
Standard: ODMG 2.0, Morgan Kaufmann
Publishers, San Francisco, CA, 1997.

7. Ceri, S. and J. Widom (editors), Active Database
Systems: Triggers and Rules for Advanced
Database Processing, Morgan Kaufmann
Publishers, San Francisco, CA, 1995.

8. Constantopoulos, P., M. Jarke, J. Mylopoulos, Y.
Vassiliou, “The Software Information Base: A
Server for Reuse,” VLDB Journal, 4 (1995),
Boxwood Press, Pacific Grove, CA, pp. 1- 43.

9. Jarke, M., C. Maltzahn, T. Rose, “Sharing
Processes: Team Coordination in Design
Repositories,”, Int’l Journal of Intelligent and
Cooperative Information Systems 1,1 (Mar 92),
World Scientific Publishing, Singapore, pp. 145-
168.

10. Katz, R.H. “Toward a Unified Framework for
Version Modeling in Engineering Databases,”
ACM Computing Surveys 22, 4 (Dec. ’90).

11. Microsoft Corp., Reconciliation, Oct. 30, 1996,
http://www.microsoft.com/msdn/sdk/platforms/doc
/sdk/win32/95guide/src/briefcas_2.htm

12. Object Management Group, “Relationship Service
Specification,” Chapter 9 of CORBA Services:
Common Object Services Specification,
Framingham, MA, March 1996.

13. Object Management Group, “Unified Modeling
Language, Version 1.1,” http://www.rational.com,
Sept, 1997. (Joint submission by Rational
Software, Microsoft, Hewlett-Packard, Oracle,
Sterling Software, MCI Systemhouse, Unisys,
ICON Computing, IntelliCorp, i-Logix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon,
Reich Technologies, Softeam)

14. Rogerson, Dale, Inside COM, Microsoft Press,
Redmond, Washington, 1997.

15. Rumbaugh, J. “Controlling Propagation of
Operation using Attributes on Relations,” Conf. on
Object-Oriented Programming Systems and
Languages (OOPSLA), 1988, pp. 285-296.

16. Wakeman, L. and J. Jowett, “PCTE - The Standard
for Open Repositories,” Prentice-Hall, ‘93.

