
Scaling Dynamic Hash Tables on Real Persistent Memory

Baotong Lu1
⇤

Xiangpeng Hao2 Tianzheng Wang2 Eric Lo1

1The Chinese University of Hong Kong 2Simon Fraser University
{btlu, ericlo}@cse.cuhk.edu.hk {xha62, tzwang}@sfu.ca

ABSTRACT
Byte-addressable persistent memory (PM) brings hash tables
the potential of low latency, cheap persistence and instant
recovery. The recent advent of Intel Optane DC Persistent
Memory Modules (DCPMM) further accelerates this trend.
Many new hash table designs have been proposed, but most
of them were based on emulation and perform sub-optimally
on real PM. They were also piecewise and partial solutions
that side-stepped many important properties, in particular
good scalability, high load factor and instant recovery.

We present Dash, a holistic approach to building dynamic
and scalable hash tables on real PM hardware with all the
aforementioned properties. Based on Dash, we adapted two
popular dynamic hashing schemes (extendible hashing and
linear hashing). On a 24-core server with Optane DCPMM,
compared to state-of-the-art, Dash can achieve up to ⇠3.9⇥
higher performance with up to over 90% load factor and an
instant recovery time of 57ms regardless of data size.

1. INTRODUCTION
Dynamic hash tables that can grow and shrink as needed

at runtime are a fundamental building block of many data-
intensive systems, such as database systems [11, 14] and
key-value stores [3, 15]. Persistent memory (PM) such as 3D
XPoint [1] promises byte-addressability, persistence, high ca-
pacity, low cost and high performance, all on the memory bus.
These features make PM very attractive for building dynamic
hash tables that persist and operate directly on PM, with
high performance and instant recovery. The recent release
of Intel Optane DC Persistent Memory Module (DCPMM)
brings this vision closer to reality. Since PM exhibits several
distinct properties (e.g., asymmetric read/write speeds and
higher latency); blindly applying prior disk or DRAM based
approaches [2,7] would not reap its full benefits, necessitating
a departure from conventional designs.

c� Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment. This is a minor
revision of the paper entitled“Dash: Scalable Hashing on Per-
sistent Memory”, published in PVLDB, Vol. 13, No. 8, ISSN
2150-8097. DOI: https://doi.org/10.14778/3389133.3389134
⇤Work partially performed while at Simon Fraser University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

 0

 10

 20

 30

 1 4 8 16 24

M
ill

io
n

op
s/

s

Number of threads

CCEH
Level Hashing

CCEH (ideal)
Level Hashing (ideal)

 0
 10
 20
 30
 40

 1 4 8 16 24

M
ill

io
n

op
s/

s

Number of threads

Figure 1: Throughput of state-of-the-art PM hash tables
(CCEH [10] and Level Hashing [22]) for insert (left) and search
(right) operations on Optane DCPMM. Neither matches the
expected scalability.

1.1 Hashing on PM: Not What You Assumed!
There have been a new breed of hash tables specifically

designed for PM [10, 17, 22] based on DRAM emulation,
before actual PM was available. Their main focus is to reduce
cacheline flushes and PM writes for scalable performance.
But when they are deployed on real Optane DCPMM, we
find (1) scalability is still a major issue, and (2) desirable
properties are often traded o↵.

Figure 1 shows the throughput of two state-of-the-art PM
hash tables [10,22] under insert (left) and search (right) op-
erations, on a 24-core server with Optane DCPMM running
workloads under uniform key distribution (details in Sec-
tion 6). As core count increases, neither scheme scales for
inserts, or even read-only search operations. Corroborating
with recent work [8, 20], we find the main culprit is Optane
DCPMM’s limited bandwidth, which is ⇠3–14⇥ lower than
DRAM’s. Although the server is fully populated to provide
the maximum possible bandwidth, excessive PM accesses can
still easily saturate and prevent the system from scaling. We
describe two main sources of excessive PM accesses that were
not given enough attention before, followed by a discussion
of important but missing functionality in prior work.
Excessive PM Reads. Reducing PM writes has been a

main theme in recent work, but many existing solutions incur
more PM reads. We note that it is also imperative to reduce
PM reads. Di↵erent from the device-level behavior (PM reads
being faster than writes), end-to-end write latency (i.e., the
entire data path including CPU caches and write bu↵ers
in the memory controller) is often lower than reads [20].
The reason is while PM writes can leverage write bu↵ers,
PM reads mostly touch the PM media due to hash table’s
inherent random access patterns. In particular, existence
checks in record probing constitute a large proportion of such
PM reads: to find out if a key exists, multiple buckets may

SIGMOD Record, March 2021 (Vol. 50, No. 1) 87

have to be searched, incurring many cache misses and PM
reads when comparing keys.

Heavyweight Concurrency Control. Most prior work
side-stepped the impact of concurrency control. Bucket-
level locking has been widely used [10, 22], but it incurs
additional PM writes to acquire/release read locks, further
pushing bandwidth consumption towards the limit. Lock-
free designs [17] can avoid PM writes for read-only probing
operations, but are notoriously hard to get right, more so on
PM when safe persistence is necessary [19].

Neither record probing nor concurrency control typically
prevents a well-designed hash table to scale on DRAM. How-
ever, on PM they can easily exhaust PM’s limited bandwidth.
These issues call for new designs that can reduce unneces-
sary PM reads during probing and lightweight concurrency
control that further reduces PM writes.

Missing Functionality. We observe in prior designs,
necessary functionality was often traded o↵ for performance
(though scalability is still an issue on real PM). (1) Indexes
could occupy more than 50% of memory capacity [21], so
it is critical to improve load factor (records stored vs. hash
table capacity). Yet high load factor is often sacrificed by
organizing buckets using larger segments in exchange for
smaller directories (fewer cache misses) [10]. As we describe
later, this in turn can trigger more pre-mature splits and
incur even more PM accesses, impacting performance. (2)
Variable-length keys are widely used in reality, but prior
approaches rarely discuss how to e�ciently support them.
(3) Instant recovery is a unique, desirable feature that could
be provided by PM, but is often omitted in prior work which
requires a linear scan of the metadata whose size scales with
data size. (4) Prior designs also often side-stepped the PM
programming issues (e.g., PM allocation), which impact the
proposed solution’s scalability and adoption in reality.

1.2 Dash
We present Dash, a holistic approach to dynamic and

scalable hashing on real PM without trading o↵ desirable
properties. Dash uses a combination of new and existing
techniques that are carefully engineered to achieve this goal.
1 We adopt fingerprinting [12] that was used in PM tree
structures to avoid unnecessary PM reads during record prob-
ing. The idea is to generate fingerprints (one-byte hashes) of
keys and place them compactly to summarize the possible
existence of keys. This allows a thread to tell if a key possibly
exists by scanning the fingerprints which are much smaller
than the actual keys. 2 Instead of traditional bucket-level
locking, Dash uses an optimistic, lightweight flavor of it that
uses verification to detect conflicts, rather than (expensive)
shared locks. This allows Dash to avoid PM writes for search
operations. With fingerprinting and optimistic concurrency,
Dash avoids both unnecessary reads and writes, saving PM
bandwidth and allowing Dash to scale well. 3 Dash re-
tains desirable properties. We propose a new load balancing
strategy to postpone segment splits with improved space uti-
lization. To support instant recovery, we design Dash to only
perform a constant amount of work upon restart (reading
and possibly writing a one-byte counter) and amortize the
“real” recovery work to runtime. Compared to prior work that
handles PM programming issues in ad hoc ways, Dash uses
well-defined PM programming models (PMDK [4], one of the
most popular PM libraries) to systematically handle crash
consistency, PM allocation and achieve instant recovery.

Although these techniques are not all new, Dash is the first
to integrate them for building hash tables that scale without
sacrificing features on real PM. Techniques in Dash can be
applied to various static and dynamic hashing schemes. In
this paper, we focus on dynamic hashing and apply Dash
to two classic and widely-used approaches: extendible hash-
ing [2, 10] and linear hashing [7]. Evaluation using a 24-core
Intel Xeon Scalable CPU and 768GB of Optane DCPMM
shows that compared to existing state-of-the-art [10, 22],
Dash achieves up to ⇠3.9⇥ better performance on realistic
workloads, up to over 90% of load factor with high space
utilization and the ability to instantly recover in 57ms re-
gardless of data size. Our implementation is open-source at:
https://github.com/baotonglu/dash.

2. BACKGROUND
We first give necessary background on PM hardware and

dynamic hashing, then discuss issues in prior PM hash tables.

2.1 Intel Optane DC Persistent Memory
Hardware. We target Optane DCPMMs (in DIMM form

factor). In addition to byte-addressability and persistence,
DCPMM o↵ers high capacity at a price lower than DRAM’s.
Similar to other work [10,22], we leverage its AppDirect mode,
as it provides more flexibility and persistence guarantees.
System Architecture. Current mainstream CPU archi-

tectures (e.g., Intel Cascade Lake) place DRAM and PM
behind multiple levels of volatile CPU caches. Data is not
guaranteed to be persisted in PM until a cacheline flush
instruction (e.g., CLWB [5]) is executed or other events that
implicitly cause cacheline flush occur. Writes to PM may be
reordered, requiring fences to avoid undesirable reordering.
The application (hash tables in our case) must issue fences
and cacheline flushes to ensure correctness. After a cacheline
of data is flushed, it will reach the asynchronous DRAM
refresh (ADR) domain which includes a write bu↵er and a
write pending queue with persistence guarantees upon power
failure. Once data is in the ADR domain (not necessarily
the DCPMM media), it is considered persistent.

Future CPU and DCPMM generations (e.g., the upcom-
ing Intel Ice Lake CPUs) may feature extended ADR (eADR)
which further includes the CPU cache in the ADR domain [16],
e↵ectively providing persistent CPU caches and thus elimi-
nating the need for cacheline flushes (fences are still needed).
The current implementation of Dash still issues cacheline
flushes, however, our preliminary experiments that skip cache-
line flushes on existing Cascade Lake CPUs showed eADR’s
potential impact is very small for hash tables. We attribute
the reason to hash table’s inherently random access patterns.
Performance Characteristics. At the device level, as

many previous studies have shown, PM exhibits asymmetric
read and write latency, with writes being slower. It exhibits
⇠300ns read latency, ⇠4⇥ longer than DRAM’s. More recent
studies [20], however revealed that on Optane DCPMM, read
latency as seen by the software is often higher than write
latency. This is attributed to the fact that writes (store
instructions) commit (also ensure persistence) once the data
reaches the ADR domain at the memory controller rather
than when reaching the PM media. On the contrary, a
read operation often needs to touch the actual media unless
the data being accessed is cache-resident (which is rare in
data structures with inherent randomness, e.g., hash tables).
Tests also showed that the bandwidth of DCPMM depends

88 SIGMOD Record, March 2021 (Vol. 50, No. 1)

4
12
32

002 012 102 112

(a) Before inserting 30.
Global depth is 2.

5
1
3
90

10
11
31

33
15

4
12
32

0002 0012 0102 0112 1002 1012 1102 1112

5
1
90

10
11
31

33
15

3
30

(b) After inserting 30. Global depth
becomes 3 and directory doubled.

Directory:

Buckets:

Local depth: 2 2 2 2 2 3 2 2 3

Figure 2: An example of extendible hashing.

on many factors of the workload. In general, compared to
DRAM, it exhibits ⇠3⇥/⇠8⇥ slower sequential/random read
bandwidth. The numbers for sequential/random write are
⇠11⇥/⇠14⇥. Notably, DCPMM exhibits very limited per-
formance for small, random accesses [20], which are inherent
access pattern for hash tables. These properties exhibit a
stark contrast to prior estimates [13,18], and lead to signifi-
cantly lower performance of many prior designs on DCPMM
than originally reported. Thus, it is important to reduce both
PM reads and writes for higher performance.

2.2 Dynamic Hashing
Now we give an overview of extendible hashing [2] and lin-

ear hashing [7]. We focus on their memory-friendly versions
which PM-adapted hash tables were based upon.

Extendible Hashing. The crux of extendible hashing is
its use of a directory to index buckets so that they can be
added and removed dynamically at runtime. When a bucket
is full, it is split into two new buckets with keys redistributed.
The directory may get expanded (doubled) if there is not
enough space to store pointers to the new bucket. Figure 2(a)
shows an example with four buckets, each of which is pointed
to by a directory entry. In the figure, indices of directory
entries are shown in binary. The two least significant bits
(LSBs) of the hash value are used to select a bucket; we call
the number of su�x bits being used here the global depth. The
hash table can have at most 2global depth directory entries
(buckets). A search operation follows the pointer in the
corresponding directory entry to probe the bucket. Each
bucket also has a local depth. The number of directory entries
pointing to one bucket is 2global depth�local depth. This allows
us to determine whether a directory doubling is needed: if a
bucket whose local depth equals the global depth is split (e.g.,
bucket 012 in Figure 2(a)), then the directory needs to be
doubled to accommodate the new bucket. Figure 2 shows an
example of splitting the full bucket 012 when an inserting key
30 is hashed into that bucket. After bucket splitting, local
depth of the splitting bucket needs to be properly updated.
Choosing a proper hash function that evenly distributes keys
to all buckets is an important but orthogonal problem.

Linear Hashing. In-memory linear hashing takes a sim-
ilar approach to organizing buckets using a directory with
entries pointing to individual buckets [7]. The main di↵er-
ence compared to extendible hashing is that in linear hashing,
the bucket to be split is chosen “linearly.” That is, it keeps
a pointer (page ID or address) to the bucket to be split
next and only that bucket would be split in each round, and
advances the pointer to the next bucket when the split of
the current bucket is finished. Therefore, the bucket being
split is not necessarily the same as the bucket that is full

as a result of inserts, and eventually the overflowed bucket
will be split and have its keys redistributed. If a bucket is
full and an insert is requested to it, more overflow buckets
will be created and chained together with the original, full
bucket. Compared with extendible hashing, linear hashing
could have smaller directory size by proper organization [7].

2.3 Dynamic Hashing on PM
To reduce PM accesses on dynamic extendible hashing,

CCEH [10] groups buckets into larger segments. Each di-
rectory entry then points to a segment which consists of a
fixed number of buckets. This design reduces the size of the
directory, making it more likely to be cached entirely by the
CPU, which helps reducing access to PM. Note that split
now happens at the segment (instead of bucket) level. A
segment is split once any bucket in it is full, even if the other
buckets in the segment still have free slots, which results in
low load factor and more PM accesses. To reduce such pre-
mature splits, linear probing can be used to allow a record to
be inserted into a neighbor bucket. However, this improves
load factor at the cost of more PM accesses. Thus, most
approaches bound probing distance to a fixed number, e.g.,
CCEH probes no more than four cachelines. However, our
evaluation (Section 6) shows that linear probing alone is not
enough in achieving high load factor.

Another important aspect of dynamic PM hashing is to
ensure failure atomicity, particularly during segment split
which involves lots of PM writes. Existing approaches such as
CCEH side-step PM management issues surrounding segment
split, having the risk of permanent PM leaks.

3. DESIGN PRINCIPLES
The discussions in Section 2 lead to the following design

principles of Dash:

• Avoid both Unnecessary PM Reads and Writes.
Probing performance impacts not only search operations,
but also all the other operations. Therefore, in addition
to reducing PM writes, Dash must avoid unnecessary PM
reads to conserve bandwidth and alleviate the impact of
high end-to-end read latency.

• Lightweight Concurrency. Dash must scale well on
multicore machines with persistence guarantees. Given the
limited bandwidth, concurrency control must be lightweight
to incur not much overhead (i.e., avoid PM writes for search
operations, such as read locks). Ideally, it should also be
relatively easy to implement.

• Full Functionality. Dash must not sacrifice or trade
o↵ important features that make a hash table useful in
practice. In particular, it needs to support instant recovery
and variable-length keys and achieve high space utilization.

4. Dash FOR EXTENDIBLE HASHING
Based on the principles in Section 3, we describe Dash

in the context of Dash-Extendible Hashing (Dash-EH). We
discuss how Dash applies to linear hashing in Section 5.

4.1 Overview
Similar to prior approaches [7, 10], Dash-EH uses segmen-

tation. As shown in Figure 3, each directory entry points to
a segment which consists of a fixed number of normal buckets
and stash buckets for overflow records from normal buckets

SIGMOD Record, March 2021 (Vol. 50, No. 1) 89

Lock Segment 0:
Bucket

b-1
Bucket

b
Bucket

b+1
Bucket

b+2
. Stash

buckets

Segment n:
Bucket

b-1
Bucket

b
Bucket

b+1
Bucket

b+2
. Stash

buckets

. . .

3. Stash

2. Displace

1. Balanced insert

Version
Clean?

Directory

Figure 3: Overall architecture of Dash-EH.

which did not have enough space for the inserts. The lock,
version number and clean marker are for concurrency control
and recovery, which we describe later.

Figure 4 shows the internals of a bucket. We place the
metadata used for bucket probing on the first 32 bytes,
followed by multiple 16-byte record slots. The first 8 bytes in
each slot store the key (or a pointer to it for keys longer than
8 bytes). The remaining 8 bytes store the payload which
is opaque to Dash; it can be an inlined value or a pointer,
depending on the application’s need. The size of a bucket
is adjustable. In our current implementation it is set to
256-byte, which allows us to store 14 records per bucket.

The 32-byte metadata includes key data structures for
Dash-EH to handle hash table operations and realize the
design principles. It starts with a 4-byte version lock for op-
timistic concurrency control (Section 4.4). A 4-bit counter
records the number of records stored in the bucket. The
allocation bitmap reserves one bit per slot, to indicate
whether the corresponding slot stores a valid record. What
follows are structures such as fingerprints and overflow meta-
data to accelerate probing and improve load factor.

4.2 Fingerprinting
Bucket probing (i.e., search in one bucket) is a basic op-

eration needed by all the operations supported by a hash
table (search, insert and delete) to check for key existence.
Searching a bucket typically requires a linear scan of the
slots. This can incur lots of cache misses and is a major
source of PM reads, especially so for long keys stored as
pointers. It is a major reason for hash tables on PM to
exhibit low performance. Moreover, such scans for negative
search operations (i.e., when the target key does not exist)
are completely unnecessary.

We employ fingerprinting [12] to reduce unnecessary scans.
It was used by trees to reduce PM accesses with an amortized
number of key loads of one. We adopt it in hash tables to
reduce cache misses and accelerate probing. Fingerprints are
one-byte hashes of keys for predicting whether a key possibly
exists. We use the least significant byte of the key’s hash
value. To probe for a key, the probing thread first checks
whether any fingerprint matches the search key’s fingerprint.
It then only accesses slots with matching fingerprints, skip-
ping all the other slots. If there is no match, the key is
definitely not present in the bucket.

4.3 Bucket Load Balancing
Segmentation reduces cache misses on the directory (by

reducing its size). However, as we describe in Sections 2.3
and 6, this is at the cost of load factor: in a naive implemen-
tation the entire segment needs to be split if any bucket is

Metadata Records (key-value pairs)

Version lock (4 bytes) Counter Membership Alloc. bitmap

32 bytes 224 bytes (16-byte x 14 pairs)

. . . 14 + 4 fingerprintsFP 1 FP 2

0
64
208

Overflow fingerprint bitmap Overflow bit
Stash bucket index Overflow membership Overflow count

Unused

216
240
256

Figure 4: Dash-EH bucket layout. The metadata optimizes
probing and load factor, followed by records.

full, yet other buckets in the segment may still have much
free space. We observe that the key reason is load imbalance
caused by the (inflexible) way buckets are selected for insert-
ing new records, i.e., a key is only mapped to a single bucket.
Dash uses a combination of techniques for new inserts to
balance loads among buckets while limiting PM reads needed.
Figure 3 shows how the insert operation works in Dash-EH
at a high level, with three key techniques described below.
Balanced Insert. To insert a record whose key is hashed

into bucket b (hash(key) = b), Dash probes both bucket b
and b + 1 and inserts the record into the bucket that is less
full (Figure 3 step 1). The rationale behind is to improve load
factor by amortizing the load of hot buckets while limiting
PM accesses (at most two buckets).
Displacement. If both the target bucket b and probing

bucket b + 1 are full, Dash-EH tries to displace (move) a
record from bucket b or b + 1 to make room for the new
record. With balanced insert, a record in bucket n + 1 can
be moved to n + 2 if (1) it could be inserted to either bucket
(i.e., n + 2 is the probing bucket of the record being moved),
and (2) bucket n + 2 has a free slot. Thus, for a record with
hash(key) = b and both b and b + 1 are full, we first try to
find a record in b + 1 whose hash(key) = b + 1 and move it
to bucket b + 2. If such a record does not exist, we repeat
for bucket b but move a record with hash(key) = b � 1 (the
target bucket). In essence, displacement follows a similar
strategy to balanced insert, but is for existing records. We
use a per-bucket membership bitmap (Figure 4) to indicate
which records could be selected for displacement, accelerating
this process.
Stashing. As shown in Figure 3, a tunable number of

stash buckets follow the normal buckets in each segment.
If a record cannot be inserted into its target bucket b nor
the probing bucket b + 1, we insert the record to a stash
bucket; we call these records overflow records. Stash buckets
use the same layout as that of normal buckets; probing of a
stash bucket follows the same procedure as probing a normal
bucket (see Section 4.2). While stashing can be e↵ective in
improving load factor, it could incur non-trivial overhead:
the more stash buckets are used, the more CPU cycles and
PM reads will be needed to probe them. This is especially
undesirable for negative search and uniqueness check in insert
operations, since both need to probe all stash buckets, despite
it may be completely unnecessary.

To solve this problem, we try to set up record metadata
including fingerprints in a normal bucket and only refer ac-
tual record access to the stash bucket. As Figure 4 shows,
four additional fingerprints per bucket and overflow meta-
data (bits 208-240) are reserved for overflow records stored

90 SIGMOD Record, March 2021 (Vol. 50, No. 1)

in stash buckets. These metadata could indicate whether the
searching key exists in the stash area, allowing early avoid-
ance of access to stash buckets (and save PM bandwidth).
We omit details here for space limitation. As Section 6 shows,
using 2–4 stash buckets per segment can improve load factor
to over 90% without imposing significant overhead.

4.4 Optimistic Concurrency
Dash employs optimistic locking, an optimistic flavor of

bucket-level locking inspired by optimistic concurrency con-
trol [6]. Insert operations will follow traditional bucket-level
locking to lock the a↵ected buckets. Search operations are
allowed to proceed without holding any locks (thus avoiding
writes to PM) but need to verify the read record. For this to
work, in Dash the lock consists of (1) a single bit that serves
the role of “the lock” and (2) a version number for detecting
conflicts (not to be confused with the version number in
Figure 3 for instant recovery). The inserting thread will
acquire bucket-level locks for the target and probing buckets
by trying the compare-and-swap (CAS) instruction [5] to set
the lock bit. After the insert is done, the thread releases the
lock by (1) resetting the lock bit and (2) incrementing the
version number by one, in one step using an atomic write.

To probe a bucket for a key, Dash first takes a snapshot
of the lock word and checks whether the lock is being held
by a concurrent writer (the lock bit is set). If so, it waits
until the lock is released and repeats. Then it is allowed to
read the bucket without holding any lock. Upon finishing its
operations, the reader thread will read the lock word again
to verify the version number did not change, and if so, it
retries the entire operation as the record might not be valid
as a concurrent write might have modified it.

4.5 Support for Variable-Length Keys
Dash stores pointers to variable-length keys, which is a

common approach [10,12, 22]. A knob is provided to switch
between the inline (fixed-length keys up to 8 bytes) and
pointer modes. Though dereferencing pointers may incur
extra overhead, fingerprinting largely alleviates this problem.
For negative search where the target key does not exist, no
fingerprint will match and so key probing will not happen at
all. For positive search, as we have discussed in Section 4.2,
the amortized number of key load (therefore the number
cache misses caused by following the key pointer) is one [12].

4.6 Record Operations
Now we present how Dash-EH performs insert, search and

delete operations on PM with persistence guarantees.
Insert. Section 4.3 presented the high-level steps for insert;

here we focus on the bucket-level. The inserting thread first
writes and persists the new record in bucket, and then set
up the metadata (fingerprint, allocation bitmap, counter
and membership). The CLWB and fence are then issued to
persist all the metadata. Once the corresponding bit in the
bitmap is set, the record is visible to other threads. If a
crash happens before the bitmap is persisted, the new record
is regarded as invalid; otherwise, the record is successfully
inserted. This allows us to avoid expensive logging while
maintaining consistency.

Displacing a record needs two steps: (1) inserting it into
the new bucket and (2) deleting it from the original bucket.
In case a crash happens before step 2 finishes, a record
will appear in both buckets. This necessitates a duplicate

4
12
32
40

002 012 102 112

(b) Allocate a new segment
and do the rehashing.

L: 1 2 2 1 2 2 2 2 2 2 2

002 012 102 112

(a) Initial state. (c) Update the directory
entry and local depth.

002 012 102 112

4
32

12
40

10
11
31

33
15

10
11
31

33
15

4
32

12
40

10
11
31

33
15

Figure 5: Segment split in Dash-EH; the global depth is 2.

detection mechanism upon recovery, which is amortized over
runtime (see Section 4.8). If the insert has to happen in a
stash bucket, we set the overflow metadata in the normal
bucket. This cannot be done atomically with 8-byte writes
and may need a (complex) protocol for crash consistency.
We note that the overflow metadata is an optimization and
does not influence correctness: records can still be found
correctly even without it. So we do not explicitly persist
it and rely on the lazy recovery mechanism to build it up
gradually (described later).
Search. With balanced insert and displacement, a record

could be inserted into its target bucket b where b = hash(key)
or its probing bucket b + 1. A search operation then has to
check both if the record is not found in b. If neither bucket
contains the record, it might be stored in a stash bucket. It
will first probe the overflow metadata area of bucket b and
access the stash buckets if necessary.
Delete. To delete a record in the bucket, we reset the

corresponding bit in the allocation bitmap, decrement the
counter and persist these changes. Then the slot becomes
available for future reuse. To delete a record from a stash
bucket, we also need to clear the corresponding overflow
metadata stored in the target bucket.

4.7 Structural Modification Operations
After a thread exhausted all the options to insert a record

into a bucket, it triggers a segment split that may expand
the directory. To split a segment S, we (1) allocate a new
segment N , (2) rehash keys in S and redistribute records in
S and N , and (3) attach N to the directory and set the local
depth of N and S. These steps cause the structure of the
hash table to change and must be made crash consistent on
PM while maintaining high performance.

For crash consistency, Dash-EH chains all segments using
side links and each segment has a state variable that indi-
cates whether the segment is in an SMO and whether it is
the one being split or the new segment. An initial value of
zero indicates the segment is not part of an SMO. Figure 5
shows an example. Note that Dash-EH uses the most sig-
nificant bits (MSBs) of hash values to address and organize
segments and buckets, which reduces cacheline flushes in the
directory during splits [10]. To split a segment S, we first
mark its state as SPLITTING and allocate a new segment
N whose address is stored in the side link of S. N is then
initialized to carry S’s side link as its own. Its local depth
is set to the local depth of S plus one. Then, we change
N ’s state to NEW to indicate this new segment is part of
a split SMO for recovery purposes (see Section 4.8). We
rely on PM programming libraries (PMDK [4]) to atomically
allocate and initialize the new segment; in case of a crash,
the allocated PM block is guaranteed to be either owned by
Dash or the allocator and will not be permanently leaked.

SIGMOD Record, March 2021 (Vol. 50, No. 1) 91

After initialization, we finish up step 2 by redistributing
records between N and S. Records moved from S to N are
deleted in S after they are inserted into N . Note that the
rehashing/redistributing process does not need to be done
atomically: if a crash happens in the middle of rehashing,
upon (lazy) recovery we redo the rehashing process with
uniqueness check to avoid repeating work for records that
were already inserted into N before the crash; We describe
more details later in Section 4.8. Figure 5(b) shows the state
of the hash table after step 2. Then the directory entry
for N and the local depth of S are updated as shown in
Figure 5(c). Similarly, these updates are conducted using
an atomic PMDK transaction which may use any approach
such as lightweight logging. Many other systems avoid the
use of logging to maintain high performance, largely because
of the frequent pre-mature splits. But split is much rarer in
Dash thanks to bucket load balancing that gives high load
factor; this allows Dash-EH to employ PMDK transactions
that abstracts away many details and eases implementation.

4.8 Instant Recovery
Dash provides truly instant recovery by requiring a con-

stant amount of work (reading and possibly writing a one-
byte counter), before the system is ready to accept user
requests. We add a global version number V and a clean
(boolean) marker shown in Figure 3, and a per-segment ver-
sion number. The clean marker denotes whether the system
was shutdown cleanly; V tells whether recovery (during run-
time) is needed. Upon restart, if clean is false (no clean shut
down), we increment V by one and start to handle requests.
For both clean shutdown and crash cases, “recovery” only
involves reading clean and possibly bumping V . The actual
recovery work is amortized over segment accesses.

To access a segment, the accessing thread first checks
whether the segment version matches V . If not, the thread
(1) recovers the segment to a consistent state before doing
its original operation (e.g., insert or search), and (2) sets
the segment’s version number to V so that future accesses
can skip the recovery pass. Recovering a segment needs four
steps: (1) clear bucket locks, (2) remove duplicate records
caused by displacement, (3) rebuild overflow metadata, and
(4) continue the ongoing SMO. With such lazy recovery
approach, a segment is not recovered until it is accessed.

5. Dash FOR LINEAR HASHING
We present Dash-LH, Dash-enabled linear hashing that

uses the building blocks discussed previously. We focus on
the high-level design decisions specific to linear hashing; more
details can be found in our original VLDB paper [9].

Figure 6 shows the overall structure of Dash-LH. Simi-
lar to Dash-EH, Dash-LH also uses segmentation and splits
at the segment level. However, we follow the linear hash-
ing approach to always split the segment pointed to by the
Next pointer, which is advanced after the segment is split.
Since the segment to be split is not necessarily full, full
segments need to be able to temporarily accommodate over-
flow records, e.g., using linked lists. Traversing linked lists
would incur many cache misses, which is a huge penalty for
PM hash tables. We leverage stashing in Dash and use an
adjustable number of stash buckets. In addition to a fixed
number of stash buckets per segment, we store a linked list of
stash buckets. A segment split is triggered whenever a stash
bucket is allocated to accommodate overflow records. Dash-

...Directory:

Segments:

N = 3

Next
Next Split

Segment Index: 0 1 2 3 4 5 6 7 8 9

Figure 6: Overall design of Dash-enabled linear hashing.

LH uses larger split unit (segment) and chaining unit (stash
bucket rather than individual records), reducing chain length
(therefore pointer chasing and cache misses). The overflow
metadata and fingerprints further alleviate the performance
penalty brought by the need to search stash buckets. To
reduce directory size for better cache locality, we also intro-
duce a hybrid expansion scheme which increases segment size
exponentially. Overall, as we show in Section 6, Dash-LH
can also achieve near-linear scalability on realistic workloads.

6. EVALUATION
We evaluate Dash and compare it with state-of-the-art PM

hash tables. Through experiments we confirm the following:

• Dash-enabled hash tables (Dash-EH and Dash-LH) scale
well on multicore servers with real Optane DCPMM;

• The bucket load balancing techniques allow Dash to achieve
high load factor while maintaining high performance;

• Dash recovers instantly with a small, constant amount of
work upon restart, reducing service downtime.

Implementation. We implemented Dash-EH/LH using
PMDK [4], which provides primitives for crash-safe PM
management. The other hash tables under comparison
(CCEH [10] and level hashing [22]) were both proposed based
on DRAM emulation. We ported them to run on Optane
DCPMM using their original code and PMDK; details are
available in our original VLDB paper [9].
Setup. We run experiments on a server with a Intel

Xeon Gold 6252 CPU clocked at 2.1GHz, 768GB of Optane
DCPMM (6⇥128GB DIMMs on all six channels) in AppDi-
rect mode, and 192GB of DRAM (6⇥32GB DIMMs). The
CPU has 24 cores (48 hyperthreads) and 35.75MB of L3
cache. The server runs Arch Linux with kernel 5.5.3 and
PMDK 1.7. All the code is compiled using GCC 9.2 with all
optimization enabled. Threads are pinned to physical cores.
Parameters. For fair comparison, we set CCEH and

level hashing to use the same parameters as in their original
papers [10,22]. Level hashing uses 128-byte (two cachelines)
buckets. CCEH uses 16KB segments and 64-byte (one cache-
line) buckets, with a probing length of four. Dash-EH and
Dash-LH use 256-byte (four cachelines) buckets and 16KB
segments. Each segment has two stash buckets.
Benchmarks. We stress test each hash table using mi-

crobenchmarks. Unless otherwise specified, for all runs we
preload the hash table with 10 million records, then execute
190 million inserts (as an insert-only benchmark), 190 million
positive search/negative search/delete operations back-to-
back on the 200-million-record hash table. Similar to other
work [10,22], we use uniformly distributed random keys in
our workloads. Due to space limitation, we omit the results
over skewed workloads but all operations achieved similar
and even better performance for higher cache hit ratios. For
fixed-length key experiments, both keys and values are 8-byte

92 SIGMOD Record, March 2021 (Vol. 50, No. 1)

Level CCEH Dash-EH Dash-LH

 0
 1
 2
 3
 4

Insert Pos.
Search

Neg.
Search

Delete

M
ill

io
n

op
s/

s

 0
 1
 2
 3
 4

Insert Pos.
Search

Neg.
Search

Delete

M
ill

io
n

op
s/

s

Figure 7: Single-thread performance under fixed-length
keys (left) and variable-length keys (right).

integers; for variable-length key experiments, we use (point-
ers to) 16-byte keys and 8-byte values. The variable-length
keys are pre-generated by the benchmark before testing.

6.1 Single-thread Performance
We begin with single-thread performance to understand

the basic behaviors of each hash table. We first consider a
read-only workload with fixed-length keys. Read-only results
provide an upper bound performance on the hash tables
since no modification is done to the data structure. They
directly reflect the underlying design’s cache e�ciency and
concurrency control overhead.

As Figure 7 shows, Dash-EH can outperform CCEH/level
hashing by 1.9⇥/2.6⇥ for positive search. Dash-LH and Dash-
EH achieved similar performance because they use the same
building blocks, with bounded PM accesses and lightweight
concurrency control which reduces PM writes. For nega-
tive search, Dash achieved more significant improvement,
benefitting from fingerprints and the overflow metadata.

For inserts, Dash and CCEH achieved similar performance
(⇠2.5⇥ level hashing). Although CCEH has one fewer cache-
line flush per insert than Dash, Dash’s bucket load balancing
strategy reduces segment splits, improving both performance
and load factor. Level hashing exhibited much lower per-
formance due to more PM reads. It also requires full-table
rehashing that incurs many cacheline flushes. For deletes,
Dash outperforms CCEH/level hashing by 1.2⇥/1.9⇥ be-
cause of reduced cache misses.

The benefit of Dash is more prominent for variable-length
keys. As Figure 7 shows, Dash-EH/LH are 2⇥/5⇥ faster
than CCEH/level hashing for positive search. The numbers
are even greater (5⇥/15⇥) for negative search. These results
again show the e↵ectiveness of fingerprinting which all oper-
ations will benefit from, because they either directly query a
key (search/delete) or require uniqueness check (insert).

6.2 Scalability
We test both individual operations and a mixed workload

(20% insert and 80% search operations). For the mixed
workload, we preload the hash table with 60 million records
to allow search operations to access actual data.

Figure 8 plots how each hash table scales under a varying
number of threads and fixed-length keys. For insert opera-
tions, level hashing exhibits the worst scalability mainly due
to full-table rehashing, which is time-consuming on PM and
blocks concurrent operations. With fingerprinting and bucket
load balancing, Dash finishes uniqueness checks quickly and
triggers fewer SMOs, with fewer PM accesses and interac-
tions with the PM allocator. Although neither Dash-EH nor
Dash-LH scales linearly as inserts inherently exhibit many
random PM writes, Dash is the most scalable solution, being
up to 1.3⇥/8.9⇥ faster than CCEH/level hashing.

For search operations, Figures 8(b–c) show near-linear scal-
ability for Dash-EH/LH. CCEH falls behind mainly due to its
use of pessimistic locking which incurs large amount of PM
writes even for read-only workloads (to acquire/release read
locks). Level hashing uses a similar design but lock striping
makes all the locks likely to fit into the CPU cache. Therefore,
although level hashing has lower single-thread performance
than CCEH, it still achieves similar performance to CCEH
under multiple threads. Delete operations in Dash-EH, Dash-
LH, CCEH and level hashing on 24 threads scale and improve
over their single-threaded version by 8.4⇥, 9.8⇥, 6.1⇥ and
14.7⇥, respectively. For the mixed workload on 24 threads,
Dash outperforms CCEH/level hashing by 2.7⇥/9.0⇥.

We observed similar trends (but with widening gaps be-
tween Dash-EH/LH and CCEH/level hashing) for workloads
using variable-length keys (not shown for limited space).

6.3 Load Factor
To compare di↵erent designs realistically, we observe how

load factor changes after a sequence of inserts. We start
with an empty hash table (load factor of 0) and measure
the load factor after di↵erent numbers of records have been
added to the hash tables. As shown in Figure 9, the load
factor (y-axis) of CCEH fluctuates between 35% and 43%,
because CCEH only conducts four cacheline probings before
triggering a split. As we noted in Section 4.3, long probing
lengths increase load factor at the cost of performance, yet
short probing lengths lead to pre-mature splits. Compared to
CCEH, Dash and level hashing can achieve high load factor
because of their e↵ective load factor improvement techniques.
The “dipping” indicates segment splits/table rehashing is
happening. We also observe that with two stash buckets,
denoted as Dash-EH/LH (2), we achieve up to 80% load
factor, while the number for using four stash buckets in
Dash-EH (4) is 90%, matching that of level hashing.

6.4 Recovery
It is desirable for persistent hash tables to recover instantly

after a crash or clean shutdown to reduce service downtime.
We test recovery time by first loading a certain number
of records and then killing the process and measuring the
time needed for the system to be able to handle incoming
requests. Table 1 shows the time needed for each hash table
to get ready for handling incoming requests under di↵erent
data sizes. The recovery time for Dash-EH/LH and level
hashing are at sub-second level and does not scale as data
size increases, e↵ectively achieving instant recovery. For
Dash-EH/LH the only needed work is to open the PM pool
that is backing the hash table, and then read and possibly set
the values of two variables. The recovery time for CCEH is
linearly proportional to the data size because it needs to scan
the entire directory upon recovery. As data size increases, so
is the directory size, requiring more time on recovery.

6.5 Impact of PM Software Infrastructure
It has been shown that PM programming infrastructure

can be a major overhead due to reasons such as page faults
and cacheline flushes [8, 20]. We quantify its impact by
running the same insert benchmark in Section 6.2 under
two allocators (PMDK vs. a customized allocator) and two
Linux kernel versions (5.2.11 vs. 5.5.3). Our customized
allocator pre-allocates and pre-faults PM to remove page
faults at runtime. An interesting finding is that Dash-LH

SIGMOD Record, March 2021 (Vol. 50, No. 1) 93

Dash-EH Dash-LH CCEH Level Hashing

 0
 3
 6
 9

 12

 1 4 8 16 24

(a) 100% insert.

M
ill

io
n

op
s/

s

Number of threads
 0

 10
 20
 30
 40
 50

 1 4 8 16 24

(b) 100% positive search.
Number of threads

 0
 15
 30
 45
 60

 1 4 8 16 24

(c) 100% negative search.
Number of threads

 0
 5

 10
 15
 20

 1 4 8 16 24

(d) 100% delete.
Number of threads

 0
 10
 20
 30
 40

 1 4 8 16 24

(e) Mixed.
Number of threads

Figure 8: Throughput under di↵erent workloads with a varying number of threads and 8-byte keys and 8-byte values.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 40 80 120 160 200 240

Lo
ad

 fa
ct

or

Number of records (k)

Dash-EH (2)
Dash-EH (4)
Dash-LH (2)
Level Hashing
CCEH

Figure 9: Load factor of di↵erent hashing schemes with
respect to number of records inserted to the hash table.

Table 1: Recovery time (ms) vs. data size. CCEH’s recovery
time scales with data size whereas Dash and level hashing’s
remain constant.

Hash Table
Number of records (million)

40 80 160 320 640 1280
Dash-EH 57 57 57 57 57 57
Dash-LH 57 57 57 57 57 57
CCEH 113 165 262 463 870 1673

Level hashing 53 53 53 53 53 (53)

exhibited very low performance using PMDK allocator on
Linux kernel 5.2.11 (⇠ 25% the number under 5.5.3). The
reason was a bug in Linux kernel 5.2.11 that can cause large
PM allocations to fall back to use 4KB pages, instead of
2MB huge pages (PMDK default).

Such results highlight the complexity of PM programming
and call for careful design and testing in user and kernel
spaces, given that the PM programming stack is evolving
rapidly while practitioners and researchers have started to
rely on them to build PM data structures.

7. CONCLUSION
Persistent memory brings new challenges to persistent hash

tables in both performance (scalability) and functionality.
We identify that the key is to reduce both unnecessary PM
reads and writes, whereas prior work solely focused on re-
ducing PM writes and ignored many practical issues such
as PM management and concurrency control, and traded o↵
instant recovery capability. Our solution is Dash, a holis-
tic approach to scalable PM hashing. Dash combines both
new and existing techniques, including (1) fingerprinting to
reduce PM accesses, (2) optimistic locking, and (3) a novel
bucket load balancing technique. Using Dash, we adapted
extendible hashing and linear hashing to work on PM. On
real Intel Optane DCPMM, Dash scales with up to ⇠3.9⇥
better performance than prior state-of-the-art, while main-
taining desirable properties, including high load factor and
sub-second level instant recovery.

8. REFERENCES
[1] R. Crooke and M. Durcan. A revolutionary

breakthrough in memory technology. 3D XPoint
Launch Keynote, 2015.

[2] R. Fagin et al. Extendible hashing–a fast access method
for dynamic files. ACM TODS, pages 315–344, 1979.

[3] S. Ghemawat and J. Dean. LevelDB. 2019.
https://github.com/google/leveldb.

[4] Intel. Persistent Memory Development Kit. 2018.
http://pmem.io/pmdk/libpmem/.

[5] Intel Corporation. Intel 64 and IA-32 architectures
software developer’s manual. 2015.

[6] H. T. Kung et al. On optimistic methods for
concurrency control. ACM TODS, pages 213–226, 1981.

[7] P.-A. Larson. Dynamic hash tables. CACM, 1988.
[8] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm.

Evaluating persistent memory range indexes. PVLDB,
13(4):574–587, 2019.

[9] B. Lu, X. Hao, T. Wang, and E. Lo. Dash: Scalable
hashing on persistent memory. PVLDB,
13(8):1147–1161, 2020.

[10] M. Nam et al. Write-optimized dynamic hashing for
persistent memory. FAST, pages 31–44, Feb. 2019.

[11] Oracle. MySQL. 2019. https://www.mysql.com/.
[12] I. Oukid et al. FPTree: A hybrid SCM-DRAM

persistent and concurrent B-tree for storage class
memory. SIGMOD, 2016.

[13] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge.
Storage management in the NVRAM era. PVLDB,
7(2):121–132, 2013.

[14] PostgreSQL Global Development Group. PostgreSQL.
2019. http://www.postgresql.org/.

[15] Redis Labs. Redis. 2019. https://redis.io.
[16] S. Scargall. Programming Persistent Memory: A

Comprehensive Guide for Developers. Apress, 2020.
[17] D. Schwalb, M. Dreseler, M. Uflacker, and H. Plattner.

NVC-Hashmap: A persistent and concurrent hashmap
for non-volatile memories. IMDM, pages 4:1–4:8, 2015.

[18] T. Wang and R. Johnson. Scalable logging through
emerging non-volatile memory. PVLDB, 7(10), 2014.

[19] T. Wang, J. Levandoski, and P.-A. Larson. Easy
lock-free indexing in non-volatile memory. ICDE, 2018.

[20] J. Yang et al. An empirical guide to the behavior and
use of scalable persistent memory. FAST, 2020.

[21] H. Zhang et al. Reducing the storage overhead of
main-memory oltp databases with hybrid indexes.
SIGMOD, pages 1567–1581, 2016.

[22] P. Zuo, Y. Hua, and J. Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. OSDI, pages 461–476, Oct. 2018.

94 SIGMOD Record, March 2021 (Vol. 50, No. 1)

