
Chiller: Contention-centric Transaction Execution and Data
Partitioning for Modern Networks (Technical Perspective)

Alan D. Fekete
University of Sydney

alan.fekete@sydney.edu.au

Many computing researchers and practitioners may be
surprised to find a “research highlight” which innovates on
the way to process database transactions. Work in the early
1970s, by Turing winner Jim Gray and others, established
a standard set of techniques for transaction management.
These remain the basis of most commercial and open-source
platforms [1], and they are still taught in university database
classes. So why is important research still needed in this
topic? The technology environment keeps evolving, and new
performance characteristics mean that new algorithms and
system designs become appropriate. This perspective will
summarise the early work, and point to how the field has
continued to progress.

The transaction abstraction: Ongoing research into the
mechanisms has not changed the essential properties that
users and application programmers depend on. We are deal-
ing with data, stored in one (or more) systems. Often these
are SQL database management platforms which support rich
predicate-based selection commands, but some could be sim-
pler key-value stores. Several data access operations can be
grouped together into a transaction; this means that the
whole group together acts to perform a single change in
the real-world domain which is reflected in the data. For
example, a real-world action of hiring an employee can be
performed through a transaction with several statements: it
checks entries in the References table, inserts a new record
in an Employee table, and also modifies information in Man-
agers, Department, and so on. The acronym ACID describes
the essential properties: the transaction should be atomic
(all the changes in data from these operations are performed
- in this case we say the transaction has committed, or else
none of the changes are evident in the data), consistent (the
changes collectively should not violate any integrity condi-
tions on the data), isolated (there should not be interfer-
ence between concurrently active transactions), and durable
(changes made by a committed transaction should not be
removed unless another transaction explicitly does so). Be-
ing consistent is a responsibility of the application program-
mer, while the others are to be enforced by the data storage
systems. There are various levels of isolation, of which se-
rializability is the strongest, where the transactions appear
to run one after another.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2021 ACM 0001-0782/08/0X00 ...$5.00.

The classical implementation techniques (1970s-1990s): The
concept of transaction was supported by several implemen-
tation techniques for disk-based stores. The main ideas were
used in the prototype relational database management sys-
tems such as IBM’s System R Practice settled around log
records to allow durability despite crashes that corrupt in-
memory data, and locks to control interleaving of concurrent
activity. For uniform outcome of transactions across multi-
ple stores, the two-phase commit protocol became standard.
An elegant theory was also established to reason about all
these techniques. The rich theory and practice of trans-
action management, as they emerged from this period, are
described in the reference [2].

On-going innovation (2000 and beyond): Just a few of the
important topics in recent years are mentioned here. The
increases in capacity of main-memory led to exploration of
deterministic concurrency control, where the transaction or-
dering is not determined dynamically as transactions run
and are perhaps impacted by the long delay fetching data
from disk. Instead, some fixed rules are used to decide
which of the transactions (in a small epoch of time) are run
first. The very long message latencies, when data is geo-
distributed, have led to attempts to combine the processing
of replica consistency, lock management, and commit pro-
tocols; an alternative approach to this challenge has been a
rise of interest in weak isolation and consistency properties.

Chiller: The following research highlight presents a design
called Chiller, driven by new high-bandwidth communica-
tion technologies that are becoming common in data centers,
which the authors show shift where performance bottlenecks
occur in the system. They explore the ways lock holding,
replica update, and commit processing, all interact in this
new hardware environment. A central insight is to identify
which data items are contended, and the system re-orders
operations so locks on the contended items are held as briefly
as possible. To make this work well, they propose new proto-
cols and also show how this changes the decisions that place
data items in di↵erent machines for optimal performance.

1. REFERENCES
[1] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton.

Architecture of a database system. Found. Trends
Databases, 1(2):141–259, 2007.

[2] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann,
2002.

14 SIGMOD Record, March 2021 (Vol. 50, No. 1)

