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ABSTRACT

Mining for associations between items in large transactional
databases is a central problem in the field of knowledge dis-
covery. When the database is partitioned among several
share-nothing machines, the problem can be addressed us-
ing distributed data mining algorithms. One such algorithm,
called CD, was proposed by Agrawal and Shafer in [1] and
was later enhanced by the FDM algorithm of Cheung, Han
et al. [5].

The main problem with these algorithms is that they do not
scale well with the number of partitions. They are thus im-
practical for use in modern distributed environments such
as peer-to-peer systems, in which hundreds or thousands of
computers may interact. In this paper we present a set of
new algorithms that solve the Distributed Association Rule
Mining problem using far less communication. In addition
to being very efficient, the new algorithms are also extremely
robust. Unlike existing algorithms, they continue to be ef-
ficient even when the data is skewed or the partition sizes
are imbalanced. We present both experimental and theoret-
ical results concerning the behavior of these algorithms and
explain how they can be implemented in different settings.

1. INTRODUCTION

1.1 Problem Description

Association Rules Mining (ARM) in large transactional
databases is a central problem in the field of knowledge dis-
covery. The input to the ARM is a database in which ob-
jects are grouped by context. An example of such a grouping
would be a list of items grouped by the customer who bought
them. ARM then requires us to find sets of objects which
tend to associate with one other. Given two distinct sets
of objects, X and Y, we say Y is associated with X if the
appearance of X in a certain context usually implies that
Y will appear in that context as well. If X usually implies
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Y, we then say that the rule X = Y is confident in the
database. We would usually not be interested in an associa-
tion rule unless it appears in more than a certain number of
contexts: if it does, we say that the rule has a large support
count. The thresholds of support (MinSup) and confidence
(MinConf) are parameters of the problem and are usually
supplied by the user according to his needs and resources.
The solution to the ARM problem is a list of all association
rules which have both large support and high confidence in
that database. Such lists of rules have many applications
in the context of understanding, describing and acting upon
the database.

The ARM problem has been investigated intensively dur-
ing the past few years [2][10][7][8][13][3]. It was shown that
the major computational task is the identification of all
the large itemsets, those sets of items which have a sup-
port count greater than MinSup. Association rules can then
be produced from these large itemsets in a fairly straight-
forward manner. For example, once it is known that both
{Pasta Sauce} and {Pasta Sauce, Parmesan} are large item-
sets, the association rule {Pasta Sauce} = {Parmesan}
obviously has support, and all that remains is to check if
the association is confident.

ARM algorithms are mainly concerned with reducing the
number of database scans. This reduction is necessary be-
cause the database is usually very large and is stored in
secondary memory (disk). The problem was restated in
a distributed setting as the Distributed Association Rules
Mining (D-ARM) problem. The main reason for restating
the problem this way was to parallelize the disk I/O re-
quired to solve it. In D-ARM, the database is partitioned
between several parties which can perform independent par-
allel computations as well as communicate with one another.
Several algorithms were proposed to solve D-ARM, most of
them for share-nothing machines [1][6][5][11], and some for
shared-memory [14] or distributed shared-memory machines
[9]. Since the parallelization of disk I/O is itself an easy
task, the main show stopper for D-ARM algorithms is com-
munication complexity. The most important factors in the
communication complexity of D-ARM algorithms turn out
to be the number of partitions, n, and |C|, the number of
itemsets considered throughout the algorithm.

In this paper we present a set of new algorithms for share-
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nothing machines. These algorithms improve the commu-
nication complexity of the best of the known D-ARM algo-
rithms. We prove that our algorithms are the first to solve
the problem with a communication complexity that is lin-
ear in n and |C|, and with a very small database-dependent
multiplicative factor. When compared with current algo-
rithms, our algorithms show an improvement which reaches
several orders of magnitude even for mid-range values of n.
For higher n values, we prove that the advantage of our
algorithms keeps growing at the same rate.

We see possible applications for our communication-efficient
algorithms in three main areas. First, they may be used to
mine peer-to-peer systems. For example, we may wish to
find associations between the mp3 files of different Napster
users (more than 1.5 million files in about 10,000 libraries
at the time this paper was written). No previous algorithm
can cope with n = 10,000 with the Internet communication
speed available today. Second, we may use these algorithms
for broad-scale parallelization of data mining, splitting the
problem until each partition fits into the memory of a con-
ventional PC. Third, we can use them in environments where
communication bandwidth is an expensive resource, such as
billing centers for large communication providers. Although
these billing centers usually have fast and wide networks,
data mining is performed there as an auxiliary task and the
resources it consumes come at the expense of the main sys-
tem activity.

1.2 Previous Work

The two major approaches to D-ARM as presented in [1] are
data distribution (DD) and count distribution (CD). DD fo-
cuses on the optimal partitioning of the database in order
to maximize parallelism. CD, on the other hand, consid-
ers a setting where the data is arbitrarily partitioned hori-
zontally! among the parties to begin with, and focuses on
parallelizing the computation.

The DD approach is not always applicable. At the time the
data is generated, it is often already partitioned. In many
cases it cannot be gathered and repartitioned for reasons
of security and secrecy, cost of transmission, or sheer effi-
ciency. DD is thus more applicable for systems which are
dedicated to performing D-ARM. CD, on the other hand,
may be a more appealing solution for systems which are
naturally distributed over large expanses, such as stock ex-
change and credit card systems. This article focuses on the
CD approach to D-ARM, although the main ideas can prob-
ably be adapted to DD as well.

All the algorithms discussed in this paper are based on the
Apriori algorithm [2]. Apriori begins by assuming that any
item is a candidate to be a large itemset of size 1. Apriori
then performs several rounds of a two phased computation.
In the first phase of the k round, the database is scanned and
support counts are calculated for all k-sized candidate item-
sets (itemsets containing k items). Those candidate itemsets
which have support above the user supplied MinSup thresh-
old are considered large itemsets. In the second phase, can-

'Horizontal partitioning means that each partition includes
whole transactions, in contrast with vertical partitioning
where the same transaction would be split among several
parties.
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didate k+1-sized itemsets are generated from the set of large
k-sized itemsets if and only if all their k-sized subsets are
large. The rounds terminate when the set of large k-sized
itemsets is empty.

The CD algorithm [1] is an obvious parallelization of Apri-
ori. In the first phase, each of the parties performs the
database scan independently on its own partition. Then a
global sum is performed on the support counts of each candi-
date itemset. Those itemsets whose global support count is
larger than MinSup are considered large. The second phase
of calculating the candidate k + 1-sized itemsets can be car-
ried out without any communication because the calculation
depends only on the identity of the large k-sized itemsets,
which is known to all parties by this time. CD fully par-
allelizes the disk I/O complexity of Apriori and performs
roughly the same computations. CD also requires one syn-
chronization point on each round and carries an O (|C| - n)
communication complexity penalty, where C' is the group of
all candidate itemsets considered by Apriori and n is the
number of parties. Since typical values for |C| are tens or
hundreds of thousands, CD is obviously not scalable to large
numbers of partitions.

In order to reduce the communication load, the CD algo-
rithm was enhanced by FDM [5]. FDM takes advantage
of the fact that ARM algorithms only look for rules which
are globally large. FDM is based on the inference that in
order for an itemset to appear in a certain portion of the
transactions in the database it must appear in at least that
portion of at least one partition of the database. In FDM,
the first stage of CD was broken into two rounds of com-
munication. In the first round, every party names those
candidate itemsets which are locally large in its partition
(e.g. appear in the partition in a frequency greater than or
equal to %). In the second round, counts are globally
summed for those candidate itemsets which were named by
at least one party. If the probability that an itemset will
have the potential to be large is Prpotentiai; then FDM only
communicates Prpotential - |C| of the itemsets and improves
the communication complexity to O (Prpotential - |C| - 1).

The main problem of FDM is that Prpotential is not scalable
in n. In 2.2 we show that Pryotentiar quickly increases to 1
as n increases. The convergence to 1 is especially fast in
non-homogeneous databases. Cheung and Xiao presented
this problem in [4] and showed that as the non-homogeneity
of the database (as measured by the skewness measure they
presented) increases, FDM pruning techniques become in-
effective. We extend their results by proving that even for
moderate non-homogeneity FDM becomes ineffective for a
large enough n.

1.3 Our Solution

We first look at the distributive problem of deciding whether
an itemset’s global support count is above or below a thresh-
old. If we first solve this problem for the set of candidate
k-sized itemsets, then support counts of those identified as
large can be collected optimally, while support counts for
the small itemsets can remain uncollected. We show that
solving this distributed agreement problem causes very lit-
tle overhead.



We use this approach to propose a new family of Apriori-
based D-ARM algorithms that improve the communication
complexity of current solutions. These algorithms improve
data skew robustness and scalability over large numbers of
partitions. We show three examples for such algorithms,
all of which retain the good time, space and disk I/O com-
plexities of Apriori. Our algorithm for the decision problem
has O (Prabove - |C| - n) communication complexity, where
Prapove is the probability that a candidate itemset will have
support greater than ¢ in a specific partition. Prgpove i,
by definition, smaller than or equal to Prpotentiai- Unlike
Prpotential; Pravove has no dependency on n and is only
dependent on the non-homogeneity of the database. As a
result, our algorithms are the first to demonstrate low lin-
ear dependency of communication complexity on n and thus,
scalability.

After the decision problem was solved, the obvious next step
would be to collect the support counts of the large itemsets
from all parties with linear output complexity of O (|L| - n),
where L is the group of large itemsets. However, we show
that further improvement is possible: the confident rules
can be identified with sub-linear communication complexity
if another decision problem is solved. This time the decision
problem is concerned with the confidence of the rules gen-
erated from the large itemsets. By applying our algorithm
to this problem too, we demonstrate that it is general and
can be implemented for many functions of the database.

The next section describes an algorithm called Distributed
Decision Miner (DDM). This algorithm demonstrates our
basic approach. We then propose two additional derivatives
of DDM, to be described in sections 3 and 4: Preemptive
Distributed Decision Miner (PDDM) and Distributed Dual
Decision Miner (DDDM). These two algorithms further im-
prove the communication complexity of Distributed Decision
Miner. Moreover, the improvements are complementary and
we can combine them to get even better results. The com-
bination will not be presented in this context. Section 5
describes in detail the experiments we carried out to ver-
ify the algorithm’s superiority. We conclude the article in
section 6.

1.4 Notations

Let I = {i1,42,...,4m } be the set of items. A transaction ¢
is a subset of I. Let DB be a list of D such transactions.
Let DB = {DB',DB?,..., DB"} be a partition of DB into
n partitions with sizes D = {D',D?, ..., D"} respectively.
An itemset is some X C I. Since identical itemsets exist
for all parties in all the algorithms in this paper, we will
denote them as Xi, Xo, ..., Xs. For any X; and db C DB, let
Support (X;,db) be the number of transactions in db which
contain all the items of X;. We call } = Support (X, DBj)
the local support of X; in partition j and Support (X;, DB)
its global support.

For some user defined support threshold 0 < § < 1, we say
that the size of X; is large iff Support (X;, DB) > §- D and
the size is small iff Support (X;, DB) < § - D. We say X;
is locally large in the j partition iff Support (X;, DB’) >
§-D?. Let X,, X, be two large itemsets such that X, C
X,, and let 0 < A < 1 be some user-defined confidence
threshold. We say the rule X, = X, \ X, is confident iff
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Support (Xo,DB) > X - Support (X,, DB). The D-ARM
problem is to distributively find all the rules of the form
X = Y while minimizing the amount of communication as
well as the number of times Support (-, DBi) is evaluated.

The messages the parties send to one another are pairs

(i,2!), where i is an itemset number and z} = Support (X;, DB?).

We will assume that j, the origin of the message, can be in-
ferred with negligible communication costs. For each party
p and itemset X;, let G” (X;) be the group of all ] such
that (3, mi> was received by p. We will assume G? (X;) is
equal for all p and refer to it as G (X;).

2. THE DISTRIBUTED DECISION MINER

ALGORITHM

The basic idea of the Distributed Decision Miner (DDM)
algorithm is to verify that an itemset is large before col-
lecting its support counts from all parties. The algorithm
differs from FDM in that, in our algorithm, the fact that
an itemset is locally large in one partition is not considered
sufficient evidence to trigger the collection of all the sup-
port counts for that itemset. Instead, the parties perform
some kind of negotiation by the end of which they will be
able to decide which candidate itemsets are globally large
and which are not. The rest is straightforward: the support
counts of the large itemsets are collected optimally, with no
communication wasted on globally small, but locally large
itemsets.

The parties will negotiate by exchanging messages contain-
ing local support counts for various itemsets. At any given
stage, a common hypothesis H is shared by all parties. This
hypothesis concerns the global support of every candidate
itemset. Given all the local support counts for an itemset,
this hypothesis must correctly predict whether it is large or
small. In addition, every party computes another private
hypothesis P, based on both the support counts already ex-
pressed and the party’s local support count for the candidate
itemset. For at least one party which has not yet expressed
its local support count, and given any subset of the support
counts for an itemset, the local hypothesis must correctly
predict whether the itemset is large or small.

2.1 TheAlgorithm

The parties calculate the set of candidate itemsets for which
they did not express their local support counts. For each
such candidate, every party calculates the global hypoth-
esis H and the local hypothesis P. If H and P disagree
whether the size of a candidate itemset is above or below
MinSup, then the support count for that candidate should
be expressed. The parties express support counts at a cer-
tain rate, limited by the bandwidth of the system. Instead
of sending one message concerning all the candidates, the
parties send smaller messages concerning one or several can-
didates. No synchronization is required for single messages.
Every time a party accepts a message, it updates H and P
for the candidate itemsets referred to in that message.

If, for some party, H and P agree on the size of every candi-
date itemset, that party has nothing to express and it passes
on its turn. A party may resume sending messages if arriv-
ing messages cause disagreement between H and P about



the size of some yet unexpressed candidate itemset. If a full
round of passes was received from all parties, then H and
P agree for all parties and for every candidate itemset. By
the definition of P, there are two possibilities for each can-
didate itemset: either there is one party whose P correctly
predicts the itemset size or all the local support counts have
been collected. In the first case, since H and P agree for all
parties, and specifically the party with the correct P, then
H must be correct for all parties. In the second case, H
must be correct by definition.

For Distributed Decision Miner, we define H and P as fol-
lows:

0 if G(X3)=0
H(X;) = EmeG(Xi)zf .
Sereatxn D7 D otherwise
z]

P(Xi,DB') = Y at+ -

mfGG(Xi)

>

2P EG(X;)

Di

When estimating H, the parties assume that the unexpressed
support counts for each itemset are, on the average, the same
as those already expressed. With P, on the other hand, a
party assumes that those parties which have not yet ex-
pressed their local support counts for that itemset have the
same relative support as it does.

As defined, the above assumptions are not required to hold

for every party. It is enough that the assumption on H will

hold eventually and that the assumption on P holds for one

party which has not yet expressed its support count. This

is easily proven: Out of all the parties which have not yet

expressed support (2 ¢ G (X;)), the one with the largest
p

relative support ;’p computes a value for P which is an
upper bound on the global support count of X;, and the
one with the lowest relative support computes a value for
P which is a lower bound on the global support count of
X;. It follows that at least one of those two must always
estimate the global support count correctly, thus satisfying
the requirement for P. As for H, when all the support
counts have been collected, H is equal to that support count.
Thus, the requirement from H is also satisfied.

Usually each party can choose which of several candidate
itemsets will have its support count sent next. Many heuris-
tics can be used to break ties, but we found one to be most
effective. Our tie breaking heuristic is based on the follow-
ing rationale: whenever two parties are able to express the
local support counts of the same candidate itemset, it is best
if the one which makes a greater change in P expresses its
local support first. If there are opposing parties for a candi-
date itemset (some of whose P is larger and others whose P
is smaller than ¢ - D), then the one that makes the greater
change has the better chance to “convince” opposing parties
that they are wrong. If the opposing parties’ P is changed to
the extent that it now agrees with that of the sending party,
the opposing parties will refrain from expressing their own
support and thus save the cost of messages. It is therefore
a good strategy for a party to send those support counts
which will cause the greatest change in the Ps of opposing
parties, for those same itemsets.
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Algorithm 1 Distributed Decision Miner

For party j out of n.
1. Initialize C1 = {{i} : ¢ € I'}, k = 1,Passed = ()

2. while |Ck| >0

(a) do
e choose X; € () which was not yet sent
and for which either H(X;) < ¢ - D <
P (Xi,DB’) or P(X;,DB’) < §-D <
H (X;) broadcast (i, w{> to all other parties.
e if there is no such X; broadcast (pass)
(b) until |Passed| = n.
(C) Ly = {Xz € Cy: H(X“G(Xz)) >46- D}
(d) collect all yet uncollected local counts of X; € L.
(e) Cr41 = Apriori_Gen (Ly)
) k=k+1

3. Gen_Rules (L, ..., Ly)

When party j receives a message M from party p:
1. If M = (Pass) insert p into Passed
2. else M = (i,z?)
(a) if p € Passed remove p from Passed.
(b) recalculate H (X;) and P (X;, DB?)

When party k expresses support for itemset X;, the influence
on P of party [ is equal to

1
ab — 2 Dk‘. However, since
z! has not yet been expressed , we estimate the change as
R(Xi, DB*) = |0} — ZZ2 . pF|
by R(X;, DB?) for breaking the tie. The tie is broken by
selecting the itemsets with the greatest rating.

. We use the rating given

2.2 Complexity Analysis

The messages sent by Distributed Decision Miner can be
separated into two classes: messages relating to itemsets
which eventually turn out to be large and messages relating
to itemsets which eventually turn out to be small. While the
messages related to large itemsets are needed anyway for the
calculation of confidence, those relating to small itemsets are
wasted. The wasted messages can also be separated into two
classes: those which imply that the itemset being considered
is large (strengthening evidence) and those which imply that
the itemset is small (weakening evidence).

By definition, every message containing strengthening evi-

dence must be presented by a party with relative local sup-
- pBI
port M > 6. Thus, the expected number of

such messages is O (Prgpove - |C| - n), where n is the number
of parties, C' is the group of all itemsets considered by Dis-
tributed Decision Miner (which is equal to that considered
by Apriori and FDM), and Prapove is the probability that a
specific itemset is locally large in a specific partition.

For a certain small itemset, let the number of wasted mes-



sages containing strengthening evidence be s and the num-
ber of wasted messages containing weakening evidence be
w. Let their average distances from & be € and €“ ac-
cordingly. In the worst case, all the possible strengthening
evidence for that small itemset is collected. If we remove the
last message containing weakening evidence, we can be sure
that H (X;) > 0 - D; otherwise, the message containing it
would never have been sent. We assume, for simplicity, that
the partitions have the same size and that the final weaken-
ing message was of average distance from J. We then have
J-(s+w—1)<s-(0+€)+(w—1)-(6 —€”). It follows that
w< s E—Z, €’ is only dependent on the distribution and not
on C or n (the variability of €* has negative dependency on
n). € can only increase with n because the algorithm has
more possible messages with weakening evidence to choose
from and it tends to choose those with more extreme val-
ues. Thus, the number of such messages has linear or lower
dependency on the number of messages containing strength-
ening evidence, and the total communication complexity is

O (Prapove - |C| - n).

By comparison, the communication complexity of FDM is
O (Prpotential - |C| - n), where Prpotentiar is the probability
that any of the partitions has relative support larger than
d. If we assume that the support counts of a small itemset
in different partitions are independent, then Prpotentiai =
1 — (1 — Prypove)”- This converges to 1 very quickly, even
for a small Propove. It follows that for a large number of
partitions, FDM performs as poorly as CD in terms of com-
munication.

It is clear that Distributed Decision Miner improves consid-
erably over FDM with regard to three factors: a decrease
of Prgpove, an increase of the ratio of small vs. large item-
sets, and an increase of n. These three factors behave quite
differently. Prgpove is the most influential of the three. As
can be seen in the above analysis, DDM can be as much
as m better than FDM. However, it should be noted
that under the the CD approach to D-ARM, Prapove 1S a
property of the database and cannot be controlled by the
algorithm. In the databases we checked, Prapove had values
of between 0.05 to 0.5. The ratio between the number of
small and large itemsets is important for Distributed Deci-
sion Miner because of the following extreme case: if all the
itemsets are large, quick identification them is of no benefit,
and we would have to collect all counts anyway. Neverthe-
less, in section 4 we will present an algorithm that can still
give considerable improvement even in this case. Finally, n
has a very large effect for small values of n. Then, as n gets
larger, its effect becomes linear.

The main extra computational task of Distributed Decision
Miner is the selection of an itemset to be sent. The fastest
way to do this is by managing a priority queue with the pri-
ority of a potential itemset being R (Xi, DBj), and updating
it every time a message is received. Every such update re-
quires O (log (|C|)) time, so the time complexity of FDM is
multiplied in Distributed Decision Miner by log (|C|), which
is not significantly larger. Space complexity (disregarding
the database storage, which is of course the same size) is n
times larger than that of FDM because of the need to store,
for each itemset, certain attributes of the other parties.
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3. PREEMPTIVEDISTRIBUTED DECISION
MINER

In the course of distributed mining, we often discover that
some partition contains the most convincing evidence for
the sizes of itemsets. For example, a large partition can
sometimes, by itself, have a support count for a given itemset
that is greater than § - D. On the other hand, if such a
large partition has no support count for an itemset, it can
influence P so strongly that other parties will be convinced
not to express their own support counts. When the database
is strongly skewed, such phenomena are especially abundant.

We would like to allow parties which have more convinc-
ing evidence (extreme support counts) to send their support
counts at an earlier stage of the negotiation in the hope that
their evidence will shorten negotiation time and reduce com-
munication. Similarly, we would like parties which do not
have convincing evidence to refrain from sending messages
so as not to use bandwidth which can be better employed.
As we showed in the previous section, the rating function
R (Xi, DB*) = |of — 22
timation for the effectiveness of each of its possible messages.
We would like the series of messages to have a constantly
decreasing value of R. In this section we show that parties
can coordinate their messages and come nearer to this goal
if each of them weighs the importance of its information
against that of information contributed by other parties.

. Dk‘ gives the k** party an es-

3.1 TheAlgorithm

In an R-optimal negotiation, the received messages have de-
creasing R values. Generating such a series requires, how-
ever, global knowledge, which is not available to the parties.
We achieve a near monotonously decreasing series of R val-
ues by selecting as a leader the party which sent the message
with the maximal R. We keep a record of the leader’s iden-
tity and the R value of its last message. We do not allow
any other party to send messages unless the R of its message
is greater than that of the last message sent by the leader.
If some other party sends a message with an R greater than
that of the leader, this party then replaces the leader.

Preventing other parties from sending messages does not ef-
fect the correctness of the algorithm because the algorithm
still terminates in the same state. We must make sure, how-
ever, that a leader passes the leadership to another party
when it decides to pass on its turn; otherwise, the algorithm
might not terminate. We do this by setting the value of the
leader’s last R to zero when the leader passes on its turn.
When the leader’s last R is zero, any party that has any
message to send will send it and a party that has no mes-
sage to send will pass on its turn. It is easy to calculate the
leader’s R for the R proposed in the prior section. For other
R functions though, the calculation may be difficult or even
impossible (for example, it is impossible if R is random).

It is important to note that R can be extended to include
other properties of the sent message. For example, R can
be used to encode information about the cost of sending the
message, whether that be in time (e.g. smaller bandwidth
for that party) or in money (if this message is sent, for exam-
ple, over a WAP channel). Preemptive Distributed Decision
Miner will try to reach an R-optimal negotiation regardless



of what R encodes.

Algorithm 2 Preemptive Distributed Decision Miner

For party j out of n
1. Initialize C; = {{i}:i €I}k = 1, leader = j,
last R =0

2. while |Ck| >0

(a) do

e choose X; € () which was not yet sent
and for which either H(X;) < § - D <
P(Xi,DB’) or P(X;,DB’) < §-D <
H (X;) and either leader = j or last_R <
R (Xi, DB’) broadcast (i,z]) to all other
parties.

e if there is no such X; broadcast (pass)

(b) until |Passed| = n.

(¢) Ly ={X; € Cx : H(X;,G(X;)) >¢é-D}

(d) collect all yet uncollected local counts of X; € L.
(e) Cr+1 = Apriori_Gen (L)

) k=k+1

3. Gen_Rules (L, ..., Ly)

When party j receives message M from party p
1. If M = (Pass) insert p into Passed

2. else M = (i, z?)

(a) if p € Passed remove p from Passed.

(b) calculate R’ = R(X;, DBP)

(c) recalculate H (X;) and P (X;, DB’)

(d) If p is the current leader update last_R = R’
(e) else if last_ R < R’

i. update last_ R = R’
ii. update leader = p

3.2 Complexity Analysis

The complexity of Preemptive Distributed Decision Miner is
dependent on the skewness of the database. In extreme cases
where only one partition is significant, the communication
can decrease t0 O (Prabove - |C|) because only the party with
that partition ever sends messages. On the other hand, when
the partitions are very homogeneous, the parties may con-
stantly compete over leadership. In this case, Preemptive
Distributed Decision Miner reverts to Distributed Decision

Miner, with communication complexity of O (Prapove - |C| - ).

Note that Preemptive Distributed Decision Miner’s objec-
tive is to be R-optimal. If R does not provide a good
measurement of the significance of potential messages, Pre-
emptive Distributed Decision Miner may perform even more
poorly than Distributed Decision Miner.

If the time required for a party which receives a message to
compute R of that message is O (1), Preemptive Distributed
Decision Miner will have the same time and space complex-
ities as Distributed Decision Miner.
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4. DISTRIBUTEDDUAL DECISIONMINER
In their groundbreaking article [2], Agrawal and Srikant gave
the following definition of ARM:

“Given a set of transactions D, the problem of
mining association rules is to generate all asso-
ciation rules that have support and confidence
greater than the user-specified minimum support
(called minsup) and minimum confidence (called
minconf) respectively.”

Until now all the known algorithms actually gave, in addi-
tion to the list of rules, their respective support counts and
confidence. As we will show here, in the distributed setting,
we can detect whether rule support count and confidence are
larger or smaller than the required minimum without ever
fully calculating them.

The basic idea is that we can use a DDM-type algorithm
to detect all the large itemsets very efficiently. We need
to collect the global support counts of the large itemsets
inorder to verify that the confidence of the rule is above the
given confidence threshold. However, we must remember
that our goal is only to decide if the confidence of a rule is
above or below a given threshold, and not to find the exact
confidence of the rule. This is exactly the same distinction
we made when we presented Distributed Decision Miner. As
we will show here, this second distributed decision problem
can be solved in a similar manner.

To illustrate this idea, we present the following two exam-
ples:

1. Assume that the rule Pasta Sauce = Parmesan is
possible in the database. Assume also that it is locally
large in every partition, but confident in none (e.g. for
every p Support (Parmesan A Pasta Sauce, DB?) >

d - |DBP|, Support (Pasta Sauce, DB?) > ¢§ - |DBP|,
s t(P APasta Sauce,D BP) . .
oo ola Suscc D7) 2 3). " Using Dis

tributed Decision Miner, three messages are required
to identify that both Parmesan A Pasta Sauce and
Pasta Sauce are significant (compared to 6-n in FDM).
With the algorithms described in sections 2 and 3,
we would need additional 2 - (n — 1) messages to col-
lect the local support counts of the remaining parties
for Pasta A Pasta Sauce and Pasta Sauce before we
could judge if Pasta Sauce = Parmesan is signifi-
cant. However, note that if for no party the local con-
fidence is above A, then the global confidence cannot
be above A. By implementing an algorithm similar to
FDM we could have pruned this rule without sending
a single message.

2. Assume that this same rule is both supported and con-
fident in every partition. If one party suggests that the
rule is globally confident and no other party objects,
this is enough to determine that the rule is indeed
globally significant.

In Distributed Dual Decision Miner (DDDM) we will gen-
eralize these two examples: first, by defining H and P for



rules as well as for itemsets, and then by performing a ne-
gotiation similar to the one we performed for the support
count to decide whether or not potential rules are confident.

4.1 TheAlgorithm

Distributed Dual Decision Miner runs any Distributed De-
cision Miner variant? to identify large itemsets without per-
forming stage 2.(d), the collection of yet uncollected support
counts. Then, instead of calling the original Gen_Rules pro-
cedure, it uses another variant of DDM called Distributed
Decision Confidence Miner to mine the set of rules with con-
fidence above a user-defined threshold .

Algorithm 3 Distributed Dual Decision Miner

For party j out of n
1. Initialize Cy = {{i} :i € [}k =1

2. while [Ck| > 0

(a) do
e choose X; € () which was not yet sent
and for which either H(X;) < § - D <
P(Xi,DB’) or P(X;,DB’) < §-D <
H (X;) broadcast (i, m{) to all other parties.
o if there is no such X; broadcast (pass)
(b) until |Passed| = n.
(C) Lk={X'L' € Ck H(Xl)Z(SD}
(d) Ck+1 = Apriori_Gen (Ly)
(e) k=k+1

3. Call Distributed Decision Confidence Miner
Uf:l Lt

for

When party ; receives a message M from party p:
1. If M = (Pass) insert p into Passed

2. else M = (i,z?)

(a) if p € Passed remove p from Passed.
(b) recalculate H (X;) and P (X;, DBj)

We first describe a simple algorithm which mines rules with
large confidence and then, in subsection 4.3, introduce a
rule pruning method which does away with the need to con-
sider many of the rules. Distributed Decision Confidence
Miner makes one round of negotiations to decide which of
the candidate rules X,, = X, \ X, have Support (X,, DB) >
A-Support (Xp, DB). The algorithm sends messages of three
types, (rule_id, m;,xi), <rule_id, m";,) or (rule_id, xfl), de-
pending on which of the two support counts was expressed,
where rule_id is the number of the rule in some determin-
istic enumeration and x; = Support (Xj, DBi). Again we
define H and P with the same limitations as they had in
previous algorithms.

The functions we define in Distributed Decision Confidence

?We use here, for reasons of clarity, Distributed Decision
Miner. But Preemptive Distributed Decision Miner can be
used as well.
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Miner are®:

G(Xp:Xa\xp)z{j:x;;ea(xp)/\xz; eG(Xa)}
P (Xp :>Xa\Xp,DBi) =

EleG(Xp:Xa\Xp) o + (n— |G (Xp = Xa \ X5)|) - 2
EIEG(XPQXG\X},) zh + (n— |G (Xp = Xo \ Xp)[) - 2}

H(Xp = Xa\ Xp) =

1
2iea(Xp=Xa\Xp) %a

7
EleG(xp=>xa\x1,,) Tp

if 1G(Xp=>Xa\Xp)|>0

otherwise

) xi_%.pi
AN a
R(Xp:}Xa\Xp,DB)_ oy

Tp D

Algorithm 4 Distributed Decision Confidence Miner
For party i of n

1. Initialize

e R; to be the set of all rules X, = X, \ X, such
that X, Xe € L and X, C X,

e Passed = 0.

2. do

e choose r, = X, = X, \ Xp € R; such that i ¢
G (re) and either H (ry) < A\ < P (rg, DB*) or
P (r}, DB*) < X < H (rt) and broadcast to all
other parties:

— (k,z},z.) if i ¢ G(Xp) and i ¢ G (Xa)
- (k,zp) if i ¢ G(X,) and 4 € G (Xa)
— (k,zl) if i € G(X,) and i ¢ G (Xa)

e if there is no such r; broadcast (Pass).
3. until |Passed| =n
4. R={rj € Ri: H(r;) > A}

When party j receives a message M from party i:
1. If M = (Pass) insert p to Passed

2. else decide according to k if the message is of the form
<k, x;,xw,(k,x;) or <k, ,xf1> and parse the message
accordingly

(a) if ¢ € Passed remove ¢ from Passed.

(b) Recalculate G (r;) for every r; which includes
X, and/or X, and recalculate H (r;) and
P (r, DBY).

3Note that we use here both G of a rule and G of an itemset.



To prove that Distributed Decision Confidence Miner works,
it is enough to show that H and P have the properties de-
fined in 2.1. For one party which has not yet expressed
both parts of a rule, P is required to be an upper bound on
the global confidence, and for another it is required to be
a lower bound. The requirement for H is that H is correct
if all the data was gathered. Clearly, when considering the

parties not in G (r;), the one with the maximal z—% computes
P

a value for P which is an upper bound on the confidence,

and the one with the minimal z—f computes a value for P

which is a lower bound. Thus, tzi1e requirement from P is
satisfied. In addition, when all the support counts of a rule
are collected, H must be correct because it is equal to the
confidence. Thus, the requirement for H is met.

4.2 Complexity Analysis

Distributed Decision Miner and Preemptive Distributed De-
cision Miner reduce communication complexity by reducing
the communication required for the identification of small
itemsets. Distributed Dual Decision Miner, in contrast, re-
duces the communication by refraining from collecting local
counts of large itemsets.

When discussing the theoretical bounds of Distributed Dual
Decision Miner, one must note that the distribution of large
itemsets over partitions in a real database may have a very
special form. Simplistic assumptions about that distribu-
tion, which were acceptable for small itemsets, may mislead
us with regard to the actual savings in communication. As a
result, we will say only that in the algorithm’s worst case, all
the support counts of all itemsets are collected in the itemset
identification stage. In this case, Distributed Decision Con-
fidence Miner is trivial and requires no communication at
all. Thus, the algorithm’s performance is exactly the same
as that of Distributed Decision Miner. Further analysis will
be done at the experimental level only.

4.3 RulePruning

The number of rules which can be generated from a given set
of large itemsets is enormous. If we check all the potential
rules induced by a single k sized large itemset X we would
have to check every rule X, = X, \ X, : X; C X4, X, C

Z. This is a total of Zle

2‘:1 ; potential rules, or

about 287!, Since each potential rule might require some
communication as well as computation, it is important to

try to reduce the number of potential rules.

We use the following observation to prune rules: If X,, X,
are two itemsets, such that X, C X, and the confidence of
Xp = Xo\ X, is below the MinConf threshold, then for any
Xpp C Xp, the confidence of Xpp, = Xo \ Xpp is also below
MinConf. Similarly, for any X,, D X,, the confidence
of X, = Xaa \ Xp is below MinConf. This observation
is correct because Support (X,, DB) < Support (Xp, DB)
and Support (Xee, DB) < Support (X,,DB). If, on the
other hand, the rule X, = X, \ X, is confident, then for
every X, C Xpp C Xaa C X, the rule Xy, = Xaq \ Xpp is
confident as well.

This observation allows us to alter Distributed Decision Con-
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fidence Miner by splitting it into several rounds. At each
round, many of the possible rules can either be pruned or
inferred with no communication. We initialize the candi-
date rule set Ry with a single rule Ry = {0 = 0}, which
must be both supported and confident. In each round we
run an algorithm similar to Distributed Decision Confidence
Miner to decide which of the rules in Ry are confident. We
develop some new candidate rules according to the following
two candidate generation methods: If a rule is found to be
confident than every rule which specify the precendent or
generalize the antecent of that rule must also confident and
every rule which further specify the antecendent is consid-
ered a candidate. If, on the other hand, a rule was found not
to be confident than any rule which specify the precendent
is still a candidate.

Algorithm 5 Pruning Distributed Decision Confidence
Miner
For party j of n

1. Initialize Ro = {0 = 0}, k=0, R=10

2. while Ry, # 0

(a) Initialize Passed = ()
(b) do
e chooser; = X, = X,\X, € Ry such that j ¢
G (ri) and either H (r;) <X < P (r;, DB’) or
P (ri, DB’) < XA < H(r;) and broadcast to
all other parties:

= (i,z},2]) if j ¢ G (X,) and j ¢ G (Xa)
— (i,z}) if j ¢ G(X,) and j € G(Xa)
- (i,z])if j € G(X,) and j ¢ G (Xa)
o if there is no such r; broadcast (Pass).
(c) until |[Passed| =n
(d) for each X, = X, \ X,
H(X, =X \Xp)> A
i. for each X4q € L such that Xgq = X, U
{item} insert X, = Xza \ Xp t0 Rpt1

for each X,Y : X, C X C Y C X, insert
X=>Y\XtoR

(e) for each X, = X, \ X,
H (X, = X, \ Xp) < A

i. for each u € X, \ X, insert X, U {u} = X, \
XpU {u} to Re+1

) k=k+1

€ Ry such that

ii.

€ Ry such that

When party i receives message M from party j:
1. If M = (Pass) insert j to Passed

2. else decide according to [ if the message is of the form
<l, wﬁ,,x{l),a,m;) or <l,mfl) and parse the message ac-
cordingly

(a) if j € Passed remove j from Passed.

(b) for every r which includes X, and/or X, recalcu-
late G (r), H (r) and P (r, DB).




5. EXPERIMENTAL RESULTS

We used synthetic databases generated with the gen tool
(available from Quest web site at [12]), which is based on
ideas published in [2]. We generated several large databases
and then sampled them to generate the partitioned database.
The sample sizes were kept to less than 10% of the orig-
inal database in order to reduce the dependency between
different experiments. We systematically scanned MinSup
values of 3% to 30% of the size of the database in order to
sidestep the risks of parameter tuning. We used the reason-
able MinConf = 0.5. Communication load was measured
assuming 4 bytes for support count encoding and 2 bytes for
itemset number encoding.

Figure 1, 2 and 3 show the typical communication loads
of CD, FDM, Distributed Decision Miner, Preemptive Dis-
tributed Decision Miner and Distributed Dual Decision Miner
on various unskewed databases. It can be seen that the lat-
ter three algorithms uses far less communications than the
former two. It can also be seen that both CD and FDM
are non-scalable with respect to either n or MinSup. For
unskewed databases, PDDM and DDM behavior is effec-
tively the same, and DDDM is up to 30% more efficient
once the amount of communication is large enough.

6. CONCLUSIONS

During the past few years, distributed systems have become
a mainstream computing paradigm. Whether it be a com-
pany’s Virtual Private Network, a multi-server billing cen-
ter, a network of independent stockbrokers or a peer-to-peer
mp3 library like Napster, the wealth of information available
on-line is constantly expanding. This information is by and
large distributed, and there is a growing need for tools that
will assist in understanding and describing it.

These new databases differ from distributed databases of the
past. The partitioning of the data is usually skewed. The
connections between partitions are sparse and often unreli-
able, and various throughputs and latencies may apply. Dis-
tributed knowledge discovery algorithms will, in our view,
become a major tool in the making, maintaining and analy-
sis of distributed systems. This will require us to change our
approach to distributed knowledge discovery and accept the
skewed, sparsely connected, sometimes unreliable environ-
ment of these distributed systems. We will have to restate
well-known problems and define new ones.

This paper can be viewed as an example of a new approach
to one such well-known problem. D-ARM problem was re-
stated here as a decision problem, negotiated among dif-
ferent parties. The resulting algorithms are both more ef-
ficient, more resiliant to data skewness, and better able
to overcome certain communication difficulties such as un-
ordered messages, variable or uneven throughputs and the
like. We intend to further extend the concept of mining
through distributed decision-making and apply it to other
areas of knowledge discovery.
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Figure 1: figures 1(a), 1(b), 1(c) and 1(d) show the typical performance of CD, FDM, DDM, PDDM and
DDDM over several unskewed databases, measured by the number of transmitted bytes vs. n and MinSup.
The MinSup parameter is related to both the number of candidates and Pr,pove. It can be seen that CD and
FDM are not scalable with neither n nor MinSup. Note that when the partition is unskewed, DDM and
PDDM are effectively the same algorithm because there are no obvious leaders.
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Figure 2: Figure 2(a) showes the performance of CD, FDM, DDM, PDDM and DDDM on an unskewed
database like those of 1(a) through 1(d). Here we added views of the performance for fixed n (2(b)) and
fixed MinSup (2(c)) and a sample of values for all algorithms for n = 16,52 and Minsup = 0.12- D,0.3-D. It
can be seen from 2(b) and 2(c) that once the amount of communication is large enough, DDDM performs

better than DDM by 10 — 30 percent.
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Figure 3: Figure 3(a) shows the performance of CD, FDM, DDM, PDDM and DDDM on yet another
unskewed database. When the amount of communication increases, DDDM performs better than DDM by
30%. The performance of DDM alone is ~ 3 orders of magnitude better than FDM.

484



