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ABSTRACT
In this paper, we investigate the approach of using low cost
PC clusters to parallelize the computation of iceberg-cube
queries. We concentrate on techniques directed towards on-
line querying of large, high-dimensional datasets where it is
assumed that the total cube has not been precomputed. The
algorithmic space we explore considers trade-o�s between
parallelism, computation and I/O. Our main contribution is
the development and a comprehensive evaluation of various
novel, parallel algorithms. Speci�cally: (1) Algorithm RP is
a straightforward parallel version of BUC [BR99]; (2) Algo-
rithm BPP attempts to reduce I/O by outputting results in
a more e�cient way; (3) Algorithm ASL, which maintains
cells in a cuboid in a skiplist, is designed to put the utmost
priority on load balancing; and (4) alternatively, Algorithm
PT load-balances by using binary partitioning to divide the
cube lattice as evenly as possible.

We present a thorough performance evaluation on all these
algorithms on a variety of parameters, including the dimen-
sionality of the cube, the sparseness of the cube, the se-
lectivity of the constraints, the number of processors, and
the size of the dataset. A key �nding is that it is not a
one-algorithm-�t-all situation. We recommend a \recipe"
which uses PT as the default algorithm, but may also deploy
ASL under speci�c circumstances.
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1. INTRODUCTION
For many decision support and OLAP applications, CUBE
queries constitute one of the most important classes of queries.
The CUBE operator, introduced by Gray et al., general-
izes the GROUP-BY operator in computing aggregates for
every possible combination of the speci�ed attributes [7].
However, for d speci�ed attributes, not only are there 2d

cuboids (i.e., group-bys), but there are also numerous cells,

or partitions, computed. Analyzing such a huge amount of
output is not easy.

To address this issue, two main approaches have been stud-
ied so far. The �rst approach is to tightly integrate OLAP
with data mining techniques. For example, the framework
proposed by Sarawagi summarizes partitions into patterns
on the one hand, but identi�es exceptions to those patterns
on the other [14]. The second approach, which is the subject
matter of this paper, is to allow user-speci�ed constraints to
be imposed on the partitions. Following the spirit of ice-
berg queries studied in [5], Beyer and Ramakrishnan intro-
duced and studied the Iceberg-cube problem, which com-
putes only those partitions satisfying a given aggregate con-
dition [3, 11]. They developed the BUC algorithm, which
proceeds bottom-up by starting from the cuboid with \all",
to a cuboid on a single attribute, then on a pair of attributes,
and so on.

While user-de�ned constrain ts help to reduce the size of the
output, the computation is still far away from being truly
\online" { in the sense of supporting real time user interac-
tivity. One general solution is to selectively pre-compute or
materialize some of the cuboids (e.g., [9, 8, 2, 15]). While
materialization is a step in the right direction, we feel that
materialization alone is not adequate. To provide for fast
answering of iceberg-cube queries, it is more appropriate to
materialize partitions, a granularity level �ner than cuboids.
But selecting the \right" partitions to materialize appear to
be harder than selecting cuboids. This is because the \right"
partitions depend on the actual constraints, e.g., the type of
the constraints, and the thresholds speci�ed. It is an open
question how to e�ectively select partitions to materialize
for iceberg-cube queries.

In this paper, we investigate the approach of using PC clus-
ters to parallelize the computation of iceberg-cube queries.
We concentrate on techniques directed towards online query-
ing of large, high-dimensional datasets where it is assumed
that the total cube has not been precomputed. Further-
more, we focus on practical techniques that could be read-
ily implemented on low cost PC clusters using open source,
Linux and public domain versions of the MPI message pass-
ing standard.

Towards e�cient iceberg-cube computation with PC clus-
ters, this paper explores di�erent trade-o�s between paral-
lelism, computation and I/O. The main contribution of this
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Algo. Writing Load Relationship Data
Strategy Balance of cuboids Decomposition

RP depth-�rst weak bottom-up replicated

BPP breadth-�rst weak bottom-up partitioned
ASL breadth-�rst strong top-down replicated
PT breadth-�rst strong hybrid replicated

Figure 1: Key Features of the Algorithms

paper is the development and comprehensive evaluation of
various novel, parallel algorithms for iceberg-cube computa-
tion. Speci�cally:

� We develop algorithm RP (Replicated Parallel BUC),
which is a straightforward parallel version of BUC.
Though simple, algorithm RP does a poor job in dis-
tributing tasks and workload. As an attempt to correct
the situation, we develop algorithm BPP (Breadth-�rst
writing, Partitioned, ParallelBUC), which di�ers from
RP in two key aspects. First, the dataset is not repli-
cated, but is range partitioned on an attribute basis.
Second, the output of cuboids is done in a breadth-�rst
fashion, as opposed to the depth-�rst writing that RP
and BUC do. Figure 1 summarizes the key features of
the algorithms.

� Though an e�ort has been made, the two algorithms
are likely to be weak on load balancing. This is primar-
ily because they follow the BUC-style bottom-up com-
putation too strictly. To consider load balancing as the
utmost priority, we pursue a radically di�erent strat-
egy. We develop algorithm ASL (A�nity SkipList),
which maintains the cells of a cuboid in a skiplist.
Furthermore, to allow as much shared computation as
possible within each processor, ASL assigns cuboids
to processors in a way that amounts to building the
cuboids in a top-down fashion.

� While ASL tries to load balance by processing very
�ne granularity tasks, algorithm PT (Partitioned Tree)
is a hybrid algorithm combining both pruning and
load balancing, and processing tasks of slightly coarser
granularity. The idea is to use binary partitioning to
divide the lattice of the cuboids as evenly as possible.

� The natural questions to ask at this point are: (i)
which algorithm is the best, and (ii) do we really need
to know about all these algorithms? For the �rst ques-
tion, we present a thorough performance evaluation of
all these algorithms on a variety of parameters. The
parameters include the dimensionality and sparseness
of the cube, the selectivity of the constraints, the num-
ber of processors, and the size of the dataset. With
respect to the second question, a key �nding of our
evaluation is that when it comes to iceberg-cube com-
putation with PC clusters, it is not a one-algorithm-

�t-all situation. Based on our results, we recommend
a \recipe" which uses PT as the default algorithm, but
may also deploy ASL under speci�c circumstances.

� Algorithmic development and evaluation aside, we con-
sider \truly online" more than just speed and e�-
ciency. We believe that the kind of online aggrega-
tion framework proposed and studied by Hellerstein,

Haas and Wang is valuable [10]. To this end, we study
how well the di�erent algorithms proposed here can be
augmented to provide such support.

The outline of the paper is as follows. Section 2 reviews key
concepts and the main sequential algorithms for iceberg-
cube computation. Section 3 presents the model and the as-
sumptions underlying our study here. Section 4 introduces
the various novel parallel algorithms. Section 5 presents
comprehensive experimental results, and concludes with a
recipe for picking the best algorithms under various circum-
stances. Finally, Section 6 discusses how well the various
algorithms can support online processing.

2. REVIEW
The data cube on m attributes can be represented as a lat-
tice structure, called the cube lattice, where each node in the
lattice is called a cuboid. Figure 2 shows the cube lattice for
four attributes A, B, C and D. The cuboids are labeled ac-
cording to the attributes values that have been aggregated.
For example AB represents the cuboid where each record is
the sum of the aggregation �eld over all distinct combina-
tions of attribute values for AB. If the data set has been
sorted with respect to AB then in order to calculate A the
dataset does not have to be re-sorted and we can simply
accumulate the sums for each of the values in A. This op-
timization is called share-sort and can be used whenever a
cuboid is a pre�x of another cuboid.

The general iceberg-cube query framework is designed to
handle constraints other than count constraints. For the
latter constraint, a cell in a cuboid is only returned as part of
the answer to the query if there are enough tuples assigned to
that cell; the number of tuples assigned is called the support
of the cell. Like [3], we only consider count constraints here.

Sequential algorithms that compute the entire data cube
can be viewed as having two stages: the planning stage and
the execution stage. In the planning stage, the algorithm
decides how to decompose the lattice into a collection of
disjoint sets of nodes; the union of all these sets make up
the complete cube. In the execution stage, for each set of
nodes, the algorithm computes the actual cuboids. Among
the existing algorithms, some are sort-based, while the oth-
ers are hash-based. In [3], there is a comparison between the
two classes of algorithms. It is concluded that hash-based al-
gorithms do not exploit shared computation as much as the
sort-based algorithms do, and that hash-based algorithms
require a signi�cant amount of memory. For these reasons,
in this paper, we focus our attention on sort-based algo-
rithms.

Returning to the planning stage, algorithms which follow
paths from the raw data towards the total aggregate value
are called \top-down" approaches. Algorithms which com-
pute paths in the reverse direction are called \bottom-up"
approaches. For the example shown in Figure 2, a top-down
approach computes from ABCD, to ABC, to AB and even-
tually to A; a bottom-up approach goes in the opposite di-
rection. Bottom-up approaches do not take e�ective use of
share-sort, whereas top-down approaches can. However, for
iceberg queries, bottom-up approaches can exploit pruning.
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1. Algorithm BUC-Main
2. INPUT: Dataset R with dimensions fA1; A2; : : : Amg,

the minimum support Spt.
3. OUTPUT: Quali�ed cells in the 2m cuboids of the cube.
4. PLAN:
5. Starting from the bottom, output the aggregate on \all",

and then a depth �rst traversal of the lattice
induced by fA1; A2; : : : Amg.

6. for each dimension Ai (i from 1 to m) do
BUC(R, TAi

; Spt; fg)
7. CUBE COMPUTATION:
8. procedure BUC(R,TAi

, Spt, pre�x)
9. pre�x = pre�x [fAig
10. for each combination of values vj of the attributes

in pre�x do
11. partition R to obtain Rj

12. if (the number of tuples in Rj is � Spt)
13. aggregate Rj, and write out the

aggregation to cuboid with cube
dimensions indicated by pre�x

14. for each dimension Ak , k from i+ 1 to m do

15. call BUC(Rj,TAk
, Spt, pre�x)

16. end for

17. end for

Figure 3: A Skeleton of BUC

Speci�cally, if there is not su�cient support for aibj, then
it can be concluded that su�cient support cannot possibly
exist for all of aibjC, aibjCD, and so on.

One of the �rst algorithms designed for e�cient cube cre-
ation was PIPESORT [1]. This algorithm attempts to min-
imize the overall computation by obtaining cost estimates
of di�erent ways of covering the lattice with paths. Specif-
ically, it computes a plan in a level-by-level manner, where
at each level it uses estimates of the size of the cuboids
to determine which cuboid to compute the cuboid at the
next lower level. When the plan is executed, each path can
be computed in a pipelined manner. While PIPESORT is
amenable to parallel implementation, it does so at the ex-
pense of communication in the pipeline. For low-cost PC
clusters, the overhead of communication easily dominates
any savings in the amount of computation. Thus, we do not
pursue parallelizing PIPESORT further.

More Recently Ross and Srivastava have designed a very ef-
fective top-down algorithm for large, high-dimensional and
sparse data cubes [13]. Their algorithm, called Partitioned-
Cube, adopts a top-down approach for the planning state.
For the execution stage, it tries to make e�cient use of avail-
able memory to reduce the number of scans of the data.
They found that reducing the number of scans was a better
measure of the performance of the algorithm on sparse data
versus attempting to minimize the amount of work, as was
the case with PIPESORT.

As noted by Beyer and Ramakrishnan [3], for iceberg-cube
queries, top-down algorithms are not able to prune cells with
insu�cient support, which can add to the amount of compu-
tation and the amount of memory needed during the com-
putation. Thus, in BUC, a bottom-up approach is adopted.
For the example given in Figure 2, BUC starts with \all",
and then attribute A. For each value vj in A, the dataset

is partitioned and BUC is called recursively in a depth-�rst
manner to process the other dimensions. While it can ex-
ploit pruning, BUC does so at the expense of abandoning
the use of share-sort.

A skeleton of BUC is shown in Figure 3, we use the no-
tation TAi

to denote the set of all nodes in the subtree
rooted at Ai. For the example given in Figure 2, TB =
fB;BC;BD;BCDg.

3. MODEL AND ASSUMPTIONS
Key to the success of an online system is the ability for the
system to respond to queries in a timely fashion. Given the
compute and data intensive nature of iceberg-cube queries,
it necessitates a high performance machine. In the past, this
required expensive platforms, e.g., symmetric multiproces-
sor machines. In recent years, however, a very economical
alternative has emerged { namely, a cluster of low-cost com-
modity processors and disks. There are several advantages
to using PC-clusters. First, in terms of raw performance,
processor speeds are similar to and often exceed those of
multiprocessor architectures. Recent advancements in sys-
tem area networks, such as Myrinet, standards like VIA,
and 100Mbit or Gigabit Ethernet has signi�cantly improved
communication bandwidth and latency. Although I/O and
the use of commodity disks is a weakness of these systems,
as we show, parallelism can easily be exploited. The af-
fordability of PC-clusters makes them attractive for small
to medium sized companies and has been the dominant par-
allel platform used for many applications [4], including as-
sociation rule mining [17].

In the remainder of this paper, we develop various novel al-
gorithms for parallelizing iceberg-cube queries. Our focus is
on practical techniques that could be readily implemented
on low cost PC clusters using open source, Linux and pub-
lic domain versions of the MPI message passing standard.
While our results apply to low cost clusters, a natural ques-
tion to ask is how much we expect our results to generalize
to higher cost systems. As will be shown in Section 5, we
examine how the various algorithms would speed up in the
presence of more nodes/processors in the cluster. Thus, if
the key di�erence between a low cost and a high cost clus-
ter is only on the number of nodes, then our results will
be applicable. However, if the key di�erence is on the un-
derlying communication layer, then our results may not be
applicable.

All of the algorithms to be presented use the basic frame-
work of having a planning stage and an execution stage. In
the case of parallel algorithms, the planning stage involves
(i) breaking down the entire processing into smaller units
called tasks, and (ii) assigning tasks to processors, where
now the objective is to minimize the running time of the
processor that takes the longest time to complete its tasks.
To simplify our presentation, we do not include the aggre-
gation for the node \all" as one of the tasks. This special
node can be easily handled. Furthermore, it is assumed that
the initial dataset is either replicated at each of the proces-
sors or partitioned. The output, i.e., the cells of cuboids,
remains distributed, where processors output to their local
disks.

27



ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

(a) cube lattice

5ABCD

4ABC 6ABD 8ACD 12BCD

3AB 7AC 9AD 11BC 13BD 15CD

2A 10B 14C 16D

1all

(b) BUC processing tree

Figure 2: An Example Cube

4. PROPOSEDPARALLEL ALGORITHMS
In this section, we introduce the four algorithms. As shown
in Figure 1, the algorithmic space that we explore involves
the following issues:

� The �rst issue is how to write out the cuboids. Be-
cause BUC is bottom-up, the writing of cuboids is
done in a depth-�rst fashion. As will be shown later,
this is not optimized from the point of view of writing
performance. This leads us to develop an alternative
breadth-�rst writing strategy.

� The second issue is the classical issue of load balanc-
ing. This issue is intimately tied to the de�nition of
what a task is. Di�erent algorithms essentially works
with di�erent notions of a task. In general, when the
tasks are too coarse-grained, load balancing is not sat-
isfactory. However, if the tasks are too �ne-grained, a
lot of overhead is incurred.

� When it comes to iceberg-cube queries, an important
issue is the strategy to traverse the cube lattice. As dis-
cussed earlier, top-down traversal exploits share-sort,
whereas bottom-up traversal exploits pruning based on
the constraints. Our algorithms consider these possi-
bilities; and in fact, one of the algorithms combines
the two strategies in an interesting way.

� As usual, for parallel computation, we explore whether
data partitioning is e�ective.

As an preview, there is a relationship between the four algo-
rithms presented here. We �rst attempted a straightforward
parallel version of BUC. Since the planning stage of BUC
divides the lattice into several independent trees, these trees
were simply distributed and executed in parallel. This al-
gorithm is called RP. But RP exhibits poor load balancing
behavior. As a remedy, we developed the algorithm called
BPP, which adopts breadth-�rst writing and data partition-
ing. But it turns out load balancing is not improved as
much as we expected. This leads us to the development of

1. Algorithm RP
2. INPUT: Dataset R with dimensions fA1; A2; : : :Amg and

minimum support Spt;
3. OUTPUT: The 2m cuboids of the data cube.
4. PLAN:
5. Task de�nition: identical to BUC, i.e., subtrees

rooted at Ai
6. Processor assignment: assign a processor, in

round robin fashion, to each subtree rooted at
dimension Ai (i from 1 to m)

7. CUBE COMPUTATION (for a processor):
8. parallel do For each subtree rooted at dimension Ai

assigned to the processor
9. call BUC(R; TAi

; Spt;fg)
(with output written on local disks)

10. end do

Figure 4: A Skeleton of the RP Algorithm

the algorithm called ASL, which is intended to deal with
tasks much smaller than those handled by the previous al-
gorithms. While it uses skiplists to maintain the cuboids di-
rectly, it also exploits share-sort as much as possible. This is
one way of achieving better load balancing. Another way is
to further optimize on BPP (i) to create �ner-grained tasks,
and (ii) to exploit share-sort. This leads to the development
of the algorithm called PT.

4.1 Algorithm RP
Recall from Figure 2 that BUC breaks down the entire cube
lattice into independent subtrees rooted at each of the di-
mensions. Thus, in the algorithm called Replicated Parallel
BUC, RP for short, each of these subtrees becomes a task. In
other words, for a cube query involving m attributes, there
arem tasks. Processor assignment is simply done in a round
robin fashion. With this simple assignment strategy, if there
are more processors than tasks, some processors will be idle.
Each processor reads from its own copy of the dataset, and
outputs the cuboids to its local disk (see Figure 4).

For example, for the cube from Figure 2, if there are two
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processors, the �rst processor would be assigned all cuboids
with dimensions starting with A and D, and the second pro-
cessor would compute all cuboids with dimensions starting
with B, and those starting with C.

4.2 Algorithm BPP
4.2.1 Task Denition and Processor Assignment
While RP is easy to implement, it appears to be vulner-
able in at least two areas. The �rst problem is that the
de�nition of a task may be too simplistic in RP. The divi-
sion of the cube lattice into subtrees is coarse-grained. One
consequence is that some tasks are a lot bigger than some
others. For example, the subtree rooted at A, TA, is a lot
larger than that rooted at C, TC . Thus, load balancing is
poor. The second problem is that BUC is not optimized in
writing performance. Below we address the �rst problem;
in Section 4.2.2 we try to solve the second problem.

To address the �rst problem, the algorithm called Breadth-
�rst writing Partitioned Parallel BUC, BPP for short, tries
to get �ner-grained tasks by range partitioning on each at-
tribute. This is motivated by Ross' and Srivastava's design
objective of Partitioned-Cube in trying to partition the data
into chunks that �t in memory [13]. To be more precise:

� For a given attribute Ai, the dataset R is range parti-
tioned into n chunks (i.e., Ri(1); : : : ;Ri(n)), where n is
the number of processors. Processor Pj keeps its copy
Ri(j) on its local disk.

� Note that because there are m attributes, the above
range partitioning is done for each attribute. Thus,
processor Pj keeps m chunks on its local disk, i.e.,
R1(j); : : : ;Rm(j). Any of these chunks may have some
tuples in common.

� Range partitioning itself for the m attributes can be
conducted in parallel, with processor assignment done
in a round robin fashion. For instance, processor i may
partition attribute Ai, then Ai+n, etc. Notice that as
far as BPP execution is concerned, range partitioning
is basically a pre-processing step.

As is obvious from the above description, there are a total
m � n chunks. Each chunk corresponds to one task. For
example, for the chunk Ri(j), processor Pj is assigned the
task of computing the (partial) cuboids in the subtree rooted
at Ai. These cuboids are partial because Pj only deals with
the part of the data it controls, i.e., Ri(j). But of course,
the cuboids are completed by merging the output of all n
processors.

4.2.2 Breadth-First Writing
Because BUC computes in a bottom-up manner, the cells
of the cuboids are written out in a depth-�rst fashion. To
illustrate, consider the situation shown in Figure 5. There
are three attributes A, B, C, where the values of A are a1; a2,
values of B b1; b2, etc. As shown in Figure 3, the tuples of a1
is aggregated in line 14 (assuming that the support threshold
is met), and the result is output. The recursive call in line
15 then leads the processing to the cell a1b1, then the cell
a1b1c1, then a1b1c2, etc. In Figure 5, the number in round

1. Algorithm BPP
2. INPUT: Dataset R with dimensions fA1; A2; : : :Amg and

minimum support Spt
3. OUTPUT: The 2m cuboids of the data cube
4. PLAN:
5. Task de�nition: (partial) cuboids of subtrees rooted at Ai
6. Processor assignment: as described in Section 4.2.1
7. CUBE COMPUTATION (for the processor Pj):
8. parallel do

9. for each Ai (i from 1 to m) do
10. call BPP-BUC(Ri(j);TAi

; Spt;fg)
(with output written on local disks)

11. end for

12. end do

13. Subroutine BPP-BUC(R; TAi
; Spt, pre�x)

14. pre�x = pre�x [fAig
15. sort R according to the attributes ordered in pre�x
16. R0 = R

17. for each combination of the values of the attributes
in pre�x do

18. if (the number of tuples for that combination� Spt)
19. aggregate on those tuples, and

write out the aggregation
20. else remove all those tuples from R0

21. end for

22. for each dimension Ak , k from i+ 1 to m do

23. call BPP-BUC(R0;TAk
; Spt, pre�x)

24. end for

Figure 6: A Skeleton of the BPP Algorithm

brackets beside each node denotes the order in which the
cell is processed and output for depth-�rst writing.

Note that these cells may belong to di�erent cuboids. For
example, the cell a1 belongs to cuboid A, the cell a1b1 to
cuboid AB, and the cells a1b1c1 and a1b1c2 belong to ABC.
The point is that in depth-�rst writing, the writing to the
cuboids is scattered. This clearly incurs a high I/O over-
head. It is possible to use bu�ering to help the scattered
writing to the disk. However, this may require a large
amount of bu�ering space, thereby reducing the amount of
memory available for the actual computation. Furthermore,
many cuboids may need to be maintained in the bu�ers at
the same time, causing extra management overhead.

In BPP, this problem is solved by breadth-�rst writing. To
return to the example in Figure 5, BPP completes a cuboid
before moving on to the next one. For example, the cells
a1 and a2, which make up cuboid A, are �rst computed and
written out. Then all the cells in cuboid AB are output, and
so on. In Figure 5, the number in angled brackets beside
each node denotes the order in which the cell is processed
and output for breadth-�rst writing.

Figure 6 gives a skeleton of BPP. As described above, there
is the pre-processing step of range partitioning the dataset,
and assigning to each processor Pj the appropriate tasks,
namely computing the partial cuboids of the subtree rooted
at Ai based on the chunk Ri(j), for all 1 � i � m.

In the main subroutine BPP-BUC, breadth-�rst writing is
implemented by �rst sorting the input dataset on the \pre-
�x" attributes. For our example, if the pre�x is A, meaning
that the dataset has already been sorted on A, then line 15
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a1b1c1 a1b1c2
(4) <8> (5) <9>

a1b1c3

(2) <3>

... ...     ... ...

a1b1

(1) <1>
   a1

a1b2
(6) <4>

(7) <10>
a1b2c1

(8) <11>
a1b2c2

(9) <12>
a1b2c3

(11) <5>
a2b1

(10) <2>
   a2

a2b2
(12) <6>

(3) <7>

Figure 5: Depth-�rst Writing vs Breadth-�rst Writing

sorts the dataset further on the next attribute B. The loop
starting from line 17 then basically completes breadth-�rst
writing, by computing and outputting the aggregation of all
the cells in the cuboid AB.

Because some cells may not meet the support threshold,
there is the extra complication in BPP-BUC to prune as
early as possible. This is the purpose of lines 16 and 20.
Note that as opposed to what is presented in line 16 for
simplicity, in our implementation, we do not actually cre-
ate a separate copy of the data. Instead, an index is used
to record the starting and ending positions in the sorted
dataset to indicate that all those tuples should be skipped
for subsequent calls to BPP-BUC.

Breadth-�rst I/O is a signi�cant improvement over the scat-
tering I/O used in BUC. For the baseline con�guration to
be described in Section 5, the total I/O time for RP to write
the cuboids was more than 5 times greater than the total
I/O time for BPP.

4.3 Algorithm ASL
The potential disadvantage of BPP is that the amount of
work each processor does is dependent on the initial parti-
tioning of the data. The size of the task depends on the
degree of skewness in the dataset and the order in which the
dimensions are sorted and partitioned. If the skewness is
signi�cant, the tasks may vary greatly in size, thereby reduc-
ing load balancing. The motivation for the algorithm called
A�nity SkipList, ASL for short, is to try to create tasks that
are as small as the cube lattice allows. This would allow ef-
�cient use of the processors, quite independent of the the
skewness and dimensionality of the dataset. As explained
below, there are two key features of ASL { namely, the data
structure used, and the processor assignment.

Concerning the data structure, ASL uses a skiplist to main-
tain the cells in one cuboid. More speci�cally, it itera-
tively reads in the tuples, inserts each tuple into the cell in
the skiplist, and updates the aggregate and support counts.
ASL is parallelized by making the construction of each cuboid
a separate task. The hope is that this creates a large num-
ber of small tasks and leads to better overall load balancing.
In theory, if there are k cuboids and if there is enough mem-
ory, ASL can maintain all k skiplists simultaneously for one
scan of the dataset. But for the datasets used in our exper-
iments, this optimization brings minimal gain, and we did

Algorithm ASL
1. INPUT: Dataset R cube dimensions fA1; : : : ; Amg;

minimum support Spt
2. OUTPUT: The 2m cuboids of the data cube
3. PLAN:
4. Task de�nition: a cuboid in the cube lattice
5. Processor assignment: a processor is assigned

the next task based on pre�x or subset a�nity
6. CUBE COMPUTATION (for a processor):
7. parallel do

8. let the task be with dimensions Ai; : : : ; Aj
9. if (Ai; : : : ; Aj is the pre�x of the

previous task or the �rst task)
10. let C be the skiplist of that task
11. call pre�x-reuse(C;Spt;Ai; : : : ;Aj);
12. else if (fAi; : : : ; Ajg is a subset of

the set of dimensions of the previous task, or
the set of dimensions of the �rst task)

13. let C be the skiplist of that task
14. call subset-create(C;Spt;Ai; : : : ; Aj)
15. else call subset-create(R;Spt;Ai; : : : ; Aj)
16. end do

17. Subroutine pre�x-reuse(C;Spt;Ai; : : : ; Aj)
18. Aggregate C based on Ai; : : : ; Aj
19. Write out the cells meeting the support threshold

20. Subroutine subset-create(C;Spt; Ai; : : : ; Aj)
21. initialize skip list L
22. for each cell (tuple) in C do

23. �nd the right cell in L (created if necessary)
24. update the aggregate and support counts accordingly
25. end for

26. Traverse L, writing out the cells meeting
the support threshold

Figure 7: A Skeleton of ASL

not do that here.

Skiplists were chosen as the data structure because they ex-
hibit good average case behavior for insertion and searching,
can be e�ciently implemented, and have the nice property
that the sorted cells are stored as a linked list that can easily
be used to write out the �nal cuboid. We also experimented
with hash tables. However, they did not perform as well
as skiplists and would require the use of special extendible
hash functions in order for us to exploit share-sort. They
also occupied more space. This is consistent with one of the
conclusions given in [1] that hash-based algorithms perform
poorer and poorer as the sparensess of the dataset increases.
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Next, we turn our attention to the processor assignment
policy of ASL. Contrary to the algorithms seen so far, ASL
adopts a top-down approach to traverse the cube lattice.
The hope is obviously to try to maximize the bene�t of
share-sort.

For example, if a processor has just created the skiplist for
ABCD, then it makes perfect sense for the processor to be
assigned the task of computing the cuboid for ABC. The
previous skiplist for ABCD can simply be reused to pro-
duce the results for ABC. In the following, we refer to this
situation as \pre�x a�nity".

As another situation, if a processor has just created the
skiplist for ABCD, this skiplist is still useful if the proces-
sor is next assigned the task of computing the cuboid BCD,
say. This is because all that needs to be done is to take the
counts of each cell in ABCD, and add them to the counts of
the appropriate cell in the skiplist for BCD. This may bring
about signi�cant savings because the groupings done for the
skiplist for ABCD need not be wasted. For example, suppose
in ABCD, there is the cell corresponding to the grouping of
a1b1c1d1. For the w tuples in the original dataset that be-
long to this cell, the current aggregate and support counts
can readily be used to update the corresponding counts for
the cell b1c1d1 for BCD. There is no need to re-read the
w tuples and aggregate again. In the following, we refer to
this situation as \subset a�nity".

Figure 7 shows a skeleton of Algorithm ASL. To implement
pre�x or subset a�nity, a processor is designated the job
of being the \manager" who has the responsibility of dy-
namically assigning the next task to a \worker" processor.
Speci�cally, the manager:

� �rst tries to exploit pre�x a�nity, because if that is
possible, the worker processor has no need to create a
new skiplist for the current task/cuboid. The previous
skiplist can be aggregated in a simple way to produce
the result for the current task. This is executed by the
subroutine pre�x-reuse in Figure 7.

� then tries to exploit subset a�nity, if pre�x a�nity
is not applicable. Instead of scanning the dataset, the
worker processor can use the previous skiplist to create
the skiplist for the current task. This is executed by
the subroutine subset-create in Figure 7.

� assigns to the worker a remaining cuboid with the
largest number of dimensions, if neither pre�x nor sub-
set a�nity can be arranged. In this case, a new skiplist
is created from scratch.

Clearly, the last situation ought to be avoided as much as
possible. In our implementation of ASL, each worker pro-
cessor maintains the �rst skiplist it created. Because ASL
is top-down, the �rst skiplist corresponds to a cuboid with
a large number of dimensions. This maximizes the chance
of pre�x and subset a�nity.

4.4 Algorithm PT
By design, ASL tries to do a very good job of load balancing
the computation. However, ASL may be vulnerable in two

areas. First, the granularity of the tasks may be too �ne
{ to an extent that too much overhead is incurred. This is
particularly true in situations where pre�x or subset a�nity
cannot be exploited well, thus reducing the amount of sort-
ing that can be shared. Second, ASL cannot easily prune
the tuples not having minimum support. This is a direct
consequence of ASL not using a bottom-up traversal. As
ASL executes, whether a cell has minimum support or not,
cannot be determined until the dataset has been scanned.
Furthermore, at the end of the scan, even if there is a cell
that is below the minimum support, this cell still cannot be
pruned, because its support may contribute to the support
of another cell in subsequent cuboid processing.

The algorithm called Partitioned Tree, PT for short, at-
tempts to solve these two problems as follow:

� Recall that in RP and BPP, tasks are at the granular-
ity level of subtrees rooted at a certain dimension, e.g.,
TAi

. In ASL, tasks are merely nodes in the cube lat-
tice. To strike a balance between the two de�nitions
of tasks, PT works with tasks that are created by a
recursive binary division of a tree into two subtrees
having an equal number of nodes.

For instance, for the BUC processing tree shown in
Figure 2, it can be divided into two parts, namely TA
and Tall�TA. A further binary division on TA creates
the two subtrees: TAB and TA � TAB. Similarly, a
further division on Tall �TA creates the two subtrees:
TB and Tall�TA�TB . Figure 8 shows the four subtrees.
In the extreme case, binary division eventually creates
a task for each node in the cube lattice, like in ASL.
In PT, there is a parameter that controls when binary
division stops. For the experimental results presented
later, we used the parameter 32n to stop the division,
once there are that many tasks (where n is the number
of processors).

� Like in ASL, PT tries to exploit a�nity scheduling.
During processor assignment, the manager tries to as-
sign to a worker processor a task that can take advan-
tage of pre�x a�nity based on the root of the subtree.
Note that in this case, subset a�nity is not applicable.
From this standpoint, PT is top-down. But interest-
ingly, because each task is a subtree, the nodes within
the subtree can be traversed/computed in a bottom-
up fashion. In fact, PT calls BPP-BUC, which o�ers
breadth-�rst writing, to complete the processing.

Figure 9 shows a skeleton of PT. The key step that requires
elaboration is line 9, namely the exact de�nition of T . In
general, as shown in Figure 8, there are two types of subtrees
handled by PT. The �rst type is a \full" subtree, which
means that all the branches of the subtree are included.
For example, TAB is a full subtree. The second type is a
\chopped" subtree, which means that some branches are
not included. The subtrees TA � TAB and Tall � TA � TB
are examples. In line 11, depending on which type of a
subtree is passed on to BPP-BUC, BPP-BUC may execute
in a slightly di�erent way. Speci�cally, for the loop shown
on line 22 in Figure 6, if a full subtree is given, no change is
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Figure 8: Binary Division of the Processing Tree into Four Tasks

1. Algorithm PT
2. INPUT: Dataset R cube dimensions fA1; : : : ; Amg;

minimum support Spt
3. OUTPUT: The 2m cuboids of the data cube
4. PLAN:
5. Task de�nition: a subtree created by repeated

binary partitioning
6. Processor assignment: a processor is assigned

the next task based on pre�x a�nity
on the root of the subtree

7. CUBE COMPUTATION (for a processor):
8. parallel do

9. let the task be a subtree T
10. sort R on the root of T

(exploiting pre�x a�nity if possible)
11. call BPP-BUC(R; T ; Spt;fg)
12. end do

Figure 9: A Skeleton of PT

needed. Otherwise, the loop needs to skip over the chopped
branches.

5. EXPERIMENTAL EVALUATION
The di�erent algorithms were evaluated by varying each of
the following parameters: number of processors, the size of
the dataset, number of dimensions, minimum support, and
the sparseness of the data (the product of the cardinalities
of each dimension).

5.1 Experimental Setup and Parameters
The testbed for our work is a 16 processor cluster. As a het-
erogeneous platform, the cluster contains two types of PCs:
eight 500MHz PIII processors with 256M of main memory
and eight 266MHz PII processors with 128M of main mem-
ory. All machines have a 30Gbyte hard disk and were all on
the same 100Mbit/sec Ethernet network. In the following,
by \wall clock" time, we mean the maximum time taken by
any processor. The time taken by a processor includes both
CPU and I/O cost.

The cube computations were performed on di�erent subsets
of a weather dataset containing the weather conditions at
various weather stations on land. The source of the data was

the same as the datasets used by Ross and Srivastava [13],
and Beyer and Ramakrishnan [3]. There are two datasets.
Each has the same 20 dimensions; one has about 170K tuples
and the other one has in excess of 1 million tuples. The data
is very skewed on some of the dimensions. For example,
partitioning the data on the 11th dimension produces one
part which is 40 times larger than the smallest part.

In order to compare the e�ect of varying the di�erent param-
eters of the problem we used a �xed setting of the parameters
and then varied each of them individually. The �xed setting,
or baseline con�guration for testing the algorithms, used:

� the eight 500MHz processors;

� 176,631 tuples (all from real data);

� 9 dimensions chosen arbitrarily (but with the product
of the cardinalities roughly equal to 1013); and

� with minimum support set at two.

5.2 Varying the Number of Processors
Figure 10 shows the results of varying the number of pro-
cessors while keeping the other parameters at their baseline
values. Figure 10(a) shows a clear distinction between algo-
rithms RP and BPP versus algorithms ASL and PT. While
Figure 10(a) shows the wall clock time, Figure 10(b) shows
the time taken by each processor for the case when there are
8 processors. It is clear that RP and BPP do not load bal-
ance as well as ASL and PT. The task assignment for RP is
static and although the number of tasks is about equal, the
amount of computation and I/O for the tasks di�er signi�-
cantly. For BPP, the dataset is partitioned statically across
all of the nodes. Because the data is very skewed on some of
the dimensions, the computation is not well balanced. The
load imbalance is the main reason why RP and BPP do not
scale well.

ASL and PT decrease the granularity of the tasks to a sin-
gle cuboid in ASL and a small subtree in PT. The smaller
granularity leads to better load balancing and the use of de-
mand scheduling makes it easier to remain balanced even
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Figure 10: Results of each algorithm using 1, 2, 4, 8, and 16 processors

when the dataset is very skewed. Both ASL and PT also
use a�nity scheduling to take advantage of share-sort to
reduce the amount of computation. This leads to an inter-
esting observation. Note that the speedup from 8 processors
to 16 processors is below expectation. Initially, we thought
that the extra 8 processors were the ones with the slower
CPUs. However, when we did a direct comparison between
the baseline con�guration on the 8 faster CPUs versus the 8
slower CPUs, the di�erence was small. We also veri�ed that
the manager processor was not the bottleneck. Upon further
investigation, we now have the following belief/conclusion.
For both PT and ASL, the number of tasks increases as
the number of processors increases which results in less op-
portunity for them to take advantage of a�nity scheduling.
For example, in ASL suppose tasks AB and AC have been
assigned to di�erent processors. Both processors compete
for tasks A and \all" since both have a pre�x a�nity with
AB and AC. For a larger number of processors, there is a
greater chance of tasks being assigned to separate proces-
sors resulting in more competition and less opportunity to
exploit pre�x and subset a�nity.

5.3 Varying the Problem Size
Figure 11(a) shows that for increasing problem size, both PT
and ASL do signi�cantly better than RP and BPP. Both PT
and ASL appear to grow sublinearly as the number of tuples
are increased. This is due to two factors. First, there is an
overhead in creating the 29 cuboids which is independent of
the amount of data. Second, doubling the number of tuples
does not change the cardinality of the dimensions (except
for the date �eld) and does not imply that there is twice the
amount of I/O since more aggregation may take place.

It is possible to use more processors to solve a �xed prob-
lem faster or to solve a larger problem in the same amount
of time. The results in Figure 11(a) show that PT and
ASL scale well with problem size and indicates that these
algorithms could be used, given su�cient memory and disk
space, to solve larger problems on larger cluster machines.

5.4 Varying the Number of Dimensions

Figure 11(b) shows the e�ect of each algorithm on increas-
ing the number of dimensions. Note the number of cuboids
grows exponentially with the dimension size. For example,
the dimension 13 cube has 8192 cuboids.

The relative performance for the four algorithms remains the
same except for ASL where for 13 dimensions it is no longer
better than BPP. The reason why ASL is a�ected more than
the other algorithms is because of the comparison operation.
The comparison operation used to search and insert cells
into the skiplist becomes more costly as the length of the
key increases. The length of the key grows linearly with
the number of dimensions. This is a signi�cant source of
overhead for ASL. As well, for sparse data as the number
of dimensions increases there is less aggregation and the size
of many cuboids is close to that of the raw dataset.

Figure 11(b) also shows that when the number of dimen-
sions is small, RP, ASL and PT give similar performance.
Because the size of the output is small for a small number of
dimensions, the simple RP algorithm, is able to do as well
as the others.

5.5 Varying the Minimum Support
Figure 12(a) shows the e�ect of increasing the minimum
support. As the minimum support increases, there is more
pruning and as a result less IO. The total output size for
the algorithms given in Figure 12(a) starts at 469Mbyte for
a support of 1, 86Mbyte for a support of 2, 27Mbytes for
a support of 4, and 11Mbytes for a support of 8. After 8
there is very little additional pruning that occurs. Except
between 1 and 2, the output size does not appear to have a
large a�ect on overall performance. This is a surprise since
we expected PT to do better as the support increases, since
more pruning should have led to less computation. The
relative atness of the curve for PT may be due to the order
of the dimensions. Or, it may be due to the fact that pruning
occurs more towards the leaves, where it does not save as
much in computation time.

5.5.1 Varying the Sparseness of the Dataset
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Figure 11: Results for varying the dataset size and varying the number of dimensions
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Figure 13: Recipe for selecting the best algorithm

Figure 12(b) shows the e�ect of sparseness of the dataset
on the four algorithms. We consider a dataset to be sparse
when the number of tuples is small relative to the product of
the number of distinct attribute values for each dimension
in the datacube. Since the number of tuples in the base-
line con�guration is �xed, we can vary the sparseness of the
dataset by choosing smaller dimensions over larger cardinal-
ity dimensions. The three datasets chosen for Figure 12(b)
consisted of the nine dimensions with the smallest cardinal-
ities, nine dimensions with the largest cardinalities, and one
in between. Note that even for the smallest of the three,
there are still possibly about 107 total cells in the cube.

Unlike the other algorithms, ASL performs the best on dense
datasets and is more adversely a�ected by spareness. ASL
performs well for dense datasets because each cuboid con-
tains relatively few cells, which makes searching or inserting
into a skiplist relatively fast. The BUC-based algorithms
have little opportunity to prune the data because of the
density of the dataset. As a result, while traversing the
lattice, the BUC-based algorithms need to sort almost the
entire dataset for many of the cuboids. BPP does partic-
ularly poorly for cube dimensions with small cardinalities
because BPP cannot partition the data very evenly, which
leads to serious load imbalance. ASL does worst than the
BUC-based algorithms when the product of the cardinalities
is high partly because of the amount of pruning that occurs
for the BUC-based algorithms, and partly because ASL has
to maintain larger skiplists.

5.6 Varying the Order of the Dimensions
We also experimented with ordering the dimensions in the
cube in ascending order, in terms of cardinality, and in de-
scending order. For descending order, having the large car-
dinality dimensions �rst should lead to more pruning earlier
in the computation for the BUC-based algorithms. In ad-
dition, having the larger cardinality dimensions �rst also
should lead to better overall load balancing of the task as-
suming that the data is not overly skewed. For space reason,
we omit the details here.

5.7 Summary: Our Recommended Recipe
The experimental results shown thus far is an exploration
of the di�erent parameters that a�ect overall performance.
Upon careful examination of the results, we recommend the
\recipe" shown in Figure 13 to select the best algorithm for
various situations.

It is clear that ASL dominates all the other algorithms when
the cube is dense, or when the total number of cells in the
data cube is not too huge (e.g., � 108). For data cubes
with a small number of dimensions (e.g., � 5), essentially

all algorithms behave quite the same. In this case, RP may
have the slight edge that it is the simplest algorithm to im-
plement. For all other situations except when the data cube
has a large number of dimensions, PT and ASL are rel-
atively close in performance with PT typically a constant
factor faster than ASL. For cubes of high dimensionality,
there is a signi�cant di�erence between the two, and PT
should be used. The last entry in Figure 13 concerns online
support. This is the topic of the next section.

6. DISCUSSION: SUPPORT FOR TRULY

ONLINE PROCESSING
Recall that what motivates the development of the various
parallel algorithms studied here is the ideal of making OLAP
\truly online". Algorithms aside, there are issues other than
speedup and e�ciency. In this discussion, we consider two
important issues, and relate the issues to the algorithms
presented here.

� The �rst issue is the support for sampling and pro-
gressive re�nement. The online aggregation framework
proposed by Hellerstein, Haas and Wang [10] uses sam-
pling to trade-o� response time for accuracy. The user
is able to observe the progress of a query and dynam-
ically direct or redirect the computation.

In the case of a iceberg-cube query, the user would see
a rough initial cuboid which would become more ac-
curate as more and more tuples have been processed.
Among all the algorithms presented here, ASL can eas-
ily be extended to �t into this framework. This is
because it can construct cuboids incrementally by in-
serting tuples into the skiplist. For ASL, other than
coordinating the access to the structure, each tuple can
be handled independently. We can sample the data in
parallel and as more data becomes available, the new
tuples can be distributed to the di�erent processors to
be inserted into the appropriate cuboids. The same
procedure is more di�cult for PT because the under-
lying data structure used by PT is an array. It would
be necessary to compute the cuboid on the new sam-
pled data and then merge the cuboids corresponding
to the same set of attributes. The online advantages
of ASL over PT was one of the main motivations for
its development.

� So far we have assumed that no part of the entire
data cube has been pre-computed. Our experimen-
tal results show that in many cases, our parallel al-
gorithms can do well in computing the entire iceberg-
cube query from scratch (e.g.,� 100 seconds). Clearly,
for truly online processing, selective materialization
may help signi�cantly. The complication is the ex-
istence of the support threshold, or in general the con-
straints. Speci�cally, it is no longer possible to com-
pute a cuboid from a pre-computed cuboid when the
minimum support of the online query is lower than
that of the pre-computed one.

As an exercise, we compared two di�erent plans for
answering online queries using ASL. The �rst plan is
to simply re-compute the query based on the speci�ed
minimum support. Let say that the minimum sup-
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port is 2. According to Figure 12(a), ASL would take
around 60 seconds.

The second plan consists of a pre-computation stage
and an online stage. In the pre-computation stage,
ASL computes only leafs of the traversal tree using
the smallest minimum support (i.e., 1). In the on-
line stage, ASL uses top-down aggregation and returns
those cells satisfying the new speci�ed support. For
the second stage, ASL can return almost immediately;
and interestingly, even for the pre-computation, it only
took 50 seconds for the same example. (The value of 50
seconds was obtained from our additional experiment,
not directly from Figure 12(a). The values there in-
clude the total time for the nodes in the tree, not just
the leaves.) This suggests that even simple selective
materialization can help. It is a topic of future work
to develop more intelligent materialization strategies.

7. CONCLUSION
In this paper we have developed a collection of parallel al-
gorithms directed towards online and o�ine creation of dat-
acubes to support iceberg queries. The four algorithm, RP,
BPP, PT and ASL, are novel. They were experimentally
evaluated over a variety of parameters to determine the best
situation to use them. RP has the advantage that it is simple
to implement. However, except for cubes with low dimen-
sionality, RP is dominated by the other algorithms. BPP
is also dominated; but BPP shows that breadth-�rst writ-
ing is a useful optimization. As an extension of BPP, PT
is the algorithm of choice for most situations. There are,
however, two exceptional situations when ASL is the most
recommended. ASL is the most e�cient for dense cubes,
and readily supports sampling and progressive re�nement.

In future work, we would investigate how the lessons we
have learned for parallel iceberg query computation can be
applied to other tasks in OLAP computation and data min-
ing. These include (constrained) frequent set queries [12,
18], and OLAP computation taking into account correlation
between attributes.
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