
Investigating XQuery for Querying
Across Database Object Types

Nancy Wiegand

University of Wisconsin—Madison

Abstract

In addition to facilitating querying over the Web,
XML query languages may provide high level
constructs for useful facilities in traditional DBMSs
that do not currently exist. In particular, current
DBMS query languages do not allow querying across
database object types to yield heterogeneous results.
This paper motivates the usefulness of heterogeneous
querying in traditional DBMSs and investigates
XQuery, an emerging standard for XML query
languages, to express such queries. The usefulness of
querying and storing heterogeneous types is also
applied to XML data within a Web information
system.

1. Introduction

As the Web is being considered to be one huge
database of information, DBMS-type query
languages are being developed for XML data.
XQuery, derived from Quilt [CRF00, RCF00], is an
emerging standard for XML query languages
[CCF+01]. XQuery is noted for its heterogeneous
ability to query both documents and databases. Here,
XQuery is explored to query heterogeneous relation
types within a traditional database converted to
XML. Current DBMS query languages do not allow
such querying. In XML, however, there is a looser
notion of type creating the possibility of allowing
heterogeneous querying and results. The example
queries presented in this paper are modeled after
queries and information found in the working
specifications for XQuery [CCF+01, CFM+01] and
the Quilt papers [CRF00, RCF00].

Currently, database organization is by type of object
and querying is done by database type. For example,
the FROM clause of an SQL query can only specify
one relation unless a join is to be performed. Joins are
not considered here as a query across types because
the result is a set of homogeneous entities. The
discussion in this paper applies equally to Relational,
Object-Relational, and Object-Oriented DBMSs
because they all only allow homogeneous results.

2. Motivating Examples

Querying using a different type of database
partitioning than object type is a needed functionality
if a user wants to gather information based on
descriptive criteria regardless of object type.
Examples include retrieving by size, time, color, date,
ownership, material composition, and location. As an
initial example of querying across database types,
consider a database of a museum's historical items
organized by type of entity. That is, kitchenware,
ornaments, tools, jewelry, etc. each form their own
groups (relations or class extents). Suppose, however,
a user wants to find all items made of bronze.
Currently, this can only be done by posing a separate
query on each potential entity type to retrieve items
(e.g., SELECT * FROM kitchenware WHERE
material="bronze"; SELECT * FROM tools WHERE
material="bronze"; etc.). In addition to being tedious,
some objects may be left out because the user did not
think to query that type. Also, there is no way to hold
the separate results as one heterogeneous result.
Furthermore, the user might want to pose a
subsequent query on the results to restrict on some
other criteria. Currently, this again would have to be
done separately on each result of the initial queries.
What is needed is a FROM construct that allows a list
of relations or a * wildcard to denote all relations.
Also, a mechanism is needed to hold heterogeneous
query results that can be further queried.

A compelling example for DBMSs to allow querying
across types and provide for heterogeneous groups is
querying by spatial location. That is, a user often
wants "all" information associated with a geographic
area. Geographic or spatial information is currently
being added to information stores. For example, the
Alexandria Digital Library project [ADL, FFL+95]
uses a "geographic footprint" as a new paradigm for
information access [Goo98]. This paradigm allows
information to be gathered or organized spatially in
ways not now found in libraries. Searching can be
done by interacting with maps or gazetteers. An
example is being able to find all books on France
when "France" is not part of the book title or subject.
Also, more undefined criteria can be used such as
finding data on the "Bay Area". However, querying

by geographic area may result in different types of
data being gathered. For example, [Goo98] mentions
a need to retrieve all resources of a city planning
department or to gather data from multiple sources
such as the Census and image archives that relate to a
particular geographic area.

To implement the geographic footprint idea from a
DBMS perspective, each tuple or object would need
either a value for a geographic footprint-type attribute
or actual spatial coordinates. In the first case, a user
could then retrieve a variety of information on a
specified area, such as the "Bay Area". (Or, if actual
spatial coordinates are used, a query can be done over
an arbitrary area by supplying a range of coordinate
values or using a screen tool to create a rubber band
box to specify an area.) To retrieve all relevant data
for the Bay Area, the following type of query
construct is needed.

 CREATE BayAreaData AS
 SELECT *
 FROM *
 WHERE footprint = "Bay Area"

The FROM * clause would automatically range over
all types encountered. SELECT * would retrieve all
attributes and is the safest approach because the
various object types may have limited attribute
identifiers in common. In fact, if the footprint
attribute does not occur, it is important that the query
processor ignores those objects and not generate an
error. Also, the heterogeneous result of this type of
query needs to be able to be named, stored, and
available for further querying. This is shown by the
new group “BayAreaData.” Briefly, implementation
could be done using iteration over relations and the
creation of a composite result data structure that
retains type information in subheaders.

Querying across database types is not possible in
current DBMSs because of the strict adherence to
type. Subtyping in OODBMSs produced discussions
of heterogeneous sets and their problems [BBO88].
[Bla95] states heterogeneous collections can only
consist of subtypes in OQL[C++]. Also, ODMG 2.0
specifications state “the distinguishing characteristic
of a collection is that all elements are of the same
type” [CB97, p. 20] except for objects that are part of
an inheritance hierarchy. However, we have shown
that there are many cases in which the objects of
interest do not naturally fit into an inheritance
hierarchy.

Parks
name acres attraction footprint
Indian Lake 442 1857 chapel Madison Area
Fish Lake 252 fishing Sauk City Area
Badger Pr. 339 softball Madison Area

Restaurants

name specialty MCD footprint
Imperial
Garden

Chinese Middleton-C Madison
Area

Dorf Haus German Roxbury-T Sauk City
Area

Figure 1: RDB relations, sample data: (MCD is
Minor Civil Division: city, village, or town).

[KKS92] present an XSQL query without a FROM
clause to be able to return objects from all classes
that contain a specified attribute and value. Their
example is that both people and organizations satisfy
a query to find all winners of Nobel prizes. They
propose allowing varying degrees of query type
correctness to relax adherence to type when needed.
[BDH+96] note that a query to find a string value
anywhere in a database is not expressible in a general
relational algebra statement. They show UnQL can
express this and provide a “deep” search, but the
result may be heterogeneous. The FROM * notation
was mentioned in [NDM+00] but with a different
meaning. Although they also did not want to require
users to specify the Web XML data files for searches
or queries, they were not purposely accommodating a
heterogeneous result nor were they suggesting that
FROM * be applied to traditional DBMSs.

3. Querying Across Database Types

This paper explores querying across database types in
the realm of XML query languages. XML by itself
does not have a strong concept of type, and XML
query languages do not require a schema or a DTD.

Here, a traditional database is converted into XML
and queries are posed in XQuery. Suppose a
relational database for Dane County has travel
information that includes relations for parks,
restaurants, hotels, taxicab companies, and so on.
Also, assume each relation has an attribute that
contains a value for a geographic footprint (Figure 1).

<?xml version="1.0"?>
<!DOCTYPE DaneCounty SYSTEM "travelinfo.dtd">
<DaneCounty>
<park pno="p1">
 <name> Indian Lake County Park </name>
 <acres> 442 </acres>
 <attraction> 1857 Chapel </attraction>
 <footprint> Madison Area </footprint>
</park>
<park pno="p2">
 <name> Fish Lake Park </name>
 <acres> 252 </acres>
 <attraction> fishing </attraction>
 <footprint> Sauk City Area </footprint>
</park>
etc.
<restaurant rno="r1">
 <name> Imperial Garden </name>
 <specialty> Chinese </specialty>
 <MCD> Middleton-C </MCD>
 <footprint> Madison Area </footprint>
</restaurant>
<restaurant rno="r2">
 <name> Dorf Haus </name>
 <specialty> German </specialty>
 <MCD> Roxbury-T </MCD>
 <footprint> "Sauk City Area" </footprint>
</restaurant>
etc.
</DaneCounty>

Figure 2: RDB relations converted to XML and
stored in "DaneCounty.xml".

The transformed tables are stored in an XML file,
"DaneCounty.xml" (Figure 2). In this section, all
data are stored in one file, contrary to typical RDB to
XML examples such as in [CCF+01, CFM+01], to
show the ability of XQuery to query over and retrieve
elements of different types within one document.

Needed Functionalities:
To query across database types, a query language is
needed that provides high level constructs for
retrieving and storing heterogeneous objects.
Specifically, the needed functionalities are:
• a high level and user-friendly method to query

multiple type extents in one statement,
• a mechanism to name and store the result of the

query,
• a method to sort the result by element type,
• an ability to further query the result, and
• the need to not generate errors for non-existing

subelement types.

The rest of this section explores queries to meet the
above requirements. In addition, other query features
are shown relevant to spatial queries such as
executing functions within a query.

• Query multiple type extents and store the

result.
The type of query we want to execute is:

Query: Find all the travel information for the
Madison Area (from the Dane County XML file).

The desired result of this query will be a collection of
all the elements that have "footprint" equal to the
"Madison Area". The result is expected to be
heterogeneous, that is, consisting of elements
representing different concepts. The following
expressions in XQuery use an asterisk instead of
specifying an element name. This allows the query
to range over multiple types. Because XQuery
includes syntax from XPath 1.0 [CD99], the queries
can be written as path expressions or FLWR
expressions.

Path expression:
 document("DaneCounty.xml")//*[footprint=
 "Madison Area"]

FLWR expression:
<MadisonResult>
{
 FOR $b IN document("DaneCounty.xml")//*
 WHERE $b/footprint="Madison Area"
 RETURN
 $b
}
</MadisonResult>

The query result consists of all elements that have a
"footprint" subelement equal to "Madison Area".
The FLWR expression specifies a named persistent
result containing the following heterogeneous
elements. The result of the path expression does not
have the common root node.

 Result:
<MadisonResult>
<park pno="p1">
 <name> Indian Lake County Park </name>
 <acres> 442 </acres>
 <attraction> 1857 Chapel </attraction>
 <footprint> Madison Area </footprint>
</park>

<park pno="p3">
 <name> Badger Prairie Park </name>
 <acres> 339 </acres>
 <attraction> softball </attraction>
 <footprint> Madison Area </footprint>
</park>

<restaurant rno="r1">
 <name> Imperial Garden </name>
 <specialty> Chinese </specialty>
 <MCD> Middleton-C </MCD>
 <footprint> Madison Area </footprint>
</restaurant>
</MadisonResult>

The above query can also be expressed in XML-QL
[DFF+98, FSW]. The * below, an abbreviation for
$*, matches any sequence of edges.

WHERE<*>
 <footprint>Madison Area</footprint>
 </>ELEMENT_AS $b
 IN document(“DaneCounty.xml”)
CONSTRUCT <MsnResult> $b </MsnResult>

The queries presented so far specify the XML
document but do not specify element names. The
analogy to queries in a regular DBMS is that only the
database itself would need to be specified and not
individual relations, class extents, or collections.
This idea may be reminiscent of the Universal
Database assumption, but the focus here is on a
heterogeneous result which is not part of that model.

• Sort by element types.
For clarity in presenting heterogeneous results, the
XQuery FLWR expression can be written to sort the
result by element type. Because functions in the
XPath core function library are included in XQuery,
the “name” function can be used to return the name
of the current node.

<MadisonResult>
{
 FOR $b IN document("DaneCounty.xml")//*
 WHERE $b/footprint="Madison Area"
 RETURN
 $b SORTBY (name(.))
}
</MadisonResult>

• Pose further queries on heterogeneous

results and not generate errors.
Another requirement of querying across database
types is to be able to pose further queries on the

heterogeneous result of an initial query, and, in
particular, not generate errors for missing
subelements. The beginning "DaneCounty.xml"
document already consisted of heterogeneous
elements, but the first query below illustrates the case
in which all elements in an initial result have an
additional attribute in common. The second query
presents a consideration when a common attribute
does not occur, a condition more likely in a
subsequent query.

Common subelement:
Query: Find all the elements in MadisonResult
that have "Badger" as part of their "name". In
this case, all elements have the specified subelement
(i.e., "name") in common.

 <badgerset>
{
 FOR $b IN document ("MadisonResult.xml")//*
 WHERE contains ($b/name,"Badger")
 RETURN
 $b
}
 </badgerset>

The result includes the element for Badger Prairie
Park and with the full database may also include, for
example, an element for Badger Cab Company.

Specified subelement is missing:
Query: Find information specific to the city
(MCD) of Middleton. Here, after retrieving
information on the "Madison Area", the user wants to
refine the result to just get information for Middleton.
This second type of subsequent query ranges over
elements that do not have an additional common
subelement. That is, park elements in MadisonResult
do not have an MCD subelement.

<MiddletonSubset>
{
 FOR $b IN document ("MadisonResult.xml")//*
 WHERE $b/MCD="Middleton-C"
 RETURN
 $b
}
</MiddletonSubset>

If this query were processed by generating subqueries
over all main entity types (as could be done in a
traditional DBMS), it is important that
entities/elements not containing appropriate
subelements are "skipped over" without an error
message being generated so that the user gets as
much information as possible. This situation is

related to Issue 30 (Queries with Invalid Content) in
[CCF+01]. We further suggest that, in addition to the
query result, a processing option exists for the user to
get an indication of the number and/or type of
elements that were skipped either because the MCD
subelement did not exist or existed but did not have a
value equal to “Middleton-C”.

• Functions.
With a user-defined function capability, the more
arbitrary type of spatial query mentioned earlier can
be supported. That is, suppose each element has a
"spatial_location" subelement containing actual x,y
coordinates (instead of text) and a
"SPATIALLY_WITHIN" function exists. Then, the
following would be XQuery syntax for finding all
elements geographically within an area denoted by
bounding box parameters.

<ItemsInBoundingBox>
{
 FOR $b IN document("DaneCounty.xml")//*
 WHERE
 SPATIALLY_WITHIN($b/spatial_location,
 bounding_box_parameters)
 RETURN
 $b
}
</ItemsInBoundingBox>

• Results consisting of references to objects.
In object type DBMSs, the result of a query may
consist of references to objects rather than the values
of the objects. However, element IDs are not defined
in XQuery at present due to the complexities of their
use in updates and persistence outside the Web.

4. Querying XML Data within a Web-

Based Information System

An especially useful application of XML query
languages is for a controlled subset of the Web
representing a distributed Web-based information
system. Current information systems often have
limited search and query facilities with typical results
just consisting of a list of URLs for data sources.
Applying full-power DBMS-type querying would
greatly enhance their functionality.

4.1 Ranging over all available data
In XQuery, a query can easily be expressed to range
over all available data sources in a Web information
system. This is because the document function is not
required. Information system data sources would
likely have common subelements (here, “footprint”)

such that a query ranging over element types in
unspecified documents would have a useful
heterogeneous result.
Query: Find all the travel information for the
Madison area searching over all available sources.

Path expression:
 //*[footprint = "Madison Area"]

 FLWR expression:
 <ExtendedResult>
{
 FOR $b IN //*
 WHERE $b/footprint="Madison Area"
 RETURN
 $b
}
 </ExtendedResult>

Again, as a comparison to other languages, XML-QL
does not have the notion of an implicit context node
as in XQuery. Instead, a function with a document
parameter would need to be applied to multiple
documents to achieve the result of the above queries.

4.2 Information integration
Heterogeneous results are also important in a
distributed Web-based information system in which
locally stored data contain similar concepts that must
be integrated over multiple jurisdictions. For
example, land parcel data have formats and codes
that are unique within most jurisdictions. Suppose a
user wants to retrieve all information for parcels that
have a land use code of agriculture, and the data are
available in XML. Using XQuery and master terms,
a user can simply pose a single query:

//*[landuse = “agriculture”].
This query can be processed with query rewrites
using lookup tables or ontology information to
generate subqueries in native terms for each parcel
data source [WZP02]. However, the composite result
of this query is a heterogeneous “union” of the
diverse, but conceptually similar, parcel elements.

In this paper, we focus on language capabilities and
not implementation issues. However, one issue for
querying Web data without specifying element types
is finding the meaningful element boundary level to
return that contains subelements stated in the query.
Some additional stored knowledge or interaction with
the user may be necessary. Another issue is where to
store the result of a query so that it is not confused
with the original source when further queries also do
not use the document function.

We tested querying across element types in the
Niagara XML query engine [NDM+00] and found

heterogeneous results may be returned (although not
stored). This was not purposefully designed but
occurs because of Niagara’s “IN *” capability and its
manner of storing elements from all crawled data in
the same inverted lists. Niagara’s heterogeneous
result was an XML data stream, and, by default,
Niagara returned an element level that was one level
up from the element in the query.

5. Summary and Conclusions

This paper motivated the usefulness of querying
across database types in traditional DBMSs and Web-
based information systems. Heterogeneous results
are particularly useful in gathering all information
pertaining to a geographic region. Over the Web,
heterogeneous results also occur when querying
diverse, but conceptually similar, elements.

 It was shown that an XML query language such as
XQuery already has the expressive capabilities
needed for heterogeneous querying. For example, a
complete path does not need to be precisely specified
in a query nor is the document function required. As
a result, a query expression can range across
unspecified and unlimited data types and data sources
to retrieve information. Providing appropriate
implementation would be an enhancement to existing
traditional and Web DBMS query languages.

Acknowledgements
The author would like to thank Don Chamberlin for
answering general inquiries regarding Quilt/XQuery
and Mary Fernandez for XML-QL examples. This
work was partially supported by the Digital
Government Program of NSF, Grant No. 091489.

References
[ADL] Alexandria Digital Library Project.
http://www.alexandria.ucsb.edu.

[BBO88] Breazu-Tannen, V.; Buneman, P.; and Ohori, A.
1988. “Can Object-Oriented Databases be Statically-
Typed?” In Database Programming Languages, Second
International Workshop, pp. 226-237.

[BDH+96] Buneman, P.; Davidson, S.; Hillebrand, G.; and
Suciu, D. 1996. “A Query Language and Optimization
Techniques for Unstructured Data.” In Proc. ACM
SIGMOD Intl. Conf. on Management of Data, pp.505-516.

[Bla95] Blakeley, Jose A. 1995. “OQL[C++]: Extending
C++ with an Object Query Capability.” In Modern
Database Systems, The Object Model, Interoperability, and
Beyond, Won Kim (Editor), Addison-Wesley, pp. 69-88.

[CB97] Cattell, R.G.G. and Barry, Douglas K. (Editors).
1997. The Object Database Standard: ODMG 2.0. Morgan
Kaufmann, San Francisco, California.

[CCF+01] Chamberlin, D.; Clark, J.; Florescu, D.; Robie,
J.; Siméon, J.; and Stefanescu, M. (Editors). 2001. "XQuery
1.0: An XML Query Language." W3C Working Draft 07
June 2001. http://www.w3.org/TR/2001/WD-xquery-
20010607.

[CD99] Clark, J. and DeRose, S. 1999. “XML Path Lang-
uage(XPath) V. 1.0.” http://www.w3.org/TR/xpath.html.

[CFM+01] Chamberlin, Don; Fankhauser, Peter;
Marchiori, Massimo; and Robie, Jonathan. 2001. “XML
Query Use Cases.” W3C Working Draft 08 June 2001.
http://www.w3c.org/TR/xmlquery-use-cases.

[CRF00] Chamberlin, Don; Robie, Jonathan; and Florescu,
Daniela. 2000. "Quilt: An XML Query Language for
Heterogeneous Data Sources.” http://www.almaden.ibm.
com/cs/people/chamberlin/quilt.html.

[DFF+98] Deutsch, A.; Fernandez, M.; Florescu, D.; Levy,
A.; and Suciu, D. 1998. “XML-QL: A Query Language for
XML.” http://www.w3.org/TR/NOTE-xml-ql/.

[FFL+95] Fischer, C.; Frew, J.; Larsgaard, M.; Smith, T.;
and Zheng, Q. 1995. "Alexandria Digital Library: Rapid
Prototype and Metadata Schema." In Digital Libraries:
Research and Technology Advances, pp. 221-240,
Springer-Verlag.

[FSW] Fernandez, M.; Siméon, J.; and Wadler, P. “XML
Query Languages: Experiences and Exemplars.” http://
www-db.research.bell-labs.com/user/simeon/xquery.html.

[Goo98] Goodchild, Michael F. 1998. "Workshop on
Research and Development Opportunities in Federal
Information Services." White Paper,
 http://www.ncgia.ucsb.edu/~good/WhitePaper.html.

[KKS92] Kifer, M.; Kim, W.; and Sagiv, Y. 1992.
“Querying Object-Oriented Databases.” In Proc. ACM
SIGMOD Intl. Conf. on Management of Data, pp. 393-402.

[NDM+00] Naughton, Jeffrey; DeWitt, David; Maier,
David; and others. 2000. “The Niagara Internet Query
System.”http://www.cs.wisc.edu/niagara/Publications.html.

[RCF00] Robie, J.; Chamberlin, D.; and Florescu, D. 2000.
"Quilt: an XML Query Language." http://www.almaden.
ibm.com/cs/people/chamberlin/quilt_euro.html.

 [WZP02] Wiegand, N.; Zhou, N.; and Patterson, D. 2002.
“A Domain Space Concept for Semantic Integration in a
Web Land Information System.” Submitted.

