
ÿÿ

A Mapping Mechanism to Support Bitmap Index and Other
Auxiliary Structures on Tables Stored as Primary B+-trees

Eugene Inseok Chong Jagannathan Srinivasan Souripriya Das
Chuck Freiwald Aravind Yalamanchi Mahesh Jagannath
Anh-Tuan Tran Ramkumar Krishnan Richard Jiang

Oracle Corporation
One Oracle Drive, Nashua, NH 03062, USA

Abstract
Any auxiliary structure, such as a bitmap or a B+-tree index, that
refers to rows of a table stored as a primary B+-tree (e.g.,tables
with clustered indexin Microsoft SQL Server, orindex-organized
tables in Oracle) by their physical addresses would require
updates due to inherent volatility of those addresses. To address
this problem, we propose a mapping mechanism that 1) introduces
a singlemapping table, with each row holding one key value from
the primary B+-tree, as an intermediate structure between the
primary B+-tree and the associated auxiliary structures, and 2)
augments the primary B+-tree structure to include in each row the
physical address of the corresponding mapping table row. The
mapping table row addresses can then be used in the auxiliary
structures to indirectly refer to the primary B+-tree rows. The two
key benefits are: 1) the mapping table shields the auxiliary
structures from the volatility of the primary B+-tree row addresses,
and 2) the method allows reuse of existing conventional table
mechanisms for supporting auxiliary structures on primary B+-
trees.

This paper presents the mapping mechanism, its possible
application in supporting various auxiliary structures on primary
B+-trees, and a case study describing its use for supporting bitmap
indexes on index-organized tables in Oracle9i. The case study
demonstrates that the proposed mapping mechanism allows us to
reuse existing bitmap index technologies with minimal changes. It
also includes a comparison between bitmap and non-bitmap (B+-
tree) index performance on index-organized tables for both single-
table queries and star queries. The analytical and experimental
studies show that the method is storage efficient, and (despite the
mapping table overhead) provides performance benefits that are
similar to those provided by bitmap indexes implemented on
conventional tables.

1 Introduction ÿÿ
Primary B+-tree [Helm94] like structures (e.g.,tables with
clustered indexin Sybase [SYB95] and Microsoft SQL Server
[MS98], index-organized tablesin Oracle [SDFC+00], key-
sequenced tablesin Compaq Non-Stop SQL [Tand87]) are
increasingly being used in emerging domains [SDFC+00] such as
internet (e.g., search engines and portals), e-commerce (e.g.,
online store), and data warehousing. These structures provide fast
primary key based access for both exact and range searches and
are storage efficient at the same time.

Although these structures provide fast primary key basedaccess,
other access methods may still be needed depending on
application workloads. For example, if the workload contains
queries that involve predicates on non-primary key columns,

creating a B+-tree index [Com79] on those columns may be
useful. However, if the target columns have a large number of
duplicates then creating a bitmap index [OQ97] may be more
appropriate. Similarly, if the workload contains queries involving
aggregates, then creating a materialized view [SI84] that pre-
computes the frequently needed aggregates would be useful. Also,
for queries involving user-defined predicates, there may be a need
to create indexes that are supported via extensible indexing
mechanisms (such as [SMSAD00]). In general, depending on
workload characteristics, auxiliary structures such as B+-tree
indexes, bitmap indexes, user-defined indexes, and materialized
views may be required for tables stored as primary B+-trees. (In
the rest of the paper, for brevity, we use ‘primary B+-tree’ instead
of ‘table stored as primary B+-tree’.)

Auxiliary structures built on conventional tables typically rely on
the properties of physical row identifiers, namely, known format
and relative stability. For example, a bitmap index, frequently
used in data warehousing applications, provides compact storage
as well as efficient AND and OR operations by building bitmaps
that are based on the physical row addresses [OQ97, CI98].

Although such a physical address based mechanism works well
for conventional tables where physical addresses of table rows
rarely change, it is not well suited for primary B+-trees where
physical addresses of table rows change because table rows must
move to maintain the sorted order. For example, consider a DML
operation on a primary B+-tree that does not affect any existing
bitmap index key values. Such an operation can still cause
physical addresses of multiple table rows to change (due to
movement of rows inside a block or due to block splits) requiring
expensive bitmap index maintenance.

The other option of using logical (primary key-based) row
identifiers directly in place of physical addresses of table rows
may not be always feasible since logical row identifiers do not
have the properties of physical row identifiers. For example,
constructing a bitmap from a set of logical row identifiers would
require significant changes to existing bitmap index mechanism
owing to the continuous distribution of primary key values.

The focus of this paper is on providing a mechanism to support
auxiliary structures such as bitmap indexes on primary B+-trees in
an environment where primary B+-trees are used in place of
conventional tables for better performance and storage
characteristics [SDFC+00]. To support bitmap indexes or other
auxiliary structures on primary B+-tree (referred to asbase table),
we propose:

SIGMOD Record, Vol. 32, No. 2, June 2003 78

ÿ

• creating a set of physical addresses that uniquely identify the
primary B+-tree rows and at the same time do not change
when the base table rows move, and

• a mapping mechanismthat provides efficient bi-directional
(one-to-one) mapping between the set of logical row
identifiers for the primary B+-tree rows and the set of
physical addresses introduced above.

This is achieved in Oracle9i as follows:

• A new single-column conventional table (referred to as
mapping table) is introduced with the same number of rows
as the base table. This in effect creates a new set of physical
addresses for the base table.

• Each mapping table row holds the logical row identifier for a
primary B+-tree row. This provides a mapping from the
physical address of a mapping table row to the logical row
identifier for the corresponding primary B+-tree row.

• The primary B+-tree structure is augmented to include in
each row the physical address of the corresponding mapping
table row. This provides an efficient reverse mapping,
namely, from the logical row identifier to the physical
addresses of the corresponding mapping table row.

The mapping table row identifiers can then be used in bitmap
indexes or other auxiliary structures. Maintenance requirements
for the auxiliary structures will be exactly the same as those in the
case of conventional tables. Specifically, row movements in the
underlying primary B+-tree structure do not affect the correctness
of either the auxiliary structures or the mapping table. Even in the
rare case of primary key update, only the mapping table row needs
to be updated because such anupdate does not cause the mapping
table row to move thereby avoiding any auxiliary structure
maintenance. Thus the mapping table minimizes auxiliary
structure maintenance while permitting free row movement in the
underlying primary B+-tree structure. Furthermore, this allows the
existing auxiliary structure mechanisms to be used without any
changes.

As far as performance of primary B+-tree query is concerned, the
mapping table may introduce a level of indirection. However, for
queries accessing auxiliary structure only or accessing mapping
table via auxiliary structure, there is no performance degradation
when compared to similar queries on conventional tables (for
details see Section 6.1). It does incur an extra level of indirection
for any query plan that uses auxiliary structure based access to the
primary B+-tree (see Figure 1). For example, in a bitmap index
based primary B+-tree access, the physical row identifier returned
by bitmap is used to directly access the corresponding mapping
table row. The logical row identifier contained in the mapping
table row is then used, usually with a single read by using the
guess-DBA hint [CDFS+01, SDFC+00] stored in the logical row
identifier (for details see Section 2), to access the target primary
B+-tree row. Although the mapping mechanism has the potential
overhead of one additional I/O for each primary B+-tree row that
needs to be accessed via the mapping table, the compact nature of
the mapping table may amortize the actual overhead over multiple
row fetches. Furthermore, as shown in the case study presented in
Section 7, use of bitmap indexes, enabled by the mapping
mechanism, results in significant performance improvement for
queries accessing the primary B+-tree rows when compared to the
alternative of using B+-tree index.

Figure 1: The primary B+-tree Structure with Mapping Table

Using this approach, we have implemented bitmap index support
on index-organized tables in Oracle9i. The analysis and
experiments in Sections 6 and 7 show that despite the mapping
table overhead, this approach provides performance benefits that
are similar to those provided by bitmap indexes on conventional
tables.

The contributions of this paper are:

• a mapping mechanism that provides the desirable properties
of physical row identifiers while still using primary key-
based logical row identifiers. Although the paper focuses on
use of the mapping table for building bitmap indexes, such
an intermediate structure is applicable for other scenarios
where physical row identifier properties are desired (possible
uses of the mapping table mechanism are discussed in
Section 3).

• enabling technology for bitmap index support for primary
B+-tree like structures. To the best of our knowledge, our
paper is the first to address bitmap index support on primary
B+-tree like structures. This greatly increases the
applicability of primary B+-tree structures to data
warehousing environments because we can efficiently
execute star queries involving primary B+-trees by using
bitmap indexes.

Section 2 describes, in detail, the mapping mechanism. Section 3
discusses various application areas of the mapping mechanism.
Section 4 presents changes needed for the bitmap index support in
Oracle9i. Section 5 gives an overview of bitmap index
performance using the mapping mechanism. Section 6 compares
bitmap index performance on index-organized tables with that on
conventional tables. Section 7 shows the performance comparison
between a bitmap index and a B+-tree index on index-organized
tables to validate the usefulness of bitmap index on primary B+-
tree structures. Our conclusions are given in Section 8.ÿ

79 SIGMOD Record, Vol. 32, No. 2, June 2003

ÿ

2 Key Conceptsÿÿ
In this section, we describe the mapping mechanism that provides
such properties and at the same time retains the logical nature of
the primary B+-tree structures.

2.1Mapping Table
We build a conventional table, referred to asmapping table,that
contains one row for each row in the primary B+-tree like
structure. Specifically,

• The mapping table row contains the primary key values of
the base table. The mapping table provides a 1-1 mapping
between the primary keys of the primary B+-tree like
structure and the physical row identifiers of the mapping
table. Givenn rows of the primary B+-tree structure, their
primary keys {K1, K2, ..., Kn } , and their physical row
identifiers in the mapping table, {p1,p2,…,pn}, the mapping
table provides the mapping,m: pi = m(Ki) and Ki = m-1(pi)
for i = 1,…,n.The important aspects of the mapping table
are:

1) Even if a row moves in the primary B+-tree, the
corresponding row in the mapping table does not move.

2) The row identifiers of the mapping table have the
physical row identifier properties.

3) If a primary key value in the primary B+-tree structure
changes, the corresponding mapping table row is
updated in-place. This ensures that the physical row
identifier of the mapping table row does not change.

• The mapping table also contains, along with the primary key,
the disk block address of the leaf block where the primary
B+-tree row is likely to be found. This disk block address,
referred to as guess-DBA [SDFC+00], facilitates direct
lookup from the mapping table to the primary B+-tree row. If
the primary B+-tree row moves due to a leaf block split, the
guess-DBA stored in the corresponding mapping table row is
not updated immediately. If the guess-DBA is incorrect,
accessing the primary B+-tree row from the mapping table
row requires a primary key-based traversal. The incorrect
guess-DBAs (if any) can be fixed online by a background
process.

• One mapping table is shared by all bitmap indexes or other
auxiliary structures on the primary B+-tree amortizing the
storage overhead across all auxiliary structures.

2.2 Augmented Primary B+-tree
In conventional tables, physical row identifiers stored in auxiliary
structures provide direct access to the base table, while the base
table row identifiers in conjunction with key values allow DML
operations to efficiently access the auxiliary structures. The
mapping table provides the same mechanism efficiently:

• The mapping table row identifiers stored in auxiliary
structures are used to directly access the mapping table. The
logical row identifiers stored in the mapping table are then
used to access the primary B+-tree.

• The primary B+-tree is augmented to include the physical
row identifiers of the mapping table rows. Each row includes
the corresponding mapping table row identifier. The
translation from the primary key to the mapping table row
identifier is efficiently done by primary key lookup on the

primary B+-tree structure, which identifies the row identifier
for the corresponding mapping table row. Note that the
primary B+-tree behaves like a primary key index on the
mapping table. These row identifiers are used during DML
operations to directly access the auxiliary structures.

2.3 Mapping Table Creation and Maintenance
The mapping table of a primary B+-tree is created along with the
base table and is maintained through all the DML operations.
During an initial bulk-load of the primary B+-tree, for each row,
the corresponding mapping table entry is inserted and its physical
address is used to create the primary B+-tree row. By ensuring that
the mapping table rows are well clustered with respect to the
primary B+-tree index rows, a bitmap index-based (or auxiliary
structure-based) scan can minimize random I/Os incurred during
the primary B+-tree row access. Specifically, the bitmap index
operation returns the mapping table row identifiers in physical
address order, ensuring that mapping table blocks are never
revisited. Similarly, due to the clustering characteristic of the
mapping table, primary B+-tree blocks are not revisited either.

For incremental insert operations, a mapping table row is created
and inserted into the mapping table and its physical address is
stored as part of primary B+-tree row. Similarly for delete
operations the mapping table row is deleted using the physical
row identifier obtained from the primary B+-tree row. For update
operations on the primary B+-tree, mapping table maintenance is
required only if the primary key columns are updated. The
corresponding mapping table row isaccessed using the physical
mapping table row identifier stored in the primary B+-tree row.
An in-place update is performed and if required (when mapping
table row expands) a forward pointer is created to retain the same
physical row identifier. Note that the primary key column updates
are rare and hence forward row chaining is not a major
performance issue.

3 Applications of the Mapping Mechanismÿ
3.1 Supporting Bitmap Indexes on Primary B+-trees
Bitmap indexes are useful for indexing columns with a small
number of distinct values. They are widely used in data
warehousing applications [CD97] especially for star queries. They
are space-efficient and can efficiently filter out rows by
performing operations directly on bitmaps. A bitmap represents a
1-1 mapping from a table row to its corresponding bit position,
and is based on the properties of physical row identifiers, namely,
known format/distribution, and relative stability. Therefore, given
a bit position, the location of its corresponding table row can be
computed by simple arithmetic operations. Since the physical row
identifiers of primary B+-tree structures are volatile, we propose
the following mechanism for supporting bitmap indexes on these
structures:

• Use the physical row identifiers of the mapping table rows
corresponding to the primary B+-tree structure rows to
construct bitmaps. This will enable existing bitmap index
techniques to be applied without change.

• When a bitmap index column is updated, use the physical
row identifier of the mapping table row, stored in the primary
B+-tree structure, to perform corresponding update directly
on bitmap index. The mapping table need not be accessed for
the update unless the primary key is updated which is
typically rare.

SIGMOD Record, Vol. 32, No. 2, June 2003 80

ÿ

3.2 Supporting Secondary B+-tree Indexes on Primary
B+-trees with Large Keys
Due to frequent row movements of the primary B+-tree, secondary
indexes on the primary B+-tree usually contain the primary key
instead of physical row identifiers of the primary B+-tree
[CDFS+01]. While this approach has lesser index maintenance
overhead, the storage overhead for large sized primary keys can
be significant as secondary indexes may occupy more space than
the primary B+-tree. The mapping table mechanism can be used to
resolve this problem by storing all the primary keys in one
mapping table, and using the physical row identifiers of the
mapping table rows in all the secondary indexes [CDFS+01]. This
approach has several advantages:

• Significant storage savings can be achieved as all the
secondary indexes now contain physical row identifiers of
the mapping table rows, not large primary keys. The large
primary keys are stored in the mapping table, and shared
among all the secondary indexes.

• Additionally, by storing a guess-DBA per index row, such
indexes can have index-based scan performance comparable
to that of their counterparts on conventional tables
[SDFC+00, CDFS+01]. Index-based scans can verify the
existence of the row in the primary B+-tree block identified
by the guess-DBA by comparing the mapping table row
identifier with mapping table row identifiers stored in that
block. If no match is found, implying the guess-DBA is stale,
then it can fall back to mapping table based access to primary
B+-tree.

• Index-only scan would be faster when no primary keys are
fetched since fewer index blocks need to be accessed.

A drawback of this mechanism is the extra level of indirection to
fetch a primary key from the mapping table when the guess-DBA
is obsolete. This can be alleviated by fixing stale guess-DBAs
using a background process. This approach is attractive when
there are multiple secondary indexes and storage efficiency
becomes a motivating factor.

3.3 Supporting User-defined Indexes on Primary B+-
trees
Most database systems support extensibility mechanisms (such as
[SMSAD00]) that allows integration of non-native indexing
schemes into the server. Ideally, such user-defined indexing
schemes should work transparently against both conventional
tables and primary B+-trees. If these indexing schemes rely on the
properties of physical row addresses, then they cannot be reused
for primary B+-trees.

For such cases, the proposed mapping mechanism can be used.
Namely, these indexing schemes can use the mapping table row
addresses to refer to the rows of the primary B+-trees. This will
allow reuse of the user-defined indexing schemes developed for
conventional tables. The extra level of indirection resulting from
mapping table would increase the performance overhead by a
factor proportional to final result set size. Thus, using a user-
defined scheme via the mapping table will exhibit performance
gains when the user-defined predicate is selective.

3.4 Supporting Materialized Views on Primary B+-trees
Materialized views defined on conventional tables can be
incrementally refreshed. This is accomplished by keeping track of
either primary keys or physical addresses of rows that have

changed since the last refresh operation. Physical row address
based incremental refresh mechanism is more commonly used as
it can capture the incremental bulk load sessions simply via
physical row address ranges. Also, such a scheme is more
efficient compared to a scheme that enumerates the row addresses
as it avoids random I/Os to get the content of changed rows.

For tables stored as primary B+-trees, materialized views with
primary key-based incremental refresh mechanism must be used.
However, in conjunction with the proposed mapping mechanism,
one can create materialized views on tables stored as primary B+-
trees that support the incremental refresh by using the physical
addresses of mapping table rows. Since the mapping table is a
conventional table, we can reuse the existing physical row address
based incremental refresh mechanism. Note that the mapping
table is used only for materialized view maintenance and it does
not affect materialized view query performance.

4 Bitmap Indexes on Index-Organized Tables in
Oracle9i

The proposed mapping mechanism is used in Oracle9i to support
bitmap indexes on index-organized tables. In addition to mapping
table changes as outlined in Section 2, bitmap index support
requires changes described below.

4.1 Creation and Maintenance of Bitmap Indexes
Creation of bitmap indexes on primary B+-trees is similar to that
for conventional tables. As explained earlier the mapping table
row identifiers are used for creating bitmap indexes. However,
since the mapping table row identifiers are stored as part of each
row in the primary B+-tree, bitmap index creation doesnot require
accessing the mapping table. For all DML operations, bitmap
index maintenance on primary B+-trees is similar to
corresponding operations on conventional tables.

4.2 Query Processing
In conventional tables with bitmap indexes there are two kinds of
query plans, namely, bitmap index-only scan and bitmap index-
based scan where the base table is accessed after the bitmap
operation. However, a primary B+-tree with bitmap indexes which
uses mapping mechanism would have three query plans (See
Figure 2), namely,

• bitmap index-only scan: When a query references bitmap
index columns only, bitmap index scan is sufficient.

• bitmap index-based mapping table scan: When a query
references bitmap index columns and primary key columns
only, bitmap index scan followed by the mapping table scan
is sufficient.

• bitmap index-based base table scan(via mapping table):
When a query references bitmap index columns and columns
that are neither part of primary key nor part of bitmap index
columns, the base table is accessed via the mapping table.

Queries on conventional table that reference primary key columns
and the bitmap index columns are executed using the bitmap
index-based scan. However, the same query when executed
against primary B+-tree will be processed using a bitmap index-
based mapping table scan. Since this eliminates the base table
access, and the mapping table is smaller (it holds only the logical
row identifier as opposed to the entire row) than the conventional
table, faster query processing times are achieved.

81 SIGMOD Record, Vol. 32, No. 2, June 2003

ÿ

The cost-based optimizer has been augmented to account for
mapping table access cost. This isdone by utilizing the same cost
model as for the conventional table scan. The difference is that the
mapping table statistics replace the base table statistics when the
scan cost is computed. The cost of the base table scan using the
mapping table depends on the quality of the guess-DBAs. The
optimizer maintains a statistic called theguess quality, a ratio of
correct guess-DBAs to the total number of rows, for the mapping
table, and uses it in the generation of query plans. The guess
quality is implicitly collected for the mapping table. Given the
guess qualityP, the number of rows fetchedN, and the height of
the treeL, the cost formula for accessing the primary B+-tree from
the mapping table is:

P * N + (1 - P) * N * (L + 1) = N + N * L * (1 - P)

The first term represents the access cost when guess-DBAs are
correct. The second term represents the access cost when guess-
DBAs are incorrect (i.e., first trying the guess-DBA and then
falling back to the primary key traversal).

If this cost is smaller than the primary key based traversal, the
guess-DBA is used first to access the primary B+-tree. Otherwise,
the primary key based traversal is directly used for the base table
lookup without using the guess-DBAs.

5 Bitmap Index Performance Evaluation: An Overview
Performance of bitmap indexes on primary B+-trees differs from
that on conventional tables [JL99] due to the presence of a
mapping table. The analyses and experiments conducted fall in
three categories described below:

5.1 Bitmap Index Performance on Primary B+-tree vs.
Conventional Table
These experiments focus on characterizing the performance
degradation due to a level of indirection caused by the presence of
mapping table. As shown in Section 6.1, two out of three possible
primary B+-tree query plans involving bitmap indexes, namely,
bitmap index-only scan and bitmap index-based mapping table
scan, suffer no performance degradation when compared to
conventional tables.

For the queries requiring base table access, performance depends
on the result-set size. We expect such queries on primary B+-tree
using bitmap indexes to potentially incur one additional I/O per
row in the result set. However, the overall performance
degradation depends on factors such as bitmap operation cost and
mapping table access cost, which are discussed in Section 6.1.
Section 6.2 discusses the effect of two of these factors, namely,
cost of bitmap operations vs. cost of table row access and the
effect of caching the mapping table. The experiment uses a
constant result-set size thereby fixing the mapping table overhead.
The performance degradation of a query on a primary B+-tree with
respect to a similar query on a conventional table decreases as the
bitmap index processing cost increases. Namely, the fixed
mapping table overhead becomes smaller part of overall query
processing cost. Also, in this particular experiment when mapping
table rows were cached the performance degradation is further
reduced. In the case of star queries, the overhead from additional
processing such as joins makes the overall cost larger thereby
reducing the impact of the mapping table access overhead (see
Section 6.3 for more details).

5.2 Bitmap Index vs. B+-tree Index Performance on
Primary B +-trees

These experiments focus on characterizing the performance
against best alternative in the absence of bitmap indexes, namely,
logical row identifier based B+-tree indexes that use guess-DBAs
[CDFS+01]. The other alternative, namely B+-tree index built
with mapping table row identifier was not compared as it would
incur additional overhead when compared to a logical row
identifier based B+-tree index.

Queries involving B+-tree index typically choose the most
selective index and filters the rest of the predicates after accessing
the base table rows. The same query with bitmap index
configuration uses all applicable bitmap indexes to filter the rows
by performing bitmap operations and then accesses the base table
for the rows in the result set. When the queries involve
conjunctive predicates, the result set size is expected to be smaller
than the number of rows returned by the most selective index.
This behavior is analyzed in Section 7.1 and validated through
experiment in Section 7.2. For conjunctive predicates, as
expected, the bitmap index configuration outperforms the
corresponding B+-tree index configuration.

The same benefit is expected even for star queries which usually
involve a combination of conjunctive and disjunctive predicates.
Section 7.3 describes the experiment which compares the
performance of star queries returning varying number of rows for
bitmap and B+-tree index configuration. Since the result set size is
smaller than the rows returned by most selective B+-tree index,
the bitmap index configuration outperforms the B+-tree index
configuration.

The two classes of experiments describe the bitmap index
performance for a primary B+-tree populated via bulk-load. Below
we discuss the performance characteristics when more data is
added via DML or batch append operations using loader utility.

5.3 Bitmap Index Performance on Primary B+-tree after
DML Operations or Batch Appends
The impact of bulk-load vs. incremental load on bitmap index
performance can be categorized into two classes:

• For queries resulting in bitmap index-only scan or bitmap
index-based mapping table scan, there is no performance
degradation as the base table is not accessed.

• For queries resulting in bitmap index-based base table scan,
performance can potentially degrade as mapping table rows
returned 1) may not be in primary key order and 2) may
contain invalid guess-DBAs. The first factor is typically not
the issue since the result set is usually much smaller than
total number of blocks occupied by the base table. This is the
most common case, that is, we expect that bitmap operation
processing typically would return small fraction of rows from
the base table. For such cases, performance degradation is
mainly caused by the presence of invalid guess-DBAs in
mapping table rows. However, despite this degradation, the
query performance utilizing bitmap indexes is better than
that utilizing B+-tree indexes (See Section 7.4 for
performance results). For cases, where result set is a
significant fraction of (or larger than) the number of blocks
occupied by the base table, the clustering factor may become
important. For such cases, the performance degradation can
be minimized by loading additional batches of data after
sorting as this will ensure partial ordering, if not global
ordering of mapping table rows in primary key order. Also,

SIGMOD Record, Vol. 32, No. 2, June 2003 82

ÿ

the need for subsequent updates can be avoided by using a
partitioned table where new batches of data are added as
separate partitions. In general, we expect that bitmap index-
based scan typically would return small result sets.

6 Bitmap Index Performance Evaluation: Index-
Organized Table vs. Conventional Table
In this section, we compare performance of queries using bitmap
indexes on index-organized tables with that on conventional
tables.

6.1 Analysis
The three query plans explained in Section 4.2 are shown in
Figure 2. The figure also includes, for comparison, corresponding
query plans that will be used for conventional tables.

• Bitmap index-only scan(1(a) and 1(b) in Figure 2): A bitmap
index on an index-organized table is built using mapping
table row addresses whereas a bitmap index on a
conventional table is built using base table row addresses.
Since, unlike conventional table rows, mapping table rows
hold only primary column values, the mapping table is
smaller in size than the base table. This leads to fewer bitmap
index entries since each bitmap now needs to cover a smaller
range of blocks. Therefore, query performance using bitmap
index-only scan on index-organized tables will be
comparable or better than that on conventional tables.

• Bitmap index-based mapping table scan(2(a) and 2(b) in
Figure 2): As explained in Section 4.2, for index-organized
tables, queries that refer only to bitmap index columns and
primary key columns can be processed without performing a
base table scan. However, since processing similar queries
for conventional tables would require bitmap index-based
table scan, performance for such queries for index-organized
tables will be comparable or better than that for conventional
tables.

Legend: BI: bitmap index (a): Primary B+-tree
MT: mapping table (b): Conventional Table
BT: base table

BT

MT BT MT BT

BI BI BI BI BI BI

1(a) 1(b) 2(a) 2(b) 3(a) 3(b)
index-only index + MT index + MT + BT

Figure 2: Query Plans (Primary B+-tree vs. Conventional Table)

• Bitmap index-based base table scan(3(a) and 3(b) in Figure
2): For this query plan, performance for conventional tables
will be better than that for index-organized tables because
one additional structure (namely, the mapping table) needs to
be scanned for an index-organized table. A detailed analysis
follows.

Performance for Bitmap Index-based Base Table Scan

Using symbol definitions in the adjoining table, query costs for
the two cases can be expressed as: (B + Rheap) and (B + Rmap +

Riot), respectively. Thus, the performance degradation, as a
fraction of the cost in the conventional table case, may be
expressed as:

ρ = [(B + Rmap + Riot) - (B + Rheap)] / (B + Rheap)

= (Rmap + Riot - Rheap) / (B + Rheap)

≈ Rmap / (B + Rheap), assuming Rheap = Riot, which is true if all
the guess-DBAs corresponding to result set are valid and base
table row clustering for the rows in the result set is similar in both
cases. Note that the second factor is less significant as discussed
earlier in Section 5.

Table 1: Parameters used for Query Costs

Symbol Definition
B Cost for bitmap operations to determine the result-

set
Rheap Cost for accessing rows in the result-set from

conventional table (stored as heap)
Rmap Cost for accessing rows in the result-set from

mapping table
Riot Cost for accessing rows in the result-set from

index-organized table

The difference in bitmap index-based base table scan cost for
index-organized table and that for conventional table is influenced
by one or more of the following factors:

Bitmap Operations Cost vs. Table Row Access Cost: As the
relative cost of bitmap operations (B) increases with respect to the
table row access costs (Rmap, Riot, and Rheap), value ofρ decreases.
This is demonstrated in the experiments we conducted for single-
table (Section 6.2) and star queries (Section 6.3). In star queries,
in particular, bitmap operations cost can often be significant as is
seen in the star query experiment.

Effect of Large Non-key Columns: If the size of the non-key
columns is much larger compared to that of the key columns, then
the size of the mapping table is accordingly much smaller than
that of the index-organized table or conventional table. This
results in Rmap being much smaller than Rheap, thereby reducing
the difference in performance.

Effect of Caching Mapping Table: Since the mapping table is
crucial for bitmap index performance, caching it would yield
significant performance gains. This is also made possible by the
fact that mapping table can often be much smaller than the base
table. Caching mapping table blocks can reduce the value of Rmap,
thereby reducing the value ofρ, as shown in Section 6.2.

6.2 Single-Table Query Performance
Although several factors (as identified in the analysis above) may
affect single-table query performance, due to space constraints we
show the effect of only two of the factors namely, bitmap
operations cost vs. table row access cost and the effect of caching
the mapping table for the case when bitmap index-based base
table scan is employed. The experiments described in this section
as well as in next section are performed on a Sun workstation
Ultra 60 with 2 CPUs having 512MB memory using Oracle9i.

Experiment 1: Single-Table Query

The goal of this experiment was to measure the value ofρ for
different costs of bitmap operations, B, while keeping the cost of
table row access unchanged. To achieve this, we varied the total

83 SIGMOD Record, Vol. 32, No. 2, June 2003

ÿ

number of bitmaps selected by the query while keeping the size of
the result-set constant. The results (Figure 3) showed that, as the
cost of B increased due to higher number of bitmaps selected, the
performance difference gradually went down from 93% to 67%.
Next, to see the effect of caching of mapping table, we carried out
the same measurements but this time with the mapping table
cached. The new results showed a significant reduction in
performance difference (ranges from 29% to 18%).

0

50

100

4 20 40 60 80 100

number of bitmaps
selected

de
gr

ad
at

io
n

% IOT w/o
mapping table
cached

IOT w/
mapping table
cached

Figure 3: Performance Degradation of Index-Organized Table (w
& w/o mapping table cached) w.r.t. Conventional Table

6.3 Star Query Performance
To study performance implications of this mapping mechanism in
a data warehousing environment, we conducted experiments on a
star schema (see Figure 4). Specifically, a Sales fact table
containing 1 million rows was used for experimentation. The fact
table is implemented as an index-organized table. Bitmap indexes
are built on the fact table columns that correspond to keys for the
dimension tables.

Figure 4: Star Schema Used in the Experiment

Since, based on the analysis above, the difference in performance
between the two configurations is: (B + Rmap + Riot) - (B + Rheap) =
(Rmap + Riot - Rheap) ≈ Rmap, assuming Rheap= Riot, we measured the
query costs for different values of the result-set size after bitmap
index operations. It may be noted that Rmap depends upon the
result-set size. As the result-set size increases, while other factors
remain constant, cost for star queries using bitmap indexes on an
index-organized table would increase more than the
corresponding increase in cost for a conventional table.

Experiment 2: Star Query

To study the effect of result-set size on the performance
degradation factor (ρ), we chose four star queries (joining
Promotions, Times, and Customer with Sales) which returned 8,

648, 1867, and 6012 rows respectively. The performance
degradation ranges from 2.7% to 24.9% as shown in Figure 5.
That is, as the size of the result-set increases, performance
degrades further. It is difficult to measure the upper limit of
performance degradation because as the number of rows fetched
increases, the optimizer is likely to choose a differentaccess path.

0

1

2

3

0 2500 5000 7500

number of rows in final result set

tim
e

(s
ec

)

conventional
table

primary B+-
tree

Figure 5: Star Query Performance: Primary B+-tree vs.
Conventional Table

7 Index-Organized Table Performance Evaluation:
Bitmap vs. B+-tree Index
This section presents a comparison of storage costs and query
performance for the following two configurations:
• a bitmap index configuration on an index-organized table

that includes a mapping table M and bitmap indexes BMi,
i=1..X, and

• a B+-tree index configuration on an index-organized table
that includes B+-tree indexes BTi, i=1..X.

7.1 Analysis
The cost of retrieving rows from the base table, and in the case of
bitmap index configuration, also from the mapping table, is a
significant (and often the dominant) portion of the overall index-
based base table scan cost because each target row may reside in a
different disk block. In this section we do a comparative analysis
of this cost for the two configurations. The analysis is done for
two types of queries: queries with conjunctive predicates and
those with disjunctive predicates. We also compare the storage
costs.
Storage Cost

Table 2: Parameters used for Storage Costs

Symbol Definition
Sbmap Storage costs for Bitmap index configuration
Sbtree Storage costs for B+-tree index configuration
Kr index key size of rth row of the table
Lr Logical row identifier size of rth row of the table

Storage costs for the two configurations (excluding the index-
organized table storage), can be expressed as

Sbmap= Size(M) +ÿiSize(BMi)

= ÿrSize(Lr) + ÿiSize(BMi).

Sbtree= ÿiSize(BTi)

= ÿi(Size(Branch Nodes)+ÿr(Size(Lr)+Size(Kr))))

Consider the two cases:

• A single index (X=1): if Size(BM1) < Size(Branch Nodes) +
ÿrSize(Kr) then Sbmap< Sbtree. This is usually true for indexes
on low cardinality columns because bitmap index minimizes
duplicate storage of keys and uses compressed representation
of sets of physical row identifiers as bitmaps.

SIGMOD Record, Vol. 32, No. 2, June 2003 84

ÿ

• More than one indexes (X>1): the storage overhead for
logical row identifiers in each additional B+-tree index makes
Sbmap<< Sbtree.

Intuitively, one can view each B+-tree index on an index-
organized table as having its own private mapping table
embedded in the index structure, whereas a single common
mapping table is shared for all bitmap indexes. This factor makes
storage costs for bitmap configuration significantly lower when
there are two or more indexes. For the case when there is only a
single index present, the two storage costs are comparable but
even there it can be lower for bitmap index especially for low
cardinality columns.

Performance of Queries with Conjunctive Predicates

Table 3: Parameters used for Query Performance

Symbol Definition
QCbmap conjunctive predicate query cost for bitmap indexes
QCbtree conjunctive predicate query cost for B+-tree

indexes
Ni number of rows selected using predicate Pi

Nk number of rows selected using most selective
predicate Pk

N number of rows in the final result-set
fc = N/ Nk, range of its possible values is [0, 1]

We consider a query withWHERE clause of the form: “WHERE P1

AND P2 AND … AND Px”. Here each Pi, for i = 1 to X, is a predicate
that can be evaluated using the ith (bitmap or B+-tree) index.

For the bitmap index configuration, query execution involves
evaluating each predicate using the corresponding bitmap index
and then computing their intersection to arrive at the final result-
set consisting of N mapping table row identifiers. Next, it
retrieves each such mapping table row and then using the guess-
DBA found in the mapping table row, corresponding base table
row is accessed. Assuming that the guess-DBAs are correct, the
total number of block accesses, for the mapping table and the base
table, can be expressed as follows:

QCbmap=2 * N

For the B+-tree index configuration, query execution involves
scanning the most selective B+-tree index to select Nk candidate
rows. These rows are then accessed in the base table and other
predicates are evaluated on those rows to determine the final
result set. Thus, assuming that the guess-DBAs are correct, the
total number of base table block accesses can be expressed as
follows:

QCbtree= Nk = N * (1/ fc)

To compare the two costs, we compute the difference in number
of block accesses,

δ = QCbtree- QCbmap

= N * (1/fc) - 2 * N
= N * (1/fc - 2)

So, δ > 0 when fc is in range [0, 0.5). Thus, table block access
cost will be lower for the bitmap index configuration when final
result-set cardinality (N) is less than half of the cardinality of the
set of rows returned by most selective predicate (Nk from the
predicate Pk).

Performance of Queries with Disjunctive Predicates

Table 4: Parameters used for Disjunctive Query Cost

Symbol Definition
QDbmap disjunctive predicate query cost for bitmap

indexes
QDbtree disjunctive predicate query cost for B+-tree

indexes
Ni number of rows selected using predicate Pi

N number of rows in the final result-set
fd N/ ÿiNi, range of its possible values is [1/X, 1]

Consider a query with theWHERE clause of the form: “P1 OR P2 OR

… OR PX” Here each Pi, for i = 1 to to X, is a predicate that can be
evaluated using the ith (bitmap or B+-tree) index.

For the bitmap index configuration, query execution involves
evaluating, for i=1 to X, predicate Pi on bitmap index BMi, and
then computing their union. Next, for each row address in the
union, a corresponding mapping table row isaccessed. Finally,
using the guess-DBA found in the mapping table row, the
corresponding base table row isaccessed. Thus, the total number
of block accesses for the query can be expressed as follows:

QDbmap= 2*N

For the B+-tree index configuration, query execution involves
executing eachOR condition as a separate query using the
corresponding B+-tree index, retrieving a set of rows from the
base table, and finally combining the results of all sub-queries.
Thus, the total number of base table block accesses for the query
can be expressed as follows:

QDbtree= ÿiNi = N * (1/fd)

To compare the two costs, we compute the difference in number
of block accesses,

δ = QDbtree- QDbmap

= N * (1/fd) - 2 * N
= N * (1/fd - 2)

So, δ > 0 when fd is actually in the [1/X, 0.5) range (which is
possible only when X > 2).

Thus, table block access cost will be lower or comparable for the
bitmap index configuration when 1) more than two indexes are
used and 2) final result-set cardinality (N) is less than half of the
sum of the cardinalities (ÿiNi) of the sets of rows selected by the
individual indexes.

The above analysis is for selection of rows specified in theWHERE

clause, hence applies to both single-table and star queries. In the
following sections, we compare the actual query performance seen
in our experiments.

7.2 Single-Table Query Performance
We created a synthetic database to validate the analytical
comparison given in Section 7.1 and also to study the effect of
change of number of distinct values for the indexed columns. The
synthetic database schema is as follows:
• A base index-organized table IOT1 with four integer

columns:a, b, c,andd. Columna is the primary key.
• Single column indexes are created on columnb and on

columnc: a single mapping table and two bitmap indexes for
the bitmap index configuration and two B+-tree indexes for
the B+-tree index configuration.

Experiment 3: Validation of Analytical Study

85 SIGMOD Record, Vol. 32, No. 2, June 2003

ÿ

The experiments are conducted on a 1 million row primary B+-
tree for the two configurations: 1) with a mapping table and two
bitmap indexes, and 2) with two B+-tree secondary indexes. The
columns on which the two indexes are built have around 1000
distinct values, with each distinct value having about 1000
duplicate occurrences.
Storage Cost:For the single index (X=1) case storage costs are:
Sbmap = 19.36M (Mapping table) + 4.56M (bitmap index) = 23.91
M, whereas Sbtree = 26.69 M (B+-tree). For the two index (X=2)
case, storage costs are: Sbmap = 19.36M (Mapping table) + 4.56M
(bitmap index) + 4.57 M (bitmap index) = 28.49M, whereas Sbtree

= 26.69 M (B+-tree) + 26.69M (B+-tree) = 53.38M. These results
validate our analysis given in Section 7.1.

Conjunctive Query Performance: The following query was
used:
SELECT SUM(d) FROM IOT1 WHERE b = :b AND c =
:c;

The predicate on the columnb returns 1000 rows and that on the
columnc returns 1100 rows. We measured the values of total time
taken for executing the query under different values of fc

(achieved by changing the extent of overlap between rows
returned by the most selective index, i.e., the index onb, and the
final result-set). The results (shown in Figure 6) were consistent
with our expectation based upon the difference in number of table
block accesses,δ = N * (1/fc - 2), computed in Section 7.1.

Conjunctive Predicates

0

0.05

0.1

0.15

0.2

0.25

0.0 0.2 0.4 0.6 0.8 1.0

conjunctive predicate
intersection (fc)

tim
e

(s
ec

)

Bitmap
Indexes

B+-Tree
Indexes

Figure 6: Comparison of Query Performance for
Conjunctive Predicates

Disjunctive Query Performance: The following query was used:
SELECT SUM(d) FROM IOT1 WHERE b = :b OR c =
:c;

The predicate on the columnb returns 1000 rows and that on the
columnc returns 1100 rows. We measured the values of total time
taken for executing the query under different values of fd

(achieved by changing the extent of overlap between rows
returned by the indexes onb and c and the final result-set). The
results (see Figure 7) were consistent with our expectation based
upon the difference in number of table blockaccesses,δ = N *
(1/fd - 2), computed in Section 7.1.

It may be noted that, since only two indexes (X=2) were used,
bitmap solution was not expected to outperform the B+-tree
solution. However, our analysis in 6.1 showed that for queries
involving higher number of indexes, if fd is in the range [1/X, 0.5)

then the bitmap solution will perform better than the B+-tree
solution.

Disjunctive Predicates

0

0.2

0.4

0.6

0.5 0.6 0.7 0.8 0.9 1.0

result set cardinality / total
cardinality (f d)

tim
e

(s
ec

)

Bitmap
Indexes

B+-tree
Indexes

Figure 7: Comparison of Query Performance for Disjunctive
Predicates

7.3 Star Query Performance
To study performance implications of bitmap index vs. non-
bitmap based star query performance, we conducted experiments
on a star schema described in Section 6.3.

Experiment 4: Star Query on Primary B+-tree (Bitmap vs. B+-
tree Index)

The basic star query processing is shown in Figure 8. Four such
star queries with the predicate on Customers table returning
varying number of rows (V) is used. The number of rows (W) in
the result-sets corresponding to these four queries is given in
Table 5.

Figure 8: Star Query Predicate Variation

Table 5: Number of Result Rows

Quer
y

V W min

(V,
46886)

I 18338 240 18338

II 54990 648 46886

III 146713 1867 46886

IV 476936 6012 46886

The experimental results are given in Figure 9. As expected based
on the analysis in Section 7.1, for the configuration with bitmap
indexes defined on the fact table, query cost changes in a manner
that is roughly proportional to the result-set size (W). Each
additional row in the result-set could potentially require two

SIGMOD Record, Vol. 32, No. 2, June 2003 86

ÿ

additional data block reads: one from mapping table and one from
base table.

0

2

4

6

8

0 2500 5000 7500
number of rows in final result set

tim
e

(s
ec

) Bitmap
Index
B+-tree
Index

ÿ
Figure 9: Comparison of Star Query Performance

For the configuration with B+-tree indexes defined on the fact
table, the same query uses the most selective of the available
indexes and its cost is dependent on the number of rows returned
by this index, that is, min (V, 46886) rows. For Query I, this value
is 18338, and for Queries II, III, and IV, it is 46886. This is the
dominant factor for query cost in this configuration. While the
steep degradation in performance from query I to query II is
mainly due to the increase in number of rows returned by the most
selective index, the slight and gradual degradation from query II
through query IV may be attributed to the added cost of joining
the intermediate results with the varying results from the
Customer table.

7.4 Query Performance after Bulk-load vs. Incremental
Load

This experiment was conducted to study the performance
implications for queries accessing primary B+-tree rows via
mapping table, where the primary B+-tree configuration was
arrived at after performing incremental load. This configuration
was compared against a fully bulk-loaded primary B+-tree. This
experiment used conjunctive queries.

Experiment 5: Effect of Incremental Load

Initially, 5 million rows are bulk-loaded into the index-organized
table and then additional data is loaded in increments of 0.5
million rows. The performance degradation with respect to bulk-
loaded configuration ranges from 52 to 56% for incrementally
loading 0.5 to 2 million rows. We also measured the performance
using the best available alternative, namely using bulk-loaded B+-
tree indexes. Despite the degradation caused by incremental load,
the bitmap-index based query outperforms the query using B+-tree
indexes as shown in Figure 10.

The B+-tree index solution filters on the most selective index and
then applies the remaining predicates to the qualifying base table
rows, whereas a bitmap index solution utilizes all bitmap indexes
to evaluate the predicates before accessing base table rows. Thus,
the number of rows accessed in a bitmap index solution is
typically much smaller. The benefits of bitmap operations thus
outweigh the loss in performance due to incremental load.

8 Conclusionsÿ
The paper introduced a mapping mechanism for supporting
bitmap indexes and other auxiliary structures on primary B+-tree.
The mechanism involves maintaining a mapping table containing
logical row identifiers of the primary B+-tree rows and using
physical addresses of the mapping table rows to build auxiliary
structures. By storing the mapping table physical row identifier as
part of the primary B+-tree row, we eliminate the need for a

separate indexing structure to map the logical row identifiers to
the corresponding physical row identifiers.

0

0.5

1

1.5

2

0 10 20 30 40
% of data incrementally loaded

tim
e

(s
ec

)

Incre. Load
(bitmap)

Bulk Load
(B+-tree)

Bulk Load
(bitmap)

Figure 10: Query Performance after Incremental Load

Using the mapping mechanism, we have implemented bitmap
index support on index-organized tables in Oracle9i. Two of three
possible query plans involving bitmap indexes, namely, bitmap
index-only scan and bitmap index-based mapping table scan,
suffer no performance degradation when compared to similar
queries on conventional tables. The third query plan, namely,
bitmap index-based base table scan, incurs additional mapping
table overhead. For this class of queries, the overall degradation
due to mapping table overhead depends on result set size and the
overall query processing cost. We identified the factors
contributing to the mapping table overhead and ways to minimize
their effect. We also compared storage overhead and query
response time for bitmap index vs. non-bitmap (regular) B+-tree
index configurations on index-organized table. For queries with
conjunctive predicates on bitmap index columns, our solution
outperforms the B+-tree index based approach for most common
cases. Our analysis shows that this solution is storage efficient,
and the storage savings are significant when multiple indexes are
needed. The paper also discussed use of the mapping table
mechanism for supporting other auxiliary structures such as
secondary B+-tree indexes, user-defined indexes, and materialized
views.

References
[CI98] Chan, C. Y., Ioannidis, Y.E., “Bitmap Index Design and

Evaluation,”Proceedings of the ACM SIGMOD Int. Conf. on
Management of Data, pp.355-366, 1998.

[CD97] Chaudhuri, S. and Dayal, U., “An Overview of Data
Warehousing and OLAP Technology,”ACM SIGMOD
Record, 26(1), pp.65-74, 1997.

[CDFS+01] Chong, E.I., Das, S., Freiwald, C., Srinivasan, J.,
Yalamanchi, A., Jagannath, M., Tran, A., Krishnan, R., “B+-
Tree Indexes with Hybrid Row Identifiers in Oracle8i,”
Proceedings of the 17th Int. Conf. on Data Engineering,
pp.341-348, Apr. 2001.

[Com79] Comer, D., “The Ubiquitous B-Tree,”Computing
Surveys, 11(2), pp.121-137, June 1979.

[Helm94] Helman, P.,The Science of Database Management,
Richard D. Irwin, Inc., 1994.

[JL99] Jurgens, M., Lenz, H.J., “Tree Based Indexes vs. Bitmap
Indexes - a Performance Study,”Proceedings of the Intl.
Workshop on Design and Management of Data Warehouses,
June 1999.

87 SIGMOD Record, Vol. 32, No. 2, June 2003

ÿ

[MS98] Microsoft SQL Server,SQL Server 7.0 Storage Engine,
White Paper., Oct. 1998.

[OQ97] O’Neil, P. and Quass, D., “Improved Query Performance
with Variant Indexes,”Proceedings of the ACM SIGMOD
Int. Conf. on Management of Data, pp. 38-49, 1997.

[SI84] Shmueli, O. and Itai, A.: “Maintenance of Views,”
Proceedings of the ACM SIGMOD Int. Conf. on
Management of Data,pp. 240-255, 1984.

[SDFC+00] Srinivasan, J., Das, S., Freiwald, C., Chong, E.I.,
Jagannath, M., Yalamanchi, A., Krishnan, R., Tran, A.,
DeFazio, S., Banerjee, J., “Oracle8i Index-Organized Table
and its Applications to New Domains,”Proceedings of the
26th Int. Conf. on Very Large Data Bases, pp. 285-296, Sept.
2000.

[SMSAD00] Srinivasan, J., Murthy, R., Sundara, S., Agarwal, N.,
DeFazio, S., “Extensible Indexing: A Framework for
Integrating Domain-Specific Indexing into Oracle8i,”
Proceedings of the 16th International Conference on Data
Engineering,pp. 91-100, 2000.

[SYB95] Sybase SQL Server,Transact-SQL User’s Guide,
Document ID:32300-01-1100-02., Dec. 1995.

[Tand87] The Tandem Database Group, NonStop SQL: “A
Distributed, High-performance, High-availability
Implementation of SQL,”Proceedings of 2nd Int. Workshop
on High Performance Transaction Systems, Springer Lecture
Notes in Computer Science No. 359.

SIGMOD Record, Vol. 32, No. 2, June 2003 88

