
An Early Look at XQuery API for Java™ (XQJ)

Andrew Eisenberg
IBM, Westford, MA 01886

andrew.eisenberg@us.ibm.com

Jim Melton
Oracle Corp., Sandy, UT 84093

jim.melton@acm.org

Introduction
In Feb. 2004, the period for submitting Last Call
Working Draft comments for most parts of the
XQuery specification came to a close. While there is
still a great deal of work to be done to make XQuery
a W3C Recommendation, the documents have
become more stable with each public release. In this
column we’d like to provide an initial look at the
XQuery API for Java™ (XQJ), a project that is
taking place within the Java Community Process
(JCP).

You might find it surprising that this project,
which is so closely related to XQuery, is not owned
by the XML Query Work Group (WG), or at least by
a WG within the W3C. The XML Query WG has
written XQuery to be largely independent of the
environment in which it is used. It has deliberately
left the creation of APIs to other groups.

The embedding of XQuery within another
environment is worthy of mention. SQL/XML:2003
[1] defined an XML data type for SQL and it defined
publishing functions that generate XML values from
relational data. INCITS H2 and ISO’s SC32/WG3 are
currently working on features that would allow the
evaluation of XQuery expressions within SQL and
the transformation of XQuery result sequences to
virtual tables.

Java Community Process (JCP)
For those of you not familiar with JCP [2], let’s look
at the first item in this organization’s FAQ:

Q: What is the JCP?

A: Since its introduction in 1998 as the open,
participative process to develop and revise the
Java™ technology specifications, reference
implementations, and test suites, the Java
Community Process (JCP) program has fostered
the evolution of the Java platform in cooperation
with the international Java developer
community.

Members of this organization, which is
owned by Sun Microsystems, are free to submit Java
Specification Requests (JSRs). Once accepted, the
Specification Lead (Spec Lead) forms an Expert

Group (EG) from among the JCP members and
outside individuals, and the EG begins its work. In
some cases, the role of Spec Lead is filled by
multiple companies. The Spec Lead is responsible for
producing:

Specification: The specification should be
complete enough to allow for the creation of an
independent implementation of this technology.

Reference Implementation (RI): An
implementation of the Specification. A “proof of
concept”.

Technology Compatibility Kit (TCK): A test
suite that is used to determine whether an
implementation has correctly implemented the
Specification. The RI must pass the TCK.
Independent implementations of the
Specification must also pass the TCK.

The Spec Lead determines the terms and
conditions of the licenses for these three deliverables
of the JSR.

JSR 225, XQuery API for Java
(XQJ)
In May 2003, we jointly submitted the JSR for XQJ
to JCP on behalf of our employers, IBM and Oracle.
It was designated JSR 225 and was accepted shortly
thereafter [3]. The description we provided for the
JSR says, in part:

“This specification will define a set of interfaces
and classes that enable an application to submit
XQuery queries to an XML data source and
process the results of these queries. The design
of the API will also take into account precedents
established by other JSRs, notably JDBC and
JAXP.

SQL (developed by INCITS H2 and ISO/IEC
JTC 1/SC 32/WG 3) is the query language
supported by many relational DBMSs. JDBC is
the Java API that allows an application to submit
SQL requests to an RDBMS and process the
results of the query. This specification relates to
XQuery in the same way that JDBC relates to
SQL.”

The two of us have become the Spec Leads
for this JSR. IBM and Oracle have agreed to jointly
produce the specification for XQJ, with Oracle
producing the RI and IBM producing the TCK. Our
companies have said that we will offer the
Specification, RI, and TCK on a Royalty-Free basis,
with commonly-used disclaimers and warranties on
the technologies.

We formed the XQJ Expert Group in June
2003 and expect to release an Early Draft Review of
this JSR in May 2004. This Early Draft Review
provides the first visibility of this work to the public.

Relevant Aspects of XQuery
As we have said, XQuery is part way through its
progression to a W3C Recommendation. The latest
versions of the specification can be obtained from the
W3C web site [4]. You might also want to look at an
earlier article that we wrote on XQuery [6].

For the purposes of designing and discussing
XQJ, some aspects of XQuery are more relevant than
others. The XQuery Data Model defines the atomic
values and nodes that are provided as input to
evaluation, are intermediate products of evaluation,
and are the results of evaluation. The XQuery Data
Model supports heterogeneous sequences of items
that may be either atomic values or nodes. XQuery’s
process model defines both a static analysis phase
and a dynamic evaluation phase for the processing of
an expression.

XQuery has an initial static context that is
used when its static analysis is performed. The static
context contains items like statically known
namespaces, type definitions, element and attribute
declarations, in-scope variables (names and types),
and in-scope functions. The initial values for these
items are determined by the XQuery implementation,
subject to some constraints. These items can be
augmented (and in some cases overwritten) by the
XQuery prolog. The static analysis depends on the
expression and the static context, but not on input
data.

XQuery has an initial dynamic context that
is used when the dynamic evaluation is performed.
The dynamic context contains the values of variables
defined in the static context and the values associated
with known documents and collections.

 The XQuery prolog can contain variable
declarations that specify “external”. Values for these
variables must be provided by the environment, in
this case XQJ, before the expression can be
evaluated.

XQJ and JDBC
In designing XQJ, we have been very cognizant of
the effort that has gone into JDBC (its fourth version
is now being developed). Where JDBC allows SQL
statements to be executed, we must allow XQuery
expressions to be evaluated. SQL has a number of
connection properties that can be set with SQL
statements. XQuery has the static context, which can
be set by prolog directives.

JDBC allows an SQL statement to be
prepared, dynamic parameter markers (specified by
“?”) bound, and then executed. XQJ will allow this as
well, with external variables taking the place of
dynamic parameter markers.

Where SQL produces tables as the result of
execution, XQuery produces sequences of items. The
rows of SQL tables are homogenous, while the items
in an XQuery sequence are heterogeneous.

Because SQL’s Information Schema tables
have not been broadly adopted, JDBC provides a
number of metadata methods such as
DatabaseMetaData.getTables(). XQJ defines
its own metadata methods, and also defines XQuery
functions to provide access to the metadata associated
with documents, collections, modules, etc.

Writing Applications with XQJ
This API is being designed to allow an application to:
• establish a connection to an XML data source
• determine some of the properties of the data

source
• discover the persistent objects that may be

referenced in an XQuery expression
• prepare an XQuery expression
• execute a prepared XQuery expression with

values that have been bound to external variables
• operate on the sequence of items that the

execution produces

We will say more about each of these
features in turn.

As you would expect, XQL allows an
application to close connections, expressions, etc. in
order to free up resources. It also allows applications
to handle exceptions and provide useful information
to the user of these applications. We are not going to
say any more about these somewhat mundane
features in this article.

Establish a Connection to an XML
Data Source
An application begins its interaction with the XQJ
API by either creating or obtaining an object that
implements the XQDataSource interface (perhaps

via Java Naming and Directory Interface™, JNDI, in
a J2EE environment). In order to create this object,
an application will have to load a class that has been
obtained from a supplier of this technology. This
supplier will likely provide a JAR file containing
classes that implement all of the XQJ interfaces.

The following example shows the case
where the application knows both the name of the
class that it will use, and the properties that it will set.
XQDataSource ds =
 (XQDataSource)
 Class.forName("com.acme.xml.XQDS")
 .newInstance();
ds.setProperty("serverName",
 "www.example.com");
ds.setProperty("portNumber", "8888");
ds.setLoginTimeout(15);

Instances of other XQJ interfaces are
created, either directly or indirectly, from the
XQDataSource object.

The XML data source might be local to the
machine that is executing the application or it might
be remote. The XML data source might be a file
system containing XML documents, an XML
database, or an XML mapping of an SQL database.
XQJ only requires that the XQuery Data Model and
XQuery language be supported by the XML data
source.

The application can now create one or more
connections using this data source.
// provide name and password
String passwd = ... ;
XQConnection con =
 ds.getConnection("Jim", passwd);

XQConnection provides set and get
methods for the properties of updatability,
holdability, and scrollability (forward only or
scrollable). The expressions that are created from a
connection will use the most recently set values of
these properties. Further thought is needed on how
the updatability and holdability properties that were
taken from JDBC might apply to XQJ.

Determine Properties of the Data
Source
The XQMetaData interface provides a number of
methods that an application can use to discover the
properties of the XML data source. These properties
fall into a number of categories:
• Product identification
• XQJ specification identification
• Connection information
• User information
• Product capabilities

• XQuery supported features
• Product limits

An application might use some of these
methods as follows:
XQMetaData md = con.getMetaData();

// display product name
System.out.println("Product: "
 + md.getProductName());

XQJ also allows an application to get these
properties directly from the connection.
String xqjVProp
 = "javax.xml.xquery.metadata.XQJVersion";
String xqjSIProp
 = " javax.xml.xquery.metadata"
 + ".SchemaImportSupported";

// display the version of XQJ
System.out.println("Version: "
 + con.getMetaDataProperty(xqjVProp));

// display whether Schema Import is
// supported
System.out.println("Schema Import: "
 + con.getMetaDataProperty(xqjSIProp));

Applications do not need both of these
methods of discovering data source properties. The
Expert Group will likely choose one of them and
remove the other in the future.

Static and Dynamic Context
XQJ provides a number of methods that allow an
application to examine parts of the XQuery static
context. It does not provide methods to alter it,
relying instead on the ability of applications to write
prolog directives into their queries. These methods
are provided by the XQConnection interface
(because this interface implements the
XQStaticContext interface).

The opposite is true of the methods for the
XQuery dynamic context. These methods allow an
application to alter its state, but not to examine these
values. For the most part, the application will bind
values to variables in the dynamic context. These
values will be seen by variable references in the
query. An application can also get and set the value
of the XQuery implicit timezone.

The application can change the dynamic
context via methods of the XQConnection interface.
These changes are seen by all expressions and
prepared expressions that are subsequently created.
The application may also change the dynamic context
with corresponding methods on the XQExpression
and XQPreparedExpression interfaces. These
methods change the dynamic context locally.

An application might bind a document or a
sequence of document nodes to a variable globally,

and then prepare and then execute an XQuery
repeatedly, binding values to a string or an integer
variable. XQJ allows both the global and local
variables to be bound to any instance of XQuery Data
Model, which includes atomic values, such as strings
and integers, and nodes (document nodes, element
nodes, etc.).

In order for a global variable to be used, it
must be declared as an external variable in the
XQuery prolog. Without this declaration, the variable
will not be visible to the expression, and a reference
to it will raise an error. The following example shows
how this can be done:
XQConnection con = ... ;
org.w3c.dom.Node myNode = ... ;
String myQuery
 = "declare variable $sales external; "
 + "count($sales//salesperson)";

con.bindNode(new QName("sales"), myNode);
XQResultSequence rs =
 con.createExpression()
 .executeQuery(myQuery);

Prepare and Execute an XQuery
In the following example, we will prepare an XQuery
expression that will count the employees of a given
department. We will then execute the query with
departments “Accounting” and “Facilities”.
String xquery1 =
 "declare variable $name "
 + " as xs:string external; "
 + "for $d in doc('depts.xml')/depts/dept "
 + "where $d/@name = $name "
 + "return count($d/employees/employee)";

XQPreparedExpression expr1
 = con.prepareExpression(xquery1);

expr1.bindString(new QName("name"),
 "Accounting");
XQResultSequence rs = expr1.executeQuery();
rs.next();
System.out.println(rs.getInt());
rs.close();

expr1.bindString(new QName("name"),
 "Facilities");
rs = expr1.executeQuery();
rs.next();
System.out.println(rs.getInt());
rs.close();

The execution of the prepareExpression
method causes XQuery’s static analysis to take place.

Once a query has been prepared, an
application might want to examine the static type that
has been inferred for the result of the query. XQJ
provides the XQSequenceType interface and the
getStaticResultType method for this purpose.
We’re not going to provide an example of this

because, quite frankly, this area needs some
improvement.

The one-time execution of a query is also
supported.
String xquery2 =
 "for $d in doc('depts.xml')/depts/dept "
 + "where $d/location/floor = 5 "
 + "return data($d/@name)";

XQExpression expr2
 = con.createExpression();
XQResultSequence rs
 = expr2.executeQuery(xquery2);
while (rs.next()) {
 System.out.println(rs.getString());
}
rs.close();

The executeQuery method allows XQuery
expressions to be evaluated. XQExpression also
supports the executeCommand(String) method.
The language accepted by this method is determined
by the XML data source. This method might allow an
application to process administrative or DDL
statements.

We have used XQuery in the examples of
XQJ that we have provided. XQJ also supports the
use of XQueryX [9], the XML representation of
XQuery, in preparing and executing expressions.

Operate on the Resulting Sequence
of Items
An application can choose to operate on the result of
the query, an instance of the XQResultSequence
interface, in two ways. The application can operate
on the entire sequence all at once, or it can operate on
it one item at a time.

The getSequenceAsString and
writeSequence methods allow an application to
retrieve a serialized XML result into a Java object or
a file. These methods accept an argument that
contains serialization parameters that can influence
just how this serial representation is produced.

XQJ provides access to nodes via the DOM,
SAX, and StAX interfaces. Methods such as
writeSequenceToSAX and
writeSequenceToStream provide this access via
SAX and StAX, respectively.

Operating on the Items Individually
In our design of this aspect of XQJ, we were vividly
aware that a result could have a very large number of
result items, and that these result items could be as
small as an integer, or as large as an entire document.
Therefore, we provide item-at-a-time access to the
result sequence.

A result sequence is initially positioned
before the first item. An application can traverse the
result sequence one item at a time, using the next
method. The getItemType method can be used to
determine the kind of value on which the cursor is
positioned. Numerous “get” methods, such as
getInt and getString are provided to create a
Java value or object from the value of the item.

A result sequence can be requested to be
either scrollable or forward only. A scrollable result
sequence allows the application to invoke a number
of methods to test the position of the cursor within
the sequence and to change the position with methods
such as first(), last(), previous(), and
relative(int).

The result sequence is valid only as long as
the expression that created it has not been closed or
has not been used to process another query. If the
result sequence is forward only, then once the value
of the current item has been retrieved, it cannot be
retrieved again without re-executing the query.

Instead of retrieving the value directly, an
application can invoke the getItem method that
returns an instance of the XQResultItem interface.
This object is valid for as long as the expression and
sequence that created it have not been closed or used
to process another query. This object can then be
used to retrieve the value of the item.

The result of a query might be displayed as
follows:
XQResultSequence rs = ... ;
XQDataSource ds = ... ;
int n = 0;
XQItemType itype;
XQItemType atomic
 = ds.createItemType
 (XQItemType.XQITEMTYPE_ATOMIC,
 null,
 null,
 false);

while (rs.next()) {
 System.out.println("item " + n++ + ":");
 itype = rs.getItemType();
 System.out.println(" type: "
 + itype.getString());
 if (itype.isOfType(atomic))
 System.out.println(" value: "
 + rs.getLexicalValue());
 else
 System.out.println(" node: "
 + rs.getNode().getNodeName());
}

The getLexicalValue method returns a
string value for any atomic value. The getNode
method returns a DOM node, an instance of
org.w3c.dom.Node.

Another Use of these Results
The result of a query is an object that implements the
XQResultSequence interface. A specific item in the
sequence, obtained with the getItem method, is an
object that implements the XQResultItem interface.
Both of these can be used to bind their value to a
variable, which can be used in a subsequent query.
This subsequent query may use the same connection
as the first, or a different connection. If different
connections are used, they may connect to different
XML data sources and those connections may even
be provided by different vendors.

Retrieving a Node
An item that is a node may be accessed in the
following ways:

DOM getNode()

SAX writeSAX
 (org.xml.sax.ContentHandler)

StAX getXMLStreamReader() or
writeXMLStream
 (javax.xml.stream
 .XMLStreamWriter)

Other XML object models, such as DOM4J,
JDOM, or JAXB, are not supported directly.
Recognizing that some applications will want to use
these XML object models, or other models that have
not been anticipated, the XQCommonHandler
interface has been provided. This interface has just
two methods, one that takes an argument of
java.lang.object and produces an XQItem, and
another that takes an argument of XQItemAccessor
(a super-interface of XQItem and XQSequence) and
returns a java.lang.object.

A user or organization can implement this
interface and then use it to invoke the getObject
method as follows:
// Convert the nodes to Employee objects
XQCommonHandler handler = new myHandler();
XQResultSequence rs = expr.executeQuery();
while (rs.next())
{
 Employee e
 = (Employee) rs.getObject(handler);
}

An application may also use the
XQConnection.setCommonHandler method to set
a common handler for use by all expressions and
result sequences. The getObject() method uses the
common handler that has been set in such a way. The
getObject(XQCommonHandler) method allows a
specific handler to be used, overriding the one that
was set for the connection.

Support of Ad-Hoc Applications
An application might accept a query from a file or
from a user via a graphical user interface of some
type. It could then prompt the user for values of the
external variables, execute the query, and finally
display the results.

To this end, the XQPreparedExpression
interface provides two methods,
getAllExternalVariables and
getAllUnboundVariables, both of which return
an array of QNames. This interface also provides the
getStaticVariableType method, which takes a
QName and returns an instance of the
XQSequenceType method. For example:
XQPreparedExpression expr = ... ;
QName[] qn
 = expr.getAllUnboundExternalVariables();
for (int i = 0; i < qn.length; i++) {
 // Display variable
 ...expr.getStaticVariableType(qn[i])... ;
 // Prompt for a value
 // bind the variable
}

Connection-Independent Sequences
The results of queries that we have seen, instances of
the XQResultSequence interface, are valid only as
long as the expression that created them has not been
closed. An application may create instances of the
XQCachedSequence interface that can remain valid
until the application itself ends.

The following example shows how such a
sequence can be created and used to bind to a
variable.
XQDataSource ds = ... ;
String xquery3 = ... ;
XQItemType xs_string
 = con.createItemType
 (XQItemType.XQITEMTYPE_ATOMIC,
 null,
 new QName
 ("integer","xsi",
 "http://www.w3.org/2001/"
 + "XMLSchema-instance"),
 false);
XQCachedSequence seq1 =
 ds.createCachedSequence();
seq1.insertString
 ("Accounting", xs_string);
XQResultSequence rs
 = con.createExpression()
 .executeQuery(xquery3);

The result sequence will then be used to
create a sequence that survives beyond even the
connection that created it.

XQCachedSequence seq2
 = ds.createCachedSequence();
seq2.insertSequence(rs);
con.close();

// seq2 is valid after connection is closed
while (seq2.next())
 { ... }

XQJ also allows an application to create
instances of the XQCachedItem interface. These
objects are like the instances of XQResultItem, but
have a lifetime that is independent of any
connections.

XQResultSequence and
XQCachedSequence are both sub-interfaces of
XQSequence. Many methods are defined using
XQSequence, and so accept instances of either of the
sub-interfaces. A similar statement can be made for
XQResultItem, XQCachedItem, and XQItem,
respectively.

Examining Metadata
Some applications have a need to discover the objects
that exist on an XML data source so that they can
construct valid XQuery expressions. Let’s look at
these types of objects and the XQuery syntactic
constructs that operate on them.

schema import schema prolog directive
module import module prolog directive
collation order by portion of FLWOR expression,

string functions such as fn:contains
function function invocation
collection fn:collection accessor function
document fn:doc accessor function

Either URIs or QNames are used to identify
these types of objects. An XQuery implementation
might have a “closed world” view and only allow the
use of objects contained by the XML data source or
those that have been registered in some way. An
implementation might instead have an “open world”
view and resolve any references that it receives and
then attempt to dynamically load these objects.

XQJ specifies that an XML data source must
provide a number of XQuery functions to access
metadata, an XML schema describing the nodes
returned by these functions, and two namespace
prefixes in its initial static contexts (xqjm, to identify
the metadata schema, and xqj-util, to identify the
metadata functions).

Primary among these functions is the
metadata function, which returns a document with
elements that represent all of the types of objects that
we discussed. This document could be directly
returned to an application, or it could be used as input

to other XQuery expressions that filter, project, and
aggregate its contents.

The following query would return an
element for each function that is defined with 4 or
more parameters:
for $f in xqj-util:metadata()
 /metadata/functions/function
where count($f/parameters/param) >= 4
return $f

An implementation might choose to extend
the XQJ metadata schema to provide more
information about the kinds of objects that we have
mentioned, or to provide information about entirely
new kinds of objects.

XQuery says very little about documents
and collections. The two accessor functions,
fn:collection and fn:doc, accept a URI and
return a sequence of nodes and a document node,
respectively. XQJ supports both implementations that
have flat collections and those that support nested
collections (collections that can have other collection
children as well as document children). An
implementation can determine whether nested
collections are supported by examining the XML data
source properties. The XQJ metadata schema allows
an implementation to reflect the contents of nested
collections if they are supported.

XQJ also specifies a number of XQuery
helper functions that provide access to specific
portions of this metadata. Some of these functions
return just the URIs of documents or collections,
rather than their complete description.

The following query returns an element for
each module that contains a function with a local
name of “soundex”.
for $m in xqj-util:available-modules
where $m/functions/function/@localName
 = "soundex"
return $m

Future Work
There’s very little that we can say about exactly how
this work will proceed … we’re limited by the
member confidentiality of the Expert Group. We’ve
provided a very early view of this project, and we
freely admit that even the existing functionality needs
a great deal of refinement.

The issue of typing requires a great deal of
additional work. We need to decide how XQuery’s
type annotations are made visible to an application.
Also, the static type of an expression, inferred by
XQuery/XPath Formal Semantics [8], is more precise
and expressive those that can be expressed by
XQuery’s SequenceType production. Whether this

rich type info needs to be exposed via the XQJ API
and how it might be provided needs more thought.

Skipping over the intermediate milestones
that XQuery and XQJ must each achieve, our goal is
to bring XQJ to Final Release soon after XQuery
becomes a W3C Recommendation.

Acknowledgments
This JSR is being progressed with the help of the
members of the XQJ Expert Group. Two individuals
deserve special acknowledgement: Jan-Eike Michels
(IBM) and Muralidhar Krishnaprasad (Oracle) have
been serving as editors of our Specification and our
API (Javadoc), respectively.

References
[1] ISO/IEC 9075-14:2003, Information technology

- Database languages - SQL - Part 14:
XML-Related Specifications (SQL/XML),
International Organization for Standardization,
Geneva, 2003.

[2] The Java Community Process(SM) Program,
http://www.jcp.org.

[3] The Java Community Process(SM) Program —
JSRs: Java Specification Requests — detail JSR#
225, http://www.jcp.org/en/jsr/detail?id=225.

[4] W3C Technical Reports and Publications,
http://www.w3.org/TR/.

[5] W3C XML Query (XQuery),
http://www.w3.org/XML/Query.

[6] An Early Look at XQuery, Andrew Eisenberg
and Jim Melton, ACM SIGMOD Record, Vol.
31, No. 4, December 2002,
http://www.acm.org/sigmod/record/issues/0212/
AndrewEJimM.pdf.

[7] XQuery 1.0: An XML Query Language, Scott
Boag, Don Chamberlin, Mary F. Fernández,
Daniela Florescu, Jonathan Robie, Jérôme
Siméon, Nov. 12, 2004,
http://www.w3.org/TR/xquery/.

[8] XQuery 1.0 and XPath 2.0 Formal Semantics,
Ashok Malhotra, Kristoffer Rose, Michael Rys,
Jérôme Siméon, Philip Wadler, Denise Draper,
Peter Fankhauser, Mary Fernández, Feb. 20,
2004, http://www.w3.org/TR/xquery-semantics/.

[9] XML Syntax for XQuery 1.0 (XQueryX), Michael
Rys, Ashok Malhotra, Jim Melton, Jonathan
Robie, Dec. 19, 2003,
http://www.w3.org/TR/xqueryx.

Java and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other
countries, or both.

http://www.jcp.org/
http://www.jcp.org/en/jsr/detail?id=225
http://www.w3.org/TR/
http://www.w3.org/XML/Query
http://www.acm.org/sigmod/record/issues/0212/AndrewEJimM.pdf
http://www.acm.org/sigmod/record/issues/0212/AndrewEJimM.pdf
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xqueryx

	An Early Look at XQuery API for Java™ (XQJ)
	�
	Introduction
	Java Community Process (JCP)
	JSR 225, XQuery API for Java (XQJ)
	Relevant Aspects of XQuery
	XQJ and JDBC
	Writing Applications with XQJ
	Establish a Connection to an XML Data Source
	Determine Properties of the Data Source
	Static and Dynamic Context
	Prepare and Execute an XQuery
	Operate on the Resulting Sequence of Items
	Operating on the Items Individually
	Another Use of these Results
	Retrieving a Node

	Support of Ad-Hoc Applications
	Connection-Independent Sequences
	Examining Metadata

	Future Work
	Acknowledgments
	References

