
Data Management for a Smart Earth

- The Swiss NCCR-MICS initiative -
Karl Aberer

 School for Computer and Communication Science

 EPF Lausanne

 1015 Lausanne, Switzerland

 +41 21 693 4679

karl.aberer@epfl.ch

 Gustavo Alonso Donald Kossmann

Department of Computer Science

ETH Zurich

8092 Zurich, Switzerland

+41 44 632 (7306) / (2940)

{alonso, kossmann}@inf.ethz.ch

ABSTRACT

The Swiss National Competence Center for Research in mobile

Information and Communication Systems (NCCR-MICS or

MICS) is one of several research initiatives sponsored by the

Swiss National Science Foundation to promote long term research

projects in areas of vital strategic importance for the evolution of

science in Switzerland, for the country's economy and for Swiss

society. NCCR-MICS covers a wide spectrum of topics in the

area of mobile information and communication systems ranging

from information theory related to ad-hoc sensor networks to

business models for pervasive computing, including network and

routing issues, software and application development, and actual

deployments of sensor networks (from architecture to geology). In

this paper, we briefly present MICS as a whole and discuss in

some detail two ambitious projects in the area of data

management. The first project, XTream, addresses the whole life

cycle of sensor based applications from the acquisition by

sensors, aggregation and integration in gateways, storage in

databases, generation of events that are relevant to users and

applications, up to the subscription and consumption of events in

a distributed architecture. The second project is Global Sensor

Networks (GSN), which aims at enabling the rapid and efficient

publication, sharing and interoperability of heterogeneous sensor

data sources over large networks such as the Internet and P2P

overlays.

1. INTRODUCTION

Wireless sensor networks are increasingly being used to monitor a

wide range of natural phenomena and human activities. For

instance, monitoring the watershed from glaciers to river mouths

allows scientists to better understand the mechanisms governing

the circulation of water and, thus, to improve prediction and

management of this valuable resource. Similarly, wireless sensors

and actuators in the walls of a building can be used to more

efficiently control energy consumption while increasing the

comfort of the users by creating individual microclimates.

Wireless sensor networks are changing the way we use

information technology: information becomes embedded into our

physical environment by means of miniature devices and

computers, providing dense sensing close to physical phenomena.

This information is distributed, processed, stored, and fed into

software applications that act on the information provided. The

physical environment becomes thus intertwined with the Internet

information space, evolving into what we call the Smart Earth.

Advances in technology are making it possible to acquire and

store an ever increasing amount of data. Text and video are clear

examples nowadays with individuals making vast amounts of

information available and even producing it themselves now that

the mechanisms exist to make it accessible to a broad audience.

The key premise of our work is that sensor networks and sensor

data will soon follow this trend. Hence, our goal is to provide

dynamic mechanisms to cope with the resulting data deluge:

rather than building large repositories with limited processing

capacity, we focus on the publication, distribution, dissemination,

and processing of sensor data.

This work is part of a large research initiative: the Swiss National

Competence Center for Research in Information and

Communication Systems (NCCR-MICS, www.mics.ch). The

NCCR-MICS is tackling all technical aspects of sensor networks,

from the study of fundamental principles (network structures,

distributed algorithms, information and communication theory) to

the development of platforms (wireless sensor technology, ad-hoc

networks, in-network information processing, software

verification), and their deployment in applications.

In this paper, we briefly present the NCCR-MICS, its structure

and the broad research goals of its four clusters. Then, we

concentrate on two concrete data management projects, XTream

and Global Sensor Networks (GSN), and how they are addressing

the data issues raised by the large scale deployment of sensor

networks.

2. NCCR MICS

2.1 Structure and Organization

The NCCR MICS is a nation wide research center encompassing

more than 40 faculty members across different Swiss universities

and more than 90 Ph.D. students, mainly from Computer Science

and Electrical Engineering but also with students in mechanical

engineering, architecture, and business departments. MICS is

currently on its second 4 year phase (from 2005 to 2009) after

finishing a successful first phase from 2001 to 2005.

MICS is run by a Management Committee that acts as link

between the project participants and the Swiss National Science

Foundation. The management committee is assisted in this task by

40 SIGMOD Record, Vol. 35, No. 4, December 2006

an external scientific board of 10 internationally renowned

researchers that actively review MICS activities once a year.

MICS is officially reviewed once a year by the Swiss National

Science Foundation through a panel of 10 international experts.

MICS also counts on an Advisory Board that consults on higher

level strategic issues and is composed of five people with ample

management experience in university, research and /or business

administration. An open scientific conference is organized every

6 months at different locations in Switzerland where the work of

all participants is presented in two or three intense days of

keynotes, Ph.D. students’ talks, posters, demonstration, panels,

and strategic meetings*. These conferences coincide alternatively

with the reviews of the scientific board and the Swiss National

Science Foundation. There is also an annual summer school

where external speakers are invited to give one week courses on a

variety of topics related to the research areas covered in MICS.

MICS research is organized into 4 clusters:

• Theory of Self-organized, Distributed Communication

and Information

• Mobile Communication and Processing Platforms

• Networked Software Systems

• In-network Information Management

Each cluster encompasses several research projects and one or

more application projects. The application projects focus on real

deployments of the technology developed within MICS.

2.2 MICS Cluster 1: Theory of self organized,

distributed communication and information

Cluster 1 addresses the basic theoretical aspects of sensor and

wireless networks in four areas: information theory, network

theory, distributed signal processing and distributed algorithms.

This cluster aims at establishing the basis for the work in all other

clusters in that it develops the necessary fundamental

understanding of the problems associated with sensor networks.

The projects within this cluster explore a wide variety of issues

from the trade-offs between data rates, reliability, bandwidth and

energy consumption to mechanisms for signal reconstruction that

can be used to accurately describe real phenomena using the data

captured by a collection of sensors. This cluster also encompasses

an application project in environmental monitoring, SensorScope,

which aims at obtaining sensor measurements for supplying

boundary conditions for complex physical models of

environmental phenomena such as wind and water flow

(sensorscope.epfl.ch).

2.3 MICS Cluster 2: Mobile Communication

and Processing Platforms

Cluster 2 deals with technology that is required to cope with the

challenges linked to the implementation and deployment of

wireless ad-hoc networks: from basic routing to new technologies

such as ultra-wide band communication. This cluster also

explores two interesting applications. The first application

involves using sensors to study the dynamics of rapid gravity-

* Readers interested in attending or participating in these meetings

are encouraged to contact any of the authors.

driven flows, such as avalanches and earth mass movements. The

second application project builds distributed, self-organized,

networked robotic olfactory systems for chemical plume mapping

and odor source localization. Scientists involved in this cluster are

also exploring how energy reduction can be achieved by using a

more systematic cross-layer optimization, including additional

upper and lower layers.

2.4 MICS Cluster 3: Networked Software

Systems

Cluster 3 is devoted to the basic support necessary to develop

applications that rely on sensor networks. The work in this cluster

includes, among others, techniques to check the properties of

software modules, using a combination of compile-time (off-line)

and run-time (dynamic) analysis; the analysis of multi-threaded

programs to detect errors or to issue warnings; exploring

alternative architectures for sensor networks to facilitate

deployment, monitoring and debugging; and proving

communication protocols to be correct and secure. This cluster

includes two application projects which deploy sensors in

difficult-to reach regions: the PermaSense project

(cn.cs.unibas.ch/projects/permasense/) focuses on the permafrost

region in the Swiss alps (including placement of sensors on

vertical mountain walls), the other project's focus is on water and

humidity monitoring and management in an arid part of the Indian

subcontinent.

2.5 MICS Cluster 4: In-Network

Management Systems

Cluster 4 aims at supporting end-to-end data management for

sensor and mobile networks covering all system layers and

processing levels. The work in this cluster addresses the dire need

for better tools (both actual as well as conceptual tools) to deal

with the data generated by sensor networks. A common theme in

this cluster is the use of a "declarative middleware" language and

the interpretation of sensors as services. This cluster also takes a

broader view on what a sensor is and generalizes sensors to any

form of pull or push-enabled data source. The two projects that

are described in the next two sections (XTream and GSN) are part

of Cluster 4. Additional projects in this cluster address topics such

as algorithms and mechanisms for the on-line detection of events

in sensor networks (as opposed to just gathering data), protocols

for the efficient dissemination of information across sensor

networks, efficient mechanisms for concurrent programming in

embedded systems, and studies on the commercial aspects of

sensor networks. This cluster also has its own application project

led by a group of architects that are trying to exploit sensor

networks in buildings as a way to minimize construction and

renovation costs as well as optimizing energy consumption in

buildings.

3. XTREAM

3.1 Overall Goals

The XTream project is a collaborative effort within the

Department of Computer Science of ETH Zurich. Its main goal is

to look at the complete acquisition, distribution, delivery, and

processing chain of data from sensor networks, understanding

sensors in the widest possible sense. XTream targets all levels of

SIGMOD Record, Vol. 35, No. 4, December 2006 41

the system from the software support at the sensor platforms, the

middleware at the gateway of a sensor network, event generation

and subscription, data stream processing, and declarative

generation of data processing in distributed applications that must

process diverse and heterogeneous data streams.

In its first phase, the XTream project tackled the limitations of

existing programming platforms and languages to adequate them

to the needs of sensor data processing. Again, these limitations

appear at all levels and a significant effort has been made to

define a coherent architecture with the proper abstractions and

support at each level. In what follows, we present the results

obtained so far.

3.2 SwissQM

One of the biggest limitations of existing sensor networks today is

the lack of an adequate software platform to program the sensors

themselves. What is currently available is either too low level (a

stripped down operating system) and, thus, difficult to program,

or too high level (query based systems) and, thus, not flexible

enough. We ran into this problem at the very beginning when we

started experimenting with simple sensor networks. The learning

curve was very steap to program sensors, the resulting software

was difficult to maintain, and high level systems simply did not

support any of the things we wanted to do.

A first key contribution of XTream was SwissQM [4]: a flexible

and extensible virtual machine that runs at the sensor nodes.

SwissQM uses a bytecode language that is similar to Java

bytecode with a few additions in order to be able to perform in-

network data aggregation. SwissQM has been optimized for

program size in order to minimize the overhead of distributing

programs. It can concurrently run several programs, perform

powerful data aggregation operations on-the-fly, and can be easily

extended with user-defined functions. With SwissQM, it is trivial

to, e.g., push down to the sensors data cleaning functionality like

noise filters or window operators to minimize traffic and optimize

the life time of the network. Being a programmable virtual

machine, rather than, e.g., a SQL query engine, SwissQM is

Turing complete and can be easily plugged into sophisticated

software stacks that offer different interfaces to the outside world

(including but not limited to SQL).

SwissQM is a key element in the XTream architecture because it

abstracts the sensor hardware behind a simple bytecode language.

Now we are in a position to develop front ends that provide either

bridges to high level programming languages such as Java,

XQuery and SQL or links to optimizers residing at higher layers

in the architecture.

3.3 Gateway

A central component in the XTream architecture is a gateway

server. The gateway server is more powerful than sensor nodes; it

typically has high (wired) communication to the Internet and less

limitations in terms of energy consumptions, main memory, and

processing. The gateway collects data from the sensors and it

compensates for functionality that cannot be implemented

efficiently by the sensors directly. Furthermore, the gateway

compiles SwissQM bytecode based on high-level declarative

specifications, thereby carrying out optimizations and all planing

that would be impossible to carry out by the individual sensors.

The gateway of XTream is the main processing engine of the

sensor network. As with SwissQM, developing the gateway

involved developing first adequate software support. The gateway

is being implemented in Java on top of Concierge

(www.flowsgi.inf.ethz.ch/concierge.html, now available as open

source), an implementation of the OSGI specification tailored and

optimized for small devices. Concierge allows the addition and

removal of software modules at run time, a property that we will

use to provide run-time extensibility. Through the gateway, we

are building an SQL module, an XQuery module, and a web

service module. What makes the gateway interesting is the fact

that it can take the requests arriving through the different modules

and apply multi-query optimization to the whole set. Through the

gateway, we have demonstrated the ability to run more than a

hundred concurrent user queries on a single sensor network by

applying traditional optimization techniques [3].

3.4 SLETs and channels

Figure 1. A first implemented XTream prototype combining

streams from Skype and from an IMAP e-mail server

The ultimate goal of XTream is to create a development platform

that will allow non specialists to create applications based on data

streams. The concept is similar to mashups and built on similar

primitives such as Web services. The architecture of XTream is

divided into two components: Slets and channels (Figure 1). Slets

are intended as the processing components that receive data,

potentially from many channels, and produce data, potentially for

many channels. Slets can be written in any programming

language (e.g., Java); a declarative way to specify Slets is

described in the next subsection. Channels are physical entities

that abstract from the specifics of the underlying network,

transport protocols, and data sources, offering a typed, XML

based, query driven interface to mitigate the (potential)

impedance mismatch between the programming language at the

Slets and the data representation of the streams. They will also

hide aspects such as access to remote data, refresh rates, access to

multiple sources, etc.

Together, Slets and channels are used in order to compose

complex applications from data streams and databases: Slets are

the active components that encapsulate functionality and channels

implement the dataflow between these active components. As a

first approximation, the composition takes place in a workflow

manner with a simple, yet powerful GUI that allows designers to

plug channels into Slets and vice versa. These workflows are

declarative and can be optimized in several different ways by the

42 SIGMOD Record, Vol. 35, No. 4, December 2006

underlying runtime platform. An example of such an optimization

is pushing down of operations from Slets into the gateway and

possibly the sensor network; thanks to the design of SwissQM and

the gateway such optimizations can indeed be implemented.

3.5 Programming Model

As mentioned in the previous subsection, XTream adopts a two-

step programming model: Orchestration is carried out at the

Slet/channel level and basic functionality is specified inside Slets,

the gateway, and in the sensors themselves. For orchestration, any

programming language can be used in order to program, say, Slets

and any kind of data (e.g., comma separated values or RSS) can

be shipped through channels. For best performance, however,

XTream proposes extensions of XQuery in order to program

Slets, the gateway, and even specify the operations that need to be

carried out at the sensor level. XQuery is used for several reasons:

First, XQuery makes it possible to process most data formats

including, of course, comma-separated values and RSS. Second,

the XQuery data model is based on sequences of items which is a

perfect match for data streams. Third, XQuery is declarative,

thereby enabling optimization and development tools (e.g.,

graphical editors and debuggers).

Unfortunately, the current XQuery standard is not powerful

enough for XTream. Therefore, we are currently working on the

following extensions, mostly in collaboration with Oracle and

other industrial partners:

• Windows: This extension makes it possible to express

tumbling windows, sliding windows, and landmark

windows in XQuery in the same spirit as CQL (and

other dialects) do for SQL. Window queries are

particularly important at the gateway in order to carry

out, e.g., data cleaning.

• Event generation: This extension makes it possible to

compare two states of a database and notify users of

critical state transitions (e.g., temperature dropped by

more than ten degrees in ten minutes).

• Scripting: This extension adds error handling, variable

assignment, and external function calls (e.g. Web

service calls) to XQuery in order to allow more

general programming [2].

3.6 Digital home scenario

As a proof of concept, and in collaboration with Siemens AG, we

have developed a prototype that uses XTream to disseminate,

process, control and display on a variety of hand-held devices

information about a digital home (Figure 2).

The digital home scenario involves several house-related data

streams (e.g., ringing of the door bell, storm warnings, status of

home appliances) and personal data streams (e.g., E-Mails,

information on phone calls, SMS, calendar events). All these data

streams need to be processed in quasi-real-time, but with different

requirements and priorities.

The prototype illustrates the goals and architecture of XTream.

The different data sources are wrapped as slets that output data to

channels. The channels are declaratively specified and the system

forwards the data from slets to the relevant channels. Additional

slets were developed in order to implement functionality such as

merging streams, filtering out important events, or raising alarms

when certain conditions occur. These slets forward their data to

other channels that can be used again by new slets. User

interfaces are hidden behind slets that read from channels. Certain

slets control appliances; e.g., turn off the lights if all inhabitants

have left the house. In this way, heterogeneity of both sources and

sinks is hidden behind a uniform slet interface. The channels take

care of the transport and distribution, as well as of storage of the

data in transit. The Xtream software operates in a lab (a

prototype house with real appliances). For testing purposes,

Siemens provided a simulator, a configurable virtual digital home,

as shown in Figure 2.

Figure 2. Simulator of a Digital Home controlled by the

XTream prototype (in collaboration with Siemens)

4. GLOBAL SENSOR NETWORKS (GSN)

4.1 Overall Goals

As sensor network technology advances and the price of sensor

networks rapidly diminishes, we can expect large numbers of

sensor networks being deployed. This implies interesting

opportunities and challenges for managing and sharing data

produced by sensor networks at a global scale. Today we lack

tools that would allow for rapid and efficient deployment of

diverse sensor networks and for reuse and sharing of data

generated by sensor networks at a global scale, despite of the

similarity of the main tasks of processing, storing, querying and

publishing data produced by a sensor network. The goal of Global

Sensor Networks (GSN) is to provide a middleware platform that

facilitates these tasks [1]. As a result, we expect to support

developers of sensor networks in the rapid development of their

applications and the simple publication of the data generated, and

we expect to provide users an environment in which they can

explore the sensor data space and potential applications in a way

similar to the use of the current Internet.

In the following we provide an overview of the design

considerations and features of a first system that has been

developed recently and is being made available to the community

SIGMOD Record, Vol. 35, No. 4, December 2006 43

as an open source release over Sourceforge

(http://globalsn.sourceforge.net/)

The Global Sensor Networks (GSN) middleware provides a

uniform platform for fast and flexible integration and deployment

of heterogeneous sensor networks. The design of GSN follows

four main design goals: Simplicity by using a minimal set of

powerful abstractions which can be easily configured and

adopted, adaptivity by enabling runtime reconfiguration when

adding new types of sensor networks and data processing tasks,

scalability and autonomy by using a peer-to-peer architecture, and

light-weight implementation by ensuing a small memory foot-

print, low hardware and bandwidth requirements, and web-based

management tools.

4.2 Virtual sensors as Key Abstraction

A small set of powerful, easily combinable abstractions are key to

successful middleware design. The key abstraction in GSN is the

virtual sensor. Virtual sensors abstract from implementation

details of access to sensor data and they are the services provided

and managed by GSN. A virtual sensor corresponds either to a

data stream received directly from sensors or to a data stream

derived from other virtual sensors. A virtual sensor can have any

number of input streams and produces one output stream. The

specification of a virtual sensor provides all necessary

information required for deploying and using it, including

metadata used for identification and discovery, the structure of the

data streams which the virtual sensor consumes and produces, a

declarative SQL-based specification of the data stream processing

performed in a virtual sensor, and functional properties related to

persistency, error handling, life-cycle management, and physical

deployment. To support rapid deployment, these properties of

virtual sensors are provided in a declarative deployment

descriptor specified in XML.

4.3 Data Stream Processing

In GSN a data stream is a sequence of timestamped tuples. The

order of the data stream is derived from the ordering of the

timestamps and the GSN container provides basic support to

manage and manipulate the timestamps. These services

essentially consist of the following components:

• a local clock at each GSN container

• implicit management of a timestamp attribute

• implicit timestamping of tuples upon arrival at the GSN

container at reception time

• a windowing mechanism which allows the user to define

count- or time-based windows on data streams.

In this way it is always possible to trace the temporal history of

data stream elements throughout the processing history. Multiple

time attributes can be associated with data streams and can be

manipulated through SQL queries. In this way inherent properties

of the observation process, such as network and processing

delays, are made visible to applications for building their specific

temporal abstractions on top of the available temporal data.

The production of a new output stream element of a virtual sensor

is always triggered by the arrival of a data stream element from

one of its input streams. Informally, the processing steps then are

as follows:

• By default the new data stream element is timestamped using

the local clock of the virtual sensor provided that the stream

element had no timestamp.

• Based on the timestamps for each input stream the stream

elements are selected according to the definition of the time

window and the resulting sets of relations are unnested into

flat relations.

• The input stream queries are evaluated and stored into

temporary relations.

• The output query for producing the output stream element is

executed based on the temporary relations.

• The result is permanently stored if required and all

consumers of the virtual sensor are notified of the new

stream element.

Additionally, GSN provides a number of possibilities to control

the temporal processing of data streams, for example, bounding

the rate of a data stream in order to avoid overloads of the system

which might cause undesirable delays, sampling of data streams

in order to reduce the data rate, and bounding the lifetime of a

data stream in order to reserve resources only when they are

needed.

GSN's query processing approach is related to TelegraphCQ

(telegraph.cs.berkeley.edu/telegraphcq/) as it separates the time-

related constructs from the actual query. Temporal specifications,

e.g., the window size, are provided in XML in the virtual sensor

specification, while data processing is specified in SQL. At the

moment GSN supports SQL queries with the full range of

operations allowed by the standard syntax, i.e., joins, subqueries,

ordering, grouping, unions, intersections, etc. The advantage of

using SQL is that it is well-known and SQL query optimization

and planning techniques can be directly applied.

4.4 GSN architecture

GSN follows a container-based architecture and each container

can host and manage one or more virtual sensors concurrently.

The container manages every aspect of the virtual sensors at

runtime including remote access, interaction with the sensor

network, security, persistence, data filtering, concurrency, and

access to and pooling of resources. This paradigm enables on-

demand use and combination of sensor networks. Virtual sensor

descriptions are identified by user-definable key-value pairs

which are published in a peer-to-peer directory so that virtual

sensors can be discovered and accessed based on any combination

of their properties, for example, geographical location and sensor

type. GSN nodes communicate among each other in a peer-to-

peer fashion. Figure 3 depicts the internal architecture of a GSN

node.

The virtual sensor manager (VSM) is responsible for providing

access to the virtual sensors, managing the delivery of sensor

data, and providing the necessary administrative infrastructure. Its

life-cycle manager (LCM) subcomponent provides and manages

the resources provided to a virtual sensor and manages the

interactions with a virtual sensor (sensor readings, etc.) while the

input stream manager (ISM) manages the input streams and

ensures stream quality (disconnections, unexpected delays,

missing values, etc.). The data from/to the VSM passes through

the storage layer which is in charge of providing and managing

persistent storage for data streams. Query processing is controlled

44 SIGMOD Record, Vol. 35, No. 4, December 2006

by the query manager (QM) which includes the query processor

being in charge of SQL parsing, query planning, and execution of

queries (using an adaptive query execution plan). The notification

manager deals with the delivery of events and query results to the

registered clients. The top three layers deal with access to the

GSN container.

Figure 3. GSN architecture

4.5 Implementation

The GSN implementation consists of the GSN-CORE,

implemented in Java, and the platform-specific GSN-

WRAPPERS, implemented in Java, C, and C++, depending on the

available toolkits for accessing sensors. The implementation

currently has approximately 20,000 lines of code and is available

from SourceForge. GSN is implemented to be highly modular in

order to be deployable on various hardware platforms from

workstations to small programmable PDAs, i.e., depending on the

specific platforms only a subset of modules may be used. GSN

also includes visualization systems for plotting data and

visualizing the network structure.

For deploying a virtual sensor the user only has to specify an

XML deployment descriptor as briefly outlined in Section 4.2 if

GSN already includes software support for the concerned

hardware and software. Adding a new type of sensor or sensor

network can be done by supplying a Java wrapper conforming to

the GSN API and interfacing the system to be included.

The effort to implement wrappers is quite low, i.e., typically

around 100-200 lines of Java code. For example, the TinyOS

wrapper required 150 lines of code. Our experience shows that

new wrappers can be included usually in less than 1 day.

Currently GSN includes already wrappers for the TinyOS family

of motes (Mica, Mica2, Mica2Dot, TinyNodes, etc.), USB and

wireless (HTTP-based) cameras (e.g., AXIS 206W camera), and

several RFID readers (e.g., Texas Instruments).

The GSN implementation is highly performant. As an indication,

the processing time for one virtual sensor deployed on a GSN

node is approximately 0.1ms on a standard workstation. Thus, in

performance evaluations we would typically host hundreds of

virtual sensors on the same GSN node.

5. ACKNOWLEDGMENTS

NCCR MICS is a large collaboration effort in which the ideas of a

large number of people have converged and been merged into a

coherent whole. This paper reflects many of these shared ideas

and, thus, we would like to thank all past and present participants

of MICS for the collective and individual input. Regarding

XTream, we would like to thank Irina Carbus, Michael Dueller,

Tim Kraska, Rene Mueller, Christian Reichel, Jan Rellermeyer,

Rokas Tamosevicius. Regarding GSN, we would like to thank Ali

Salehi and Manfred Hauswirth. For information on the MICS

projects, publications, pointers to all participants and an extensive

list of publications and activities, consult the project web page:

www.mics.org

The work presented in this paper was supported (in part) by the

National Competence Center in Research on Mobile Information

and Communication Systems NCCR-MICS, a center supported by

the Swiss National Science Foundation under grant number 5005-

67322.

6. REFERENCES

[1] Karl Aberer, Manfred Hauswirth, Ali Salehi. A middleware

for fast and flexible sensor network deployment. 32nd

International Conference on Very Large Data Bases

(VLDB2006), Seoul, Korea, 12-15 Sep 06

[2] Don Chamberlin, Michael Carey, Daniela Florescu, Donald

Kossmann, Jonathan Robie. XQueryP: Programming with

XQuery. 3rd
 International Workshop on XQuery

Implementation, Experience, and Perspectives (XIME-

P2006). Chicago, Illinois, USA. 30 Jun, 2006.

[3] Rene Mueller, Gustavo Alonso. Efficient Sharing of Sensor

Networks. IEEE International Conference on Mobile Ad-

hoc and Sensor Systems (MASS2007), Vancouver, Canada,

9-12 Oct 2006.

[4] Rene Mueller, Gustavo Alonso, Donald Kossmann.

SwissQM: Next generation Data Processing in Sensor

Networks. 3
rd

 Biennial Conference on Innovative Database

Research (CIDR2007). Asilomar, California, USA. 7-10 Jan

07.

SIGMOD Record, Vol. 35, No. 4, December 2006 45

