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ABSTRACT 

The Swiss National Competence Center for Research in mobile 

Information and Communication Systems (NCCR-MICS or 

MICS) is one of several research initiatives sponsored by the 

Swiss National Science Foundation to promote long term research 

projects in areas of vital strategic importance for the evolution of 

science in Switzerland, for the country's economy and for Swiss 

society. NCCR-MICS covers a wide spectrum of topics in the 

area of mobile information and communication systems ranging 

from information theory related to ad-hoc sensor networks to 

business models for pervasive computing, including network and 

routing issues, software and application development, and actual 

deployments of sensor networks (from architecture to geology). In 

this paper, we briefly present MICS as a whole and discuss in 

some detail two ambitious projects in the area of data 

management. The first project, XTream, addresses the whole life 

cycle of sensor based applications from the acquisition by 

sensors, aggregation and integration in gateways, storage in 

databases, generation of events that are relevant to users and 

applications, up to the subscription and consumption of events in 

a distributed architecture. The second project is Global Sensor 

Networks (GSN), which aims at enabling the rapid and efficient 

publication, sharing and interoperability of heterogeneous sensor 

data sources over large networks such as the Internet and P2P 

overlays.  

1. INTRODUCTION 

Wireless sensor networks are increasingly being used to monitor a 

wide range of natural phenomena and human activities. For 

instance, monitoring the watershed from glaciers to river mouths 

allows scientists to better understand the mechanisms governing 

the circulation of water and, thus, to improve prediction and 

management of this valuable resource. Similarly, wireless sensors 

and actuators in the walls of a building can be used to more 

efficiently control energy consumption while increasing the 

comfort of the users by creating individual microclimates. 

Wireless sensor networks are changing the way we use 

information technology: information becomes embedded into our 

physical environment by means of miniature devices and 

computers, providing dense sensing close to physical phenomena. 

This information is distributed, processed, stored, and fed into 

software applications that act on the information provided. The 

physical environment becomes thus intertwined with the Internet 

information space, evolving into what we call the Smart Earth. 

Advances in technology are making it possible to acquire and 

store an ever increasing amount of data. Text and video are clear 

examples nowadays with individuals making vast amounts of 

information available and even producing it themselves now that 

the mechanisms exist to make it accessible to a broad audience. 

The key premise of our work is that sensor networks and sensor 

data will soon follow this trend. Hence, our goal is to provide 

dynamic mechanisms to cope with the resulting data deluge: 

rather than building large repositories with limited processing 

capacity, we focus on the publication, distribution, dissemination, 

and processing of sensor data. 

This work is part of a large research initiative: the Swiss National 

Competence Center for Research in Information and 

Communication Systems (NCCR-MICS, www.mics.ch). The 

NCCR-MICS is tackling all technical aspects of sensor networks, 

from the study of fundamental principles (network structures, 

distributed algorithms, information and communication theory) to 

the development of platforms (wireless sensor technology, ad-hoc 

networks, in-network information processing, software 

verification), and their deployment in applications. 

In this paper, we briefly present the NCCR-MICS, its structure 

and the broad research goals of its four clusters. Then, we 

concentrate on two concrete data management projects, XTream 

and Global Sensor Networks (GSN), and how they are addressing 

the data issues raised by the large scale deployment of sensor 

networks. 

2. NCCR MICS 

2.1  Structure and Organization 

The NCCR MICS is a nation wide research center encompassing 

more than 40 faculty members across different Swiss universities 

and more than 90 Ph.D. students, mainly from Computer Science 

and Electrical Engineering but also with students in mechanical 

engineering, architecture, and business departments. MICS is 

currently on its second 4 year phase (from 2005 to 2009) after 

finishing a successful first phase from 2001 to 2005. 

MICS is run by a Management Committee that acts as link 

between the project participants and the Swiss National Science 

Foundation. The management committee is assisted in this task by 
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an external scientific board of 10 internationally renowned 

researchers that actively review MICS activities once a year. 

MICS is officially reviewed once a year by the Swiss National 

Science Foundation through a panel of 10 international experts. 

MICS also counts on an Advisory Board that consults on higher 

level strategic issues and is composed of five people with ample 

management experience in university, research and /or business 

administration.  An open scientific conference is organized every 

6 months at different locations in Switzerland where the work of 

all participants is presented in two or three intense days of 

keynotes, Ph.D. students’ talks, posters, demonstration, panels, 

and strategic meetings*. These conferences coincide alternatively 

with the reviews of the scientific board and the Swiss National 

Science Foundation. There is also an annual summer school 

where external speakers are invited to give one week courses on a 

variety of topics related to the research areas covered in MICS. 

MICS research is organized into 4 clusters: 

• Theory of Self-organized, Distributed Communication 

and Information 

•  Mobile Communication and Processing Platforms 

•  Networked Software Systems 

•  In-network Information Management 

Each cluster encompasses several research projects and one or 

more application projects. The application projects focus on real 

deployments of the technology developed within MICS. 

2.2 MICS Cluster 1: Theory of self organized, 

distributed communication and information  

Cluster 1 addresses the basic theoretical aspects of sensor and 

wireless networks in four areas: information theory, network 

theory, distributed signal processing and distributed algorithms. 

This cluster aims at establishing the basis for the work in all other 

clusters in that it develops the necessary fundamental 

understanding of the problems associated with sensor networks. 

The projects within this cluster explore a wide variety of issues 

from the trade-offs between data rates, reliability, bandwidth and 

energy consumption to mechanisms for signal reconstruction that 

can be used to accurately describe real phenomena using the data 

captured by a collection of sensors. This cluster also encompasses 

an application project in environmental monitoring, SensorScope, 

which aims at obtaining sensor measurements for supplying 

boundary conditions for complex physical models of 

environmental phenomena such as wind and water flow 

(sensorscope.epfl.ch). 

2.3 MICS Cluster 2: Mobile Communication 

and Processing Platforms 

Cluster 2 deals with technology that is required to cope with the 

challenges linked to the implementation and deployment of 

wireless ad-hoc networks: from basic routing to new technologies 

such as ultra-wide band communication. This cluster also 

explores two interesting applications. The first application 

involves using sensors to study the dynamics of rapid gravity-

                                                                 

* Readers interested in attending or participating in these meetings 

are encouraged to contact any of the authors. 

driven flows, such as avalanches and earth mass movements. The 

second application project builds distributed, self-organized, 

networked robotic olfactory systems for chemical plume mapping 

and odor source localization. Scientists involved in this cluster are 

also exploring how energy reduction can be achieved by using a 

more systematic cross-layer optimization, including additional 

upper and lower layers.  

2.4 MICS Cluster 3: Networked Software 

Systems 

Cluster 3 is devoted to the basic support necessary to develop 

applications that rely on sensor networks. The work in this cluster 

includes, among others, techniques to check the properties of 

software modules, using a combination of compile-time (off-line) 

and run-time (dynamic) analysis; the analysis of multi-threaded 

programs to detect errors or to issue warnings; exploring 

alternative architectures for sensor networks to facilitate 

deployment, monitoring and debugging; and proving 

communication protocols to be correct and secure.  This cluster 

includes two application projects which deploy sensors in 

difficult-to reach regions: the PermaSense project 

(cn.cs.unibas.ch/projects/permasense/) focuses on the permafrost 

region in the Swiss alps (including placement of sensors on 

vertical mountain walls), the other project's focus is on water and 

humidity monitoring and management in an arid part of the Indian 

subcontinent.  

2.5 MICS Cluster 4: In-Network 

Management Systems 

Cluster 4 aims at supporting end-to-end data management for 

sensor and mobile networks covering all system layers and 

processing levels. The work in this cluster addresses the dire need 

for better tools (both actual as well as conceptual tools) to deal 

with the data generated by sensor networks. A common theme in 

this cluster is the use of a "declarative middleware" language and 

the interpretation of sensors as services. This cluster also takes a 

broader view on what a sensor is and generalizes sensors to any 

form of pull or push-enabled data source. The two projects that 

are described in the next two sections (XTream and GSN) are part 

of Cluster 4. Additional projects in this cluster address topics such 

as algorithms and mechanisms for the on-line detection of events 

in sensor networks (as opposed to just gathering data), protocols 

for the efficient dissemination of information across sensor 

networks, efficient mechanisms for concurrent programming in 

embedded systems, and studies on the commercial aspects of 

sensor networks. This cluster also has its own application project 

led by a group of architects that are trying to exploit sensor 

networks in buildings as a way to minimize construction and 

renovation costs as well as optimizing energy consumption in 

buildings. 

3. XTREAM 

3.1 Overall Goals 

The XTream project is a collaborative effort within the 

Department of Computer Science of ETH Zurich. Its main goal is 

to look at the complete acquisition, distribution, delivery, and 

processing chain of data from sensor networks, understanding 

sensors in the widest possible sense. XTream targets all levels of 
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the system from the software support at the sensor platforms, the 

middleware at the gateway of a sensor network, event generation 

and subscription, data stream processing, and declarative 

generation of data processing in distributed applications that must 

process diverse and heterogeneous data streams. 

In its first phase, the XTream project tackled the limitations of 

existing programming platforms and languages to adequate them 

to the needs of sensor data processing. Again, these limitations 

appear at all levels and a significant effort has been made to 

define a coherent architecture with the proper abstractions and 

support at each level. In what follows, we present the results 

obtained so far.  

3.2 SwissQM 

One of the biggest limitations of existing sensor networks today is 

the lack of an adequate software platform to program the sensors 

themselves. What is currently available is either too low level (a 

stripped down operating system) and, thus, difficult to program, 

or too high level (query based systems) and, thus, not flexible 

enough. We ran into this problem at the very beginning when we 

started experimenting with simple sensor networks. The learning 

curve was very steap to program sensors, the resulting software 

was difficult to maintain, and high level systems simply did not 

support any of the things we wanted to do. 

A first key contribution of XTream was SwissQM [4]: a flexible 

and extensible virtual machine that runs at the sensor nodes. 

SwissQM uses a bytecode language that is similar to Java 

bytecode with a few additions in order to be able to perform in-

network data aggregation. SwissQM has been optimized for 

program size in order to minimize the overhead of distributing 

programs. It can concurrently run several programs, perform 

powerful data aggregation operations on-the-fly, and can be easily 

extended with user-defined functions. With SwissQM, it is trivial 

to, e.g., push down to the sensors data cleaning functionality like 

noise filters or window operators to minimize traffic and optimize 

the life time of the network. Being a programmable virtual 

machine, rather than, e.g., a SQL query engine, SwissQM is 

Turing complete and can be easily plugged into sophisticated 

software stacks that offer different interfaces to the outside world 

(including but not limited to SQL). 

SwissQM is a key element in the XTream architecture because it 

abstracts the sensor hardware behind a simple bytecode language. 

Now we are in a position to develop front ends that provide either  

bridges to high level programming languages such as Java, 

XQuery and SQL or links to optimizers residing at higher layers 

in the architecture. 

3.3 Gateway 

A central component in the XTream architecture is a gateway 

server. The gateway server is more powerful than sensor nodes; it 

typically has high (wired) communication to the Internet and less 

limitations in terms of energy consumptions, main memory, and 

processing. The gateway collects data from the sensors and it 

compensates for functionality that cannot be implemented 

efficiently by the sensors directly. Furthermore, the gateway 

compiles SwissQM bytecode based on high-level declarative 

specifications, thereby carrying out optimizations and all planing 

that would be impossible to carry out by the individual sensors.  

The gateway of XTream is the main processing engine of the 

sensor network. As with SwissQM, developing the gateway 

involved developing first adequate software support. The gateway 

is being implemented in Java on top of Concierge 

(www.flowsgi.inf.ethz.ch/concierge.html, now available as open 

source), an implementation of the OSGI specification tailored and 

optimized for small devices. Concierge allows the addition and 

removal of software modules at run time, a property that we will 

use to provide run-time extensibility. Through the gateway, we 

are building an SQL module, an XQuery module, and a web 

service module. What makes the gateway interesting is the fact 

that it can take the requests arriving through the different modules 

and apply multi-query optimization to the whole set. Through the 

gateway, we have demonstrated the ability to run more than a 

hundred concurrent user queries on a single sensor network by 

applying traditional optimization techniques [3].  

3.4 SLETs and channels 

 

 

Figure 1. A first implemented XTream prototype combining 

streams from Skype and from an IMAP e-mail server 

 

The ultimate goal of XTream is to create a development platform 

that will allow non specialists to create applications based on data 

streams. The concept is similar to mashups and built on similar 

primitives such as Web services. The architecture of XTream is 

divided into two components: Slets and channels (Figure 1). Slets 

are intended as the processing components that receive data, 

potentially from many channels, and produce data, potentially for 

many channels. Slets can be written in any programming 

language (e.g., Java); a declarative way to specify Slets is 

described in the next subsection. Channels are physical entities 

that abstract from the specifics of the underlying network, 

transport protocols, and data sources, offering a typed, XML 

based, query driven interface to mitigate the (potential) 

impedance mismatch between the programming language at the 

Slets and the data representation of the streams.  They will also 

hide aspects such as access to remote data, refresh rates, access to 

multiple sources, etc. 

Together, Slets and channels are used in order to compose 

complex applications from data streams and databases: Slets are 

the active components that encapsulate functionality and channels 

implement the dataflow between these active components. As a 

first approximation, the composition takes place in a workflow 

manner with a simple, yet powerful GUI that allows designers to 

plug channels into Slets and vice versa. These workflows are 

declarative and can be optimized in several different ways by the 
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underlying runtime platform. An example of such an optimization 

is pushing down of operations from Slets into the gateway and 

possibly the sensor network; thanks to the design of SwissQM and 

the gateway such optimizations can indeed be implemented. 

3.5 Programming Model 

As mentioned in the previous subsection, XTream adopts a two-

step programming model: Orchestration is carried out at the 

Slet/channel level and basic functionality is specified inside Slets, 

the gateway, and in the sensors themselves. For orchestration, any 

programming language can be used in order to program, say, Slets 

and any kind of data (e.g., comma separated values or RSS) can 

be shipped through channels. For best performance, however, 

XTream proposes extensions of XQuery in order to program 

Slets, the gateway, and even specify the operations that need to be 

carried out at the sensor level. XQuery is used for several reasons: 

First, XQuery makes it possible to process most data formats 

including, of course, comma-separated values and RSS. Second, 

the XQuery data model is based on sequences of items which is a 

perfect match for data streams. Third, XQuery is declarative, 

thereby enabling optimization and development tools (e.g., 

graphical editors and debuggers).  

Unfortunately, the current XQuery standard is not powerful 

enough for XTream. Therefore, we are currently working on the 

following extensions, mostly in collaboration with Oracle and 

other industrial partners: 

• Windows: This extension makes it possible to express 

tumbling windows, sliding windows, and landmark 

windows in XQuery in the same spirit as CQL (and 

other dialects) do for SQL. Window queries are 

particularly important at the gateway in order to carry 

out, e.g., data cleaning. 

• Event generation: This extension makes it possible to 

compare two states of a database and notify users of 

critical state transitions (e.g., temperature dropped by 

more than ten degrees in ten minutes). 

• Scripting: This extension adds error handling, variable 

assignment, and external function calls (e.g. Web 

service calls) to XQuery in order to allow more 

general programming [2].     

3.6 Digital home scenario 

As a proof of concept, and in collaboration with Siemens AG, we 

have developed a prototype that uses XTream to disseminate, 

process, control and display on a variety of hand-held devices 

information about a digital home (Figure 2). 

The digital home scenario involves several house-related data 

streams (e.g., ringing of the door bell, storm warnings, status of 

home appliances) and personal data streams (e.g., E-Mails, 

information on phone calls, SMS, calendar events). All these data 

streams need to be processed in quasi-real-time, but with different 

requirements and priorities.  

The prototype illustrates the goals and architecture of XTream. 

The different data sources are wrapped as slets that output data to 

channels. The channels are declaratively specified and the system 

forwards the data from slets to the relevant channels. Additional 

slets were developed in order to implement functionality such as 

merging streams, filtering out important events, or raising alarms 

when certain conditions occur. These slets forward their data to 

other channels that can be used again by new slets. User 

interfaces are hidden behind slets that read from channels. Certain 

slets control appliances; e.g., turn off the lights if all inhabitants 

have left the house. In this way, heterogeneity of both sources and 

sinks is hidden behind a uniform slet interface. The channels take 

care of the transport and distribution, as well as of storage of the 

data in transit.  The Xtream software operates in a lab (a 

prototype house with real appliances). For testing purposes, 

Siemens provided a simulator, a configurable virtual digital home, 

as shown in Figure 2. 

 

Figure 2. Simulator of a Digital Home controlled by the 

XTream prototype (in collaboration with Siemens) 

 

4. GLOBAL SENSOR NETWORKS (GSN) 

4.1 Overall Goals 

As sensor network technology advances and the price of sensor 

networks rapidly diminishes, we can expect large numbers of 

sensor networks being deployed. This implies interesting 

opportunities and challenges for managing and sharing data 

produced by sensor networks at a global scale. Today we lack 

tools that would allow for rapid and efficient deployment of 

diverse sensor networks and for reuse and sharing of data 

generated by sensor networks at a global scale, despite of the 

similarity of the main tasks of processing, storing, querying and 

publishing data produced by a sensor network. The goal of Global 

Sensor Networks (GSN) is to provide a middleware platform that 

facilitates these tasks [1]. As a result, we expect to support 

developers of sensor networks in the rapid development of their 

applications and the simple publication of the data generated, and 

we expect to provide users an environment in which they can 

explore the sensor data space and potential applications in a way 

similar to the use of the current Internet. 

In the following we provide an overview of the design 

considerations and features of a first system that has been 

developed recently and is being made available to the community 
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as an open source release over Sourceforge 

(http://globalsn.sourceforge.net/) 

The Global Sensor Networks (GSN) middleware provides a 

uniform platform for fast and flexible integration and deployment 

of heterogeneous sensor networks. The design of GSN follows 

four main design goals: Simplicity by using a minimal set of 

powerful abstractions which can be easily configured and 

adopted, adaptivity by enabling runtime reconfiguration when 

adding new types of sensor networks and data processing tasks, 

scalability and autonomy by using a peer-to-peer architecture, and 

light-weight implementation by ensuing a small memory foot-

print, low hardware and bandwidth requirements, and web-based 

management tools. 

4.2 Virtual sensors as Key Abstraction 

A small set of powerful, easily combinable abstractions are key to 

successful middleware design. The key abstraction in GSN is the 

virtual sensor. Virtual sensors abstract from implementation 

details of access to sensor data and they are the services provided 

and managed by GSN. A virtual sensor corresponds either to a 

data stream received directly from sensors or to a data stream 

derived from other virtual sensors. A virtual sensor can have any 

number of input streams and produces one output stream. The 

specification of a virtual sensor provides all necessary 

information required for deploying and using it, including 

metadata used for identification and discovery, the structure of the 

data streams which the virtual sensor consumes and produces, a 

declarative SQL-based specification of the data stream processing 

performed in a virtual sensor, and functional properties related to 

persistency, error handling, life-cycle management, and physical 

deployment. To support rapid deployment, these properties of 

virtual sensors are provided in a declarative deployment 

descriptor specified in XML.  

4.3 Data Stream Processing 

In GSN a data stream is a sequence of timestamped tuples. The 

order of the data stream is derived from the ordering of the 

timestamps and the GSN container provides basic support to 

manage and manipulate the timestamps. These services 

essentially consist of the following components: 

• a local clock at each GSN container 

• implicit management of a timestamp attribute 

• implicit timestamping of tuples upon arrival at the GSN 

container at reception time 

• a windowing mechanism which allows the user to define 

count- or time-based windows on data streams. 

In this way it is always possible to trace the temporal history of 

data stream elements throughout the processing history. Multiple 

time attributes can be associated with data streams and can be 

manipulated through SQL queries. In this way inherent properties 

of the observation process, such as network and processing 

delays, are made visible to applications for building their specific 

temporal abstractions on top of the available temporal data. 

The production of a new output stream element of a virtual sensor 

is always triggered by the arrival of a data stream element from 

one of its input streams. Informally, the processing steps then are 

as follows: 

• By default the new data stream element is timestamped using 

the local clock of the virtual sensor provided that the stream 

element had no timestamp. 

• Based on the timestamps for each input stream the stream 

elements are   selected according to the definition of the time 

window and the resulting sets of relations are unnested into 

flat relations. 

• The input stream queries are evaluated and stored into 

temporary relations. 

• The output query for producing the output stream element is 

executed based on the temporary relations. 

• The result is permanently stored if required and all 

consumers of the virtual sensor are notified of the new 

stream element. 

Additionally, GSN provides a number of possibilities to control 

the temporal   processing of data streams, for example, bounding 

the rate of a data stream in order to avoid overloads of the system 

which might cause undesirable delays, sampling of data streams 

in order to reduce the data rate, and bounding the lifetime of a 

data stream in order to reserve resources only when they are 

needed. 

GSN's query processing approach is related to TelegraphCQ 

(telegraph.cs.berkeley.edu/telegraphcq/) as it separates the time-

related constructs from the actual query. Temporal specifications, 

e.g., the window size, are provided in XML in the virtual sensor 

specification, while data processing is specified in SQL. At the 

moment GSN supports SQL queries with the full range of 

operations allowed by the standard syntax, i.e., joins, subqueries, 

ordering, grouping, unions, intersections, etc.  The advantage of 

using SQL is that it is well-known and SQL query optimization 

and planning techniques can be directly applied. 

4.4 GSN architecture 

GSN follows a container-based architecture and each container 

can host and manage one or more virtual sensors concurrently. 

The container manages every aspect of the virtual sensors at 

runtime including remote access, interaction with the sensor 

network, security, persistence, data filtering, concurrency, and 

access to and pooling of resources. This paradigm enables on-

demand use and combination of sensor networks. Virtual sensor 

descriptions are identified by user-definable key-value pairs 

which are published in a peer-to-peer directory so that virtual 

sensors can be discovered and accessed based on any combination 

of their properties, for example, geographical location and sensor 

type. GSN nodes communicate among each other in a peer-to-

peer fashion. Figure 3 depicts the internal architecture of a GSN 

node. 

The virtual sensor manager (VSM) is responsible for providing 

access to the virtual sensors, managing the delivery of sensor 

data, and providing the necessary administrative infrastructure. Its 

life-cycle manager (LCM) subcomponent provides and manages 

the resources provided to a virtual sensor and manages the 

interactions with a virtual sensor (sensor readings, etc.) while the 

input stream manager (ISM) manages the input streams and 

ensures stream quality (disconnections, unexpected delays, 

missing values, etc.). The data from/to the VSM passes through 

the storage layer which is in charge of providing and managing 

persistent storage for data streams. Query processing is controlled 

44 SIGMOD Record, Vol. 35, No. 4, December 2006



by the query manager (QM) which includes the query processor 

being in charge of SQL parsing, query planning, and execution of 

queries (using an adaptive query execution plan). The notification 

manager deals with the delivery of events and query results to the 

registered clients. The top three layers deal with access to the 

GSN container. 

 

  

Figure 3. GSN architecture 

4.5 Implementation 

The GSN implementation consists of the GSN-CORE, 

implemented in Java, and the platform-specific GSN-

WRAPPERS, implemented in Java, C, and C++, depending on the 

available toolkits for accessing sensors. The implementation 

currently has approximately 20,000 lines of code and is available 

from SourceForge. GSN is implemented to be highly modular in 

order to be deployable on various hardware platforms from 

workstations to small programmable PDAs, i.e., depending on the 

specific platforms only a subset of modules may be used. GSN 

also includes visualization systems for plotting data and 

visualizing the network structure. 

For deploying a virtual sensor the user only has to specify an 

XML deployment descriptor as briefly outlined in Section 4.2 if 

GSN already includes software support for the concerned 

hardware and software. Adding a new type of sensor or sensor 

network can be done by supplying a Java wrapper conforming to 

the GSN API and interfacing the system to be included. 

The effort to implement wrappers is quite low, i.e., typically 

around 100-200 lines of Java code. For example, the TinyOS 

wrapper required 150 lines of code. Our experience shows that 

new wrappers can be included usually in less than 1 day.  

Currently GSN includes already wrappers for the TinyOS family 

of motes (Mica, Mica2, Mica2Dot, TinyNodes, etc.), USB and 

wireless (HTTP-based) cameras (e.g., AXIS 206W camera), and 

several RFID readers (e.g., Texas Instruments). 

The GSN implementation is highly performant. As an indication, 

the processing time for one virtual sensor deployed on a GSN 

node is approximately 0.1ms on a standard workstation. Thus, in 

performance evaluations we would typically host hundreds of 

virtual sensors on the same GSN node. 
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