XQJ - XQuery Java APl is Completed

Marc Van Cappellen, Zhen Hua Liu, Jim Melton, Maxim Orgiyan

Progress DataDirect
14 Oak Park Drive
Bedford, MA

marc.van.cappellen@datadirect.com

ABSTRACT

Just as SQL is a declarative language for querying
relational data, XQuery is a declarative language for
querying XML. JDBC provides a standard Java API to
interact with variety of SQL engines to declaratively access
and manipulate data stored in relational data sources.
Similarly, XQJ provides a standard Java API to interact
with a variety of XQuery engines to declaratively access
and manipulate XML data in variety of XML data sources.
XQJ, also known as JSR 225, is designed through the Java
Community Process (JCP) [20]. The XQJ specification
defines a set of Java interfaces and classes that enable a
Java program to submit XQuery expressions to an XQuery
engine operating on XML data sources and to consume
XQuery results. In this article, we discuss the XQJ API’s
technical details with its similarities and differences from
JDBC, the design philosophies and goals for XQJ, the
implementation strategies of XQJ in variety of XQuery
engines and their operating environments, and the possible
future of XQJ.

1. INTRODUCTION

Observing the widely successful deployment of JDBC [19]
as a standard API for Java applications to plug and play
with a variety of SQL engines with different relational
backend data sources, we believe the same requirements
and use cases exist for XQuery with XML data sources.
Furthermore, due to the existence of many XQuery
implementations designed for operating in variety of
environments managing both persistent and transient XML
data, it is self-evident that Java applications should have a
standard uniform API to interact with different XQuery
engines and their operating environments. The XQJ efforts
were started in late 2003, with its initial API draft available
in 2004 [1]. Although the final release of XQJ was
completed in 2009 as JSR225 [2], the XQJ core API has
been stable since XQuery [S5] became a W3C
recommendation in 2007. The XQJ reference
implementation (RI) and technology conformance kit
(TCK) for the publication of the API have been stable since

SIGMOD Record, December 2009 (Vol. 38, No. 4)

Oracle
500 Oracle Parkway
Redwood Shore, CA

{zhen.liu,jim.melton,maxim.orgiyan}@oracle.com

2007. Commercial and open source implementations for
the early releases of XQJ have been available since 2005.

The rest of this paper is organized as follows. Section 2
gives a motivating example showing XQJ usage. Section 3
presents key concepts in XQJ by discussing the details of
the main interfaces and their conceptual similarities and
differences compared to JDBC. Section 4 discusses the
XQJ design philosophy. Section 5 discusses the
implementation and design choices of XQJ for a variety of
XQuery and XML data source environments. Section 6
concludes the article with discussing the possible future of
XQJ. Section 7 acknowledges the primary contributors to
XQl.

2. MOTIVATING EXAMPLES

Consider Example 1, which represents the typical basic
steps of using XQJ in a Java program with the following
key concepts.

Obtaining XQDataSource and XQConnection objects:
XOQODataSource is an interface from which XQConnection
interface objects are obtained. The initial XQDataSource
object can be created through a typical data source
instantiation mechanism in Java. For example, an
XODataSource object can be obtained via JNDI lookup or
Java property file lookup, or can be explicitly created via
calling XQJ specific implementation class for
XODatasource interface as shown in the example above.
The concepts of XQDataSource and XQConnection are
similar to the concepts of DataSource and Connection in
JDBC respectively.

XODataSource ds = null;
XQConnection conn = null;
XOQOPreparedExpression expr = null;

XOQResultSequence result = null;

iry

{

// obtaining XQDataSource instance

ds = (XQDataSource)Class.forName(
“com.jsr225.DataSourcelmpl”).newlnstance();

// obtaining connection

conn = ds.getConnection(“usr”, “passwd”);

// preparing XQuery expression

String xqry = “declare variable $dname as xs:string external;

for 8i in fn:collection(‘dept’)
where $i/deptname = $dname
return
<dinfo>
<dname>{$dname}</dname>
<empcnt>{ count($i/employees)}</empcnt>
</dinfo>";
expr = con,prepareExpression(xqry);

//bind variable with value

expr.bindString(new QName(“dname”), “engineering”, null);

// execute the XQuery Expression
XOQResultSequence rs = expr.executeQuery();
// Consume results
while (rs.next())
{
Node domNode = rs.getNode();
// do something with the DOM node
/
} catch (XQException e)
{
e.printStackTrace(),
/
finally
{
// clean up resource
if (rs != null)
{
try {rs.close();} catch (XQException el) {...}
}
if (expr != null)
{
try {expr.close();} catch (XQException e2) {...}
}
if (conn != null)
{

try {conn.close();} catch (XQException e3) {...}
}

Example 1 - XQJ Motivating Example

Preparing and Executing an XQuery: Once an
XQConnection object is obtained, the XQJ application can
execute XQuery using either XQFExpression or
XOQPreparedExpression interfaces. The difference between
the two is that XQPreparedExpression is designed to
enable users to prepare one XQuery expression and execute
it multiple times, each time with possibly different bind
values. As shown in Example 1, XQJ applications may
pass in a department name as a bind variable so that the
same XQuery prepared expression can be re-used to
compute different department employee count values with
different bind values for the department name.
XQExpression, on the other hand, is designed to execute an
XQuery expression once. That is, a given XQExpression
object can only be used to evaluate exactly one XQuery
expression whereas a given object XOPreparedExpression
can be reused to execute different XQuery expressions. The
concepts of XOPreparedExpression and XQExpression are
similar to the concepts of PreparedStatement and
Statement in JDBC, respectively.

Consuming an XQuery Result: Execution of an XQuery
results in an XQuery data model (XDM) [6] instance. The
XOResultSequence interface allows applications to iterate
through each item of the result sequence. XQJ applications
can obtain each item as needed, which can be either an
atomic value or an XML node. This step is similar to the
process of iterating through rows in a JDBC ResultSet.

Releasing Resources: Once the XQuery results have been
consumed, XQJ applications release the resources by
calling corresponding close methods on
XOResultSequence, XOPreparedExpression,
XQExpression and XQConnection interfaces. Use of Java
try/catch constructs to catch XQFException objects and to
ensure proper closing of resources are important to avoid
resource leakage.

3. XQJ Requirements and Key Concepts

While Section 2 presented aspects of XQJ that are similar
to JDBC, there are many key differences between the two.
The following is a set of unique requirements for the
design of XQJ:

e Providing support for static and dynamic context
concepts that are unique to the XQuery language.

e Providing a deferred variable binding mode for
binding an XML stream as an external variable
input.

SIGMOD Record, December 2009 (Vol. 38, No. 4)

e Providing XDM-specific factory methods that
allow creation and destruction of XQuery item
and sequence objects and XQuery Sequence Type
objects. These XDM objects have an independent
lifecycle that is unrelated to the lifetime of
XQConnection and XQResultSequence objects.

e Providing mappings for conversion of Java
objects to XDM instances in the case of binding
XQuery external variables and context item, and
XDM instances to Java objects in the case of
consumption of XQuery results. In particular, XQJ
supports ways of consuming XQuery results using
the common XML-related Java interfaces, such as
DOM, SAX, and StAX.

e Providing fine-grain exception classes for better
diagnosability.

3.1 XQuery Static Context & Dynamic
Context Interface

XQuery has concepts of static context and dynamic
context. XQJ provides XQOStaticContext and
XODynamicContext interfaces to model them. The
XQStaticContext provides methods that allow applications
to get and set various XQuery static context components
such as the Base URI, statically known namespaces, and
default collation. The XQOStaticContext object can be
obtained by calling getStaticContext() on an XQConnection
object. However, for a single XQConnection object, there
can be different XQuery expressions prepared and
executed, and each of these expression may need to set
different values for certain static context components.
Therefore, the association of XOStaticContext objects with
XQConnection, XQPreparedExpression, and
XQExpression objects is passed by value. In other words, a
separate copy of the XQOStaticContext object is made
whenever an XQOPreparedExpression or an XQExpression
object is created from an XQConnection object, so that
changes of the static context components in one particular
XOQOStaticContext object are isolated from another.
Modifications of XQOStaticContext object retrieved from
XQConnection object do not affect static context
components associated with the XOQConnection object until
the setStaticContext() method 1is invoked on the
XQConnection object.

The XODynamicContext interface allows XQJ applications
to retrieve and set the implicit time zone and bind values
for the context item and the external variables of an
XQuery. XODynamicContext interface provides
bindString(), bindInt(), bindNode(), etc. methods to bind
XQuery external variable values with a variety of Java
built-in ~ primitive types and objects. = Both

SIGMOD Record, December 2009 (Vol. 38, No. 4)

XOQPreparedExpression and XQExpression extend the
XODynamicContext interface.

3.2 Deferred Variable Binding Mode

To scale with large data size, mature SQL implementations
use iterator-based lazy execution models [17] in which the
full SQL query result set is not materialized at once but
rather produced one row or a set of rows at a time.
Applications use an iterator-based interface to obtain the
result of such execution. This is reflected in the
ResultSet.next() fetching method in JDBC. XQuery can be
evaluated in the same iterator manner to scale with large
data size [15]. This naturally justifies the
XOResultSequence.next() JDBC-like fetching method.
However, for the case of variable binding, the XQJ and
JDBC requirements are different. In JDBC, SQL variable
binding supports only simple scalar values. There is no
concept of binding relational result sets that can be
potentially large in size. However, in XQJ, an XQuery
variable binding can be an XML document or an XQuery
sequence of any size. Furthermore, the XQuery sequence
object can be obtained from an XML stream API providing
an iterator-like fetch interface. In such a use case, it makes
sense for XQJ implementations to defer the binding of the
input XML data stream until the XQuery execution time
when the input XML data stream is actually consumed.
Therefore, besides the default immediate binding mode, a
deferred binding mode can be set in the XOStaticContext.
In the deferred binding mode, the bind value might not be
consumed until the variable is actually accessed by the
underlying XQuery engine. This enables lazy value
consumption and improves XQuery performance and
scalability.

3.3 XDM Data Factory Support

XQJ needs to model XQuery Data Model [6] concepts. An
XDM instance is a sequence of XQuery items. Each item
can be an atomic value or an XML node (document,
element, attribute, comment, processing instruction, or
text). XOSequence is the XQJ interface that models XQDM
instances. It contains zero or more XQIltem interface
objects. The XQltem interface in XQJ represents an XDM
item. XDM is used both as input to an XQuery expression
and output from the evaluation of that XQuery expression.

The XDM goes hand in hand with the XQuery type system.
The XOSequenceType and XQltemType are two interfaces
in XQJ enabling applications to work with the XQuery type
system. The XQOSequenceType interface represents the
sequence type defined in XQuery. The XQltemType
interface represents an item type defined in XQuery. The
XOQOltemType interface extends the XQOSequenceType

interface, but restricts its occurrence indicator to be exactly
one. The XQIltemType interface provides methods to obtain
information such as the item kind, the base type, the name
of the node (if any), the type name of the node (if any), and
the XML schema URI associated with the type (if any).

There are two kinds of XQOSequence and XQItem objects in
XQJ, and they differ in how they are obtained. The first
kind of XDM object is obtained from the result of XQuery
execution. Recall that an object of class XOResultSequence
(the interface extending XQOSequence) is obtained by
invoking the executeQuery() method of an XQExpression
or an XQPreparedExpression object. An object of class
XOResultltem (the interface extending XQltem) is obtained
by calling the getltem() method of an XQResultSequence
object. The second kind of XQDM object- is obtained by
explicit creation via the XQDataFactory interface from
which the XQConnection interface extends. Once created,
these objects have lifetimes that are independent of the
lifetime of the XQConnection object that created them.
They remain valid until the close() method is called on
them. In contrast, the lifetime of XQResultSequence and
XQResultltem objects obtained from XQuery execution
depends on the lifetime of the XQFExpression or
XOQPreparedExpression objects that created them. The
lifetime of the XQExpression and XQPreparedExpression
objects, in turn, depends on the lifetime of the
XQConnection object that created them. Closing an
XQConnection object implicitly closes all the XDM
instances resulting from the execution of XQueries in the
context of this XQConnection object.

3.4 XDM & Java Object Type Conversion

As stated earlier, an XDM item can be either an atomic
value or an XML node. Atomic values can be of a variety
of XQuery built-in datatypes, such as xs:decimal,
xs:boolean, xs:integer, all of which have default Java data
type mappings defined by XQJ to facilitate conversion
between Java built-in type objects and XDM instances of
built-in XQuery types.

For binding XML nodes, XQJ provides methods to interact
with different Java interfaces that represent XML
documents. The XQDynamicContext interface provides
various bind methods to create XQuery document nodes
from the following Java objects: java.lang.String,
Jjava.io.Reader, Jjava.io.InputStream,
Jjava.xml.stream XMLStreamReader, and
Jjavax.xml.transform.Source. There is also a bindNode()
method for binding org.w3c.dom.Node DOM nodes.

For consuming XML nodes, XQItemAccessor interface
(from which both XQOltem and XQOSequence extend)
provides various “get” methods to convert XDM nodes into
the following Java objects: Jjava.lang.String,

10

Java.io.Writer, java.io.OutputStream, org.w3c.dom.Node,
Javax.xml.stream. XMLStreamReader,
Javax.xml.transform.Result, and
org.xml.sax.ContentHandler. In addition, the XQSequence
interface provides methods to convert an entire XDM
sequence into Java objects representing XML nodes.

3.5 Exception Handling

XQJ allows the user to distinguish XQuery static or
dynamic errors from other non-XQuery related errors
through two exception classes: XQException and
XQueryException. The XQueryException class gives access
to the error code as defined by XQuery, error location
information, and various other attributes.

To potentially report multiple errors during the static
analyses or dynamic evaluation phase, XQException
instances are chained and the XQJ application can invoke
getNextException() method to retrieve all of the exceptions.

4. XQJ Design Philosophy

4.1 Support for Multiple XQuery Engines
Deployment Environments

Since SQL and XQuery share many commonalities (such
as a declarative language, amendability for iterator based
set at-a-time processing model, support of bind variables,
static compilation and dynamic evaluation phases), XQJ
reuses those JDBC concepts that are applicable to XQuery
as much as possible. However, we recognize that there are
various XQuery implementations targeting different
operating environments. While it is true that major
RDBMS vendors [7,8,9,10] support XQuery for querying
XML document content stored in an RDBMS and in XML
views over relational data through the SQL/XML standard
[4], XQuery is also supported by XML content server
vendors to query pure XML content [11, 18]. XQuery is
supported in mid-tier servers to provide uniform query
language access to query different backend XML data
sources, relational sources, and XML messages [16].
XQuery is also supported via standalone libraries to be
embeddable indifferent types of applications [12, 13].
Therefore, XQJ has to be an API separate from JDBC. It
cannot assume that XQuery and SQL coexist in one
environment. Instead, XQJ provides an API to handle the
variety of XQuery deployment environments.

4.2 Stylistically Consistency with JDBC

drivers

XQIJ requires establishment of an XQConnection before
executing an XQuery. This appears unnatural for single-tier
collocated XQuery deployment environments in which the

SIGMOD Record, December 2009 (Vol. 38, No. 4)

XQuery engine is embedded into the Java application.
However, the XQConnection interface does not entail a
physical network connection object but rather a handle that
needs to be created before executing XQuery. Therefore,
an XQConnection implementation can be either a light-
weight handler type object for a single-tier XQuery
embedded environment, or can be a heavy-weight network
connection object for a multi-tier XQuery server
environment. In the latter case, the connection pooling
technique can be facilitated via the PooledXQConnection
interface defined by XQJ.

The XOSequence interface ties the XQDM concept and the
iterator based access to items within a single XQSequence
object. Although it is debatable whether modeling the two
separately is conceptually clean, here XQJ follows the
design of JDBC ResultSet that represents both a set of
relational rows and its iterator accessor as one object,
because both of these tend to be accessed together.

4.3 XQDM Interoperability

Unlike relational result column values, which are scalar
values mapped to common built-in Java types, XDM item
types can be associated with user defined XML schemas.
Ensuring a consistent XML schema repository among all
tiers in a distributed environment is a complex and
expensive task that applications may not be willing to bear.
Furthermore, interpreting XML nodes may require the full
context of the XML tree of which the node is a part. That
is, XQuery types and XDM instances are not standalone,
but rather context dependent. Thus, interoperability of
XDM among XQIJ drivers is an issue. Even for the same
XQJ implementation in a client/server architecture, the
XDM node exchanged between the XQJ client and the
XQuery engine on the server can be passed by value or by
reference. Passing by reference could be expensive and
requires communication of the XML schema information,
and full tree node context information among different
tiers. Even for the same XQJ driver, the XQuery engine
and the XQJ clients may run in different tiers. So the XML
schema information and full tree node context information
need to be communicated among XQJ tiers. Although there
are mechanisms to support such interoperability, it requires
proprietary design among XQJ implementations that is
beyond the scope of XQJ. Therefore, XQJ only guarantees
interoperability of XQltem and XQSequence instances
having built-in XML Schema types, and XQltemType and
XQSequenceType instances of built-in XML Schema types.
It is implementation-defined whether an XDM node is
passed by value or by reference. However, even for XDM
nodes exchanged among different XQJ drivers and XQJ
tiers with pass-by-value semantics, the node preserves all
of its descendants, with all nodes being untyped.

SIGMOD Record, December 2009 (Vol. 38, No. 4)

5. XQJ Driver Architecture &
Implementation Choices

In this section, we discuss various implementation choices
to effectively and efficiently support XQJ drivers.

5.1 XQJ Driver Architecture Choices

Embeddable XQJ driver for collocated XQuery engine:
in this architecture, the XQuery engine and XQJ driver are
collocated in the same JVM that is also shared by the Java
application that uses the XQJ API, and there is no physical
network connection among the XQJ driver, the XQuery
engine, and the application. XDM instances can preserve
their full tree node context and type context. Passing XDM
instances by reference is supported effortlessly.

Mid-tier based XQJ Driver for pure XML Content
Server: in this architecture, the XQuery engine runs in an
XML content server that provides management of and
query over XML content. The client applications that
access and query the XML content typically run in
different tiers than that of the XML content server. The
XQJ driver runs on each client tier and communicates with
the XML content server using implementation-specific
protocols. It is performance-critical for such an XQJ driver
to implement XQConnection pooling to scale with a large
number of clients. The XQJ client and XQuery server may
choose a loosely coupled or a tightly coupled architecture,
depending on the application requirements. For the tightly
coupled choice, the XML content server and its client can
share a common XML schema repository, and XML nodes
can be passed by reference (much like in the distributed
object database architecture). For the loosely coupled
choice, the XML content server and all of its clients may
not share the same XML schema repository. XML nodes
exchanged between tiers are passed by value. The loosely
coupled choice typically gives better scalability than the
tightly coupled choice.

Mid-tier based XQJ Driver for SQL/XML enabled
RDBMS: An SQL/XML-enabled RDBMS supports
XQuery and XML via new concepts in SQL, such as the
XML type, XMLQuery() functions, and XMLTable table
function[14] that are defined in the SQL/XML standard[4].
RDBMS servers already provide support for JDBC drivers
that run SQL/XML queries. An XQJ driver can be built on
top of the JDBC driver, to leverage all the underlying
plumbing from JDBC. Submitting an XQuery using the
JDBC driver boils down to essentially running the
‘SELECT * FROM XMLTABLE(xquery PASSING BY REF
COLUMNS “.” XML BY REF)’ SQL/XML query. However,
the XML type implementation in the JDBC driver has to be
sophisticated enough to support the XDM model with an
optional XML schema attached. For a query returning

11

persistently stored XML nodes, passing nodes by reference
can be feasibly supported.

Mid-tier based XQJ driver for data integration: in this
architecture, XQuery is implemented in the mid-tier with
the XQJ driver. Its backend data sources can be relational
data sources, XML data sources, or other data sources
whose data content can be converted into XML or even
XML messages, local XML files, etc. The XQJ driver can
open different kinds of connections to its underlying data
sources and push down connection-specific queries to fetch
the data content so that the XQuery engine in the XQJ
driver can then further filter and assemble the result, based
on the original user XQuery.

5.2 Facilitate efficient XQuery Evaluation

XML content has different shapes and sizes. While small to
medium size XML documents can be processed as DOM
objects, it is generally not a scalable solution to process
large XML documents, or large number of XML nodes, as
an XDM instance from an XQuery result. Thus, the most
efficient XQuery implementations leverage iterator-based
streaming evaluation strategies as much as possible, to
cope with large XDM instances. XQJ recognizes this and
provides constructs to facilitate such lazy evaluation
strategies. An efficient XQJ driver implementation can
consider the following design ideas:

e When retrieving an XDM sequence from XQuery
execution, invoke the getNext() call of the
underlying XQuery engine to consume one item at
a time. Certain XQuery engines [15] may even
work at sub-XQItem level by making getNext()
operate at the same level of event as that of an
XML stream reader API (StAX) [3]. In this case,
implementing the StAX API for XDM nodes can
be in sync with the underlying XQuery engine,
thus yielding better memory utilization and
performance. This streaming principle can be
applied to cases when XDM is consumed as other
streams as well.

e Support a deferred binding mode when the XDM
result of one XQuery needs to be passed in as a
bind variable value for another XQuery, especially
when the intermediate XDM result is large in size.
This support can enable end-to-end streaming
evaluation among XQuery engines.

6. Conclusion & Future Work

As XQJ finishes its first release, there are multiple
concurrent, ongoing XQuery specification efforts,

12

including the XQuery Update Facility, XQuery Full Text,
XQuery 1.1, and the XQuery Scripting Extension. The
current XQJ specification only supports XQuery 1.0. Since
XQuery Full Text expressions, XQuery 1.1 expressions,
and XQuery Update Facility transform expressions are all
read-only expressions, supporting them using the current
XQJ model requires minimal work. However, supporting
full power of the XQuery Update Facility in XQJ requires
additional infrastructure. Furthermore, it is also debatable
whether the XQuery Scripting Extension should be
supported via XQJ, because XQuery scripting is an
approach of mixing declarative query and imperative
procedural manipulation of XML in one language. This
contradicts the approach of embedding a declarative query
language like XQuery into an imperative programming
language like Java.

Nevertheless, the current release of XQJ provides a simple,
easy-to-use, and portable API to support the use of XQuery
with XML data sources on the Java platform. We believe
its impact will be similar to that of JDBC in the years to
come.

7. ACKNOWLEDGMENTS

We express our thanks to all JSR225 working group
members. The following individuals deserve special
acknowledgements: Per Bothner, Andrew FEisenberg,
Muralidhar ~ Krishnaprasad, Jason Hunter, Jan-Eike
Michels, Karuna Muthiah, and Basuki Soeterman.

8. REFERENCES

[1] Andrew Eisenberg, Jim Melton: An Early Look at XQuery
API for Java (XQJ). SIGMOD Record 33(2): 105-111 (2004)

[2] JSR225: http://www.jcp.org/en/jsr/detail ?1d=225

[3] JSRI173: http://www jcp.org/en/jsr/detail?id=173

[4] International Organization for Standardization (ISO).
Information Technology-Database Language SQL-Part 14:
XML-Related Specifications (SQL/XML)

[5] XQuery: http://www.w3.org/TR/xquery/

[6] XDM: http://www.w3.org/TR/xpath-datamodel/

[7]1 Zhen Hua Liu, Muralidhar Krishnaprasad, Vikas Arora:

Native Xquery processing in oracle XMLDB. SIGMOD
Conference 2005: 828-833

[8] Zhen Hua Liu, Sivasankaran Chandrasekar, Thomas Baby,
Hui J. Chang: Towards a physical XML independent
XQuery/SQL/XML engine. PVLDB 1(2): 1356-1367 (2008)

[9] Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys,
Gideon Schaller, Wei Yu, Dragan Tomic, Adrian Baras,
Brandon Berg, Denis Churin, Eugene Kogan: XQuery
Implementation in a Relational Database System. VLDB
2005: 1175-1186

SIGMOD Record, December 2009 (Vol. 38, No. 4)

[10] Kevin S. Beyer, Roberta Cochrane, Vanja Josifovski, Jim
Kleewein, George Lapis, Guy M. Lohman, Robert Lyle,
Fatma Ozcan, Hamid Pirahesh, Normen Seemann, Tuong C.
Truong, Bert Van der Linden, Brian Vickery, Chun Zhang:
System RX: One Part Relational, One Part XML. SIGMOD
Conference 2005: 347-358

[11] Mary Holstege: Big, Fast XQuery: Enabling Content
Applications. IEEE Data Eng. Bull. 31(4): 41-48 (2008)

[12] Michael Kay: Ten Reasons Why Saxon XQuery is Fast.
IEEE Data Eng. Bull. 31(4): 65-74 (2008)

[13] Marc Van Cappellen, Wouter Cordewiner, Carlo Innocenti:
Data Aggregation, Heterogeneous Data Sources and
Streaming Processing: How Can XQuery Help? IEEE Data
Eng. Bull. 31(4): 57-64 (2008)

[14] F Zemke, M. Rys, K. Kulkarni, J. Michels, B. Reinwald, F.
Oczan, Zhen. Hua. Liu, I. Davis, K. Hare, "XMLTable" ,
ISO/IEC JTC1/SC32 WG3:SIA-051 ANSI NCITS H2 2004-
039 http://www.wiscorp.com/H2-2004-039-xmltable.pdf

SIGMOD Record, December 2009 (Vol. 38, No. 4)

[15] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul
Lucas, Fabio Riccardi, Till Westmann, Michael J. Carey,
Arvind Sundararajan: The BEA streaming XQuery engine.
VLDB J. 13(3): 294-315 (2004)

[16] Michael J. Carey: Data delivery in a service-oriented world:
the BEA aqualogic data services platform. SIGMOD
Conference 2006: 695-705

[17] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2):73—-170, 1993.

[18] EMC-XHIVE http://www.emc.com/domains/x-
hive/index.htm

[19] JDBC: http://www.jcp.org/en/jsr/detail ?id=221
[20] Java Community Process: http://jcp.org/en/home/index

13

