
ENORM: An Essential Notation for Object-Relational
Mapping

Alexandre Torres
Instituto de Informática, UFRGS

Porto Alegre, Brazil
atorres@inf.ufrgs.br

Renata Galante
Instituto de Informática, UFRGS

Porto Alegre, Brazil
galante@inf.ufrgs.br

Marcelo Pimenta
Instituto de Informática, UFRGS

Porto Alegre, Brazil
mpimenta@inf.ufrgs.br

ABSTRACT
Despite the growing adoption of object-relational

mapping frameworks, UML and its most widespread

extensions do not represent these mappings in a

platform independent way. Maintaining mappings

scattered in the code is difficult and error prone,

specially if the schema is large and serves several

systems. This paper proposes ENORM, a notation that

extends class models representing all the essential

mappings. ENORM is platform independent, providing

a meta-model based on design patterns employed by

three frameworks of Java, Ruby, and Python languages.

An empirical evaluation indicates that ENORM

performs well in comparison to separated models.

1. INTRODUCTION
Relational databases (RDB) are the backbone of

information systems, and nobody knows when (or if)

this will change [3]. However, the Impedance

Mismatch Problem (IMP) continues to haunt object

oriented designs that tend to underestimate the Object-

Relational Mapping (ORM) difficulties.

In the past decade we saw a growing adoption of

ORM frameworks by information system developers of

distinct platforms such as Java, C#, Python, and Ruby

on Rails. These frameworks have most of their

resources based upon established patterns [6, 11, 14],

and its use spread a more standardized approach for the

IMP. Nevertheless, mappings scattered in the code,

annotations and/or XML files are difficult to read,

understand, and reason about changes.

The Model Driven Architecture (MDA) proposes

that models take on the main role on the system

development process [4, 17]. For an effective MDA

approach, the information represented by models

should be coherent, integrated, and computable, so that

automatic transformations could turn models into

executable system [16]. The UML notation lacks a

specific notation for persistence, or to map classes to

database. The absence of mapping information poses a

challenge for developing transformations.

This paper presents ENORM, a general purpose

notation that represents the essential structural concepts

of ORM by extending the UML class model with a

profile, and offering a concise set of new visual

elements specific for ORM designs. These essential

concepts are based upon persistence patterns adopted

by distinct ORM frameworks in the market. The goal

of ENORM is to facilitate the design by the clear

application of ORM patterns, document mappings with

a platform independent notation, and be a repository

for MDA transformations and code generation.

The focus of ENORM is designing with structural

patterns within a domain modeling logic, with objects

of the domain incorporating both behavior and data

[11]. ENORM does not encompasses the design of

queries or the use of dynamic diagrams.

A controlled experiment was performed to evaluate

modeling using ENORM. The results indicates that

using only models, ENORM has a lower mean of

missed goals than separated models.

This paper is organized as follows: Section 2

presents related works; Section 3 presents the notation;

Section 4 presents the meta-model; Section 5 presents

examples using ORM tools; Section 6 presents

limitations and special cases; Section 7 summarizes

empirical evaluation; and section 8 has the conclusions.

2. RELATED WORK
The agile database modeling [1] is a well known

proposal for database modeling using UML extensions.

It is mainly based upon the class diagrams for

representing data models with a set of stereotypes. The

Object Management Group (OMG) has also an

underway proposal for data modeling representation

[18]. None of the two notations have the focus on

ORM, ORM frameworks or patterns.

The Entity-Framework proposes the EDM model

based on the EER notation [5]. EDM is focused on

multipurpose conceptual modeling for distinct

persistence mechanisms using the .NET platform.

ENORM takes a distinct approach by encompassing

general ORM design patterns, in a cross-platform way.

On a previous work, we proposed a notation based

upon the Java Persistence API (JPA) standard named

MD-JPA [20]. Although JPA is a standard, it is

focused at the Java platform, including many concepts

particular only to Java. It was not clear at that time

what concepts are particular for JPA, and what was

missing from other frameworks and platforms.

SIGMOD Record, June 2014 (Vol. 43, No. 2) 23

3. ESSENTIAL NOTATION (ENORM)
The notation here proposed is a lightweight UML

profile, represented by a set of graphical extensions for

class models, encompassing the essential structural

concepts of ORM. ENORM was designed to be easily

understood by developers and rich enough for MDA

tools, allowing the specification of the relevant

persistence details or hiding what can be inferred.

Table 1. New visual elements and their meaning

ENORM elements (Table 1) are derived from ORM

patterns following the domain model pattern [11].

Besides, ENORM reflects common practices of various

ORM frameworks, such as activerecord for Ruby (AR),

JPA, and SQLAlchemy (SA) for Python [2, 12, 19].

A Persistent class (marked with “||”) represents a

class implemented as an Active Record, Data Mapper,

or mapped in such a way by a framework. The class is

persisted by a table with the same name; or one or

more specified tables. Each property of a persistent

class maps to a column, that can be detailed in the

model. Associations between persistent classes are

implemented with Foreign Keys (FKs) detailed by join

columns and tables. Inheritance can be flat for single

table pattern; vertical, for joined table pattern; or

horizontal for the concrete table pattern. Non persistent

classes can be persisted by associations marked as

embed within persistent classes. A persistent class can

have transient properties by using the transient symbol.

3.1. A simple example
Figure 1 shows a simple design for the Accounting

patterns [10]. Account, Entry, and Transaction are

persistent classes, each persisted by tables with the

same name. Account has a meaningful Primary Key

(PK) named number. Entry and Transaction will also

have PKs, but they are not specified (inferred).

Quantity is not persistent and does not correspond to

a table. However, each Entry instance refers to a

Quantity with the Embed stereotype. Since the upper

multiplicity is one, quantity association is persisted

along the Entry table, by columns amount and unit.

Quantity is similarly embedded by Account.

Finally, the associations between persistent classes

are mapped as FKs connecting the PKs of each table.

Entry will have a column referencing account number

and a column referencing the PK of Transaction.

3.2. A not so simple example
Database information systems usually refer to

centralized databases serving multiple systems, that

must adapt to the existing schema. Often that means a

break between nomenclature used by the system and

the database, and a more complicated mapping.

Figure 2 introduces the SummaryAccount class, that

aggregates accounts implementing multiple summary

accounts [10]. Each account can be part of one or more

summary accounts, and the entries of the summary are

the union of all underlying DetailAccount instances.

Figure 2: Summary account example

Figure 1: Simple Transaction example

24 SIGMOD Record, June 2014 (Vol. 43, No. 2)

The Unit class now replaces the free text unit property.

Several changes were introduced in the mapping, and

Figure 3 presents the database derived from the model:

1. Account is mapped to two tables joined by the PK.

The table Act_brief has an FK to Account.

2. Property dtBalance is mapped to column dt_calc

on table Act_brief.

3. Quantity now refers to a Unit persisted by the

Currency table. When Account references a Quantity, it

stores a reference (FK) to the Currency table.

4. Property amount with default SQL precision/scale

of (20,2).

5. Account overrides the quantity: amount is persisted

by the column value of table Act_brief; the association

end unit is stored by the column unit in table Act_brief,

that references the table Currency. By default, all

columns would be stored along the primary table

Account.

6. The account inheritance tree is persisted with the

joined table pattern. Each class has its own tables, and

each PK of the specializations refers to the Account

PK. The discriminator column can assume 'S' or 'D'.

7-8. Entry refers to Transaction with a column named

id_transaction, and refers to DetailAccount with a

column named acct_number, setting the PK of Entry.

9. Account defines the association entries as abstract.

DetailAccount implements entries by an FK, but for

SummaryAccount this association is derived from its

components. The transient symbol tells that this

association should not be stored by an FK column.

10. The components association is many-to-many,

and therefore is mapped by an association table. The

join table specifies that this table is Acct_Comps. By

default it will have FK columns referring to Account

and SummaryAccount.

3.3. Maps
UML allows the specification of Qualified

Associations that represents partitions in the

association between two classes. When the qualified

property has an upper value of one, the association

represents what is commonly referred as Map or

Dictionary by object-oriented languages [22].

Figure 4 presents an example where the association

end of Account is a map with a <Transaction, Entry>

form, where the qualified variable of type Transaction

is the key. The Map stereotype allows the specification

that the key is in fact the transaction property of entry,

what is common on ORM. The goal is that when the

user adds a pair <tx, ey> to the map, it will associate ey

both with the account and the tx transaction.

The property key can also be user defined, derived

from a complex operation. In such cases, it can be a

read-only map. Qualified associations without a

property key are also allowed. In the transaction

example, the map would be persisted in a separate

many-to-many table, instead of using the association

between entries and transactions. Qualifier properties

can also assume non-persistent and scalar types.

4. ENORM METAMODEL
Backing up the visual notation there is a profile

providing compatibility between ENORM and UML

implementations, such as the Eclipse UML2 package.

Figure 5 summarizes the stereotypes, the extended

UML elements, meta-classes, and its properties and

relationships detailed by this section.

The Persistent Stereotype is applied to a class

marking the class with the double bars (||) of Table 1.

The source property allows the direct definition of one

Table, a reference to an already defined table by

TableRef, or a JoinedSource comprising two or

more tables connected by JoinColumn objects. The

use of Table or TableRef determines the class that

“owns” the table definition, preventing duplicate

specification of tables. If source is unspecified, the

class is persisted by a table with the same name of the

class.

Properties owned by a persistent class are, by

default, persisted, and scalar values are stored as

columns. The ColumnMapping Stereotype allows the

definition of these columns, informing column name, if

it accept nulls, length, precision, scale, unique

constraint, database type and so on. The column can be

owned by a Table, but the table may be inferred if the

Persistent class does not define a table, or if the class

is not persistent. Again a ColumnDefinition can be a

Column owned by the property or a ColumnRef that

references a Column. A property without mapping will

have a column with an inferred definition.

The Embedded stereotype is applied to association

ends or simple properties whose types are not

persistent classes. This means that this class is persisted

Figure 4: Map with key reference

Figure 3: Database model of account example

SIGMOD Record, June 2014 (Vol. 43, No. 2) 25

as a dependent table (if to-many) or embedded in the

table (if to-one). Properties of non persistent classes

can have the ColumnMapping stereotype applied in

order to specify how is its preferred way of being

persisted, such as length, precision and so on. These

definitions will not have a table.

The AssociationMapping stereotype allows the

definition of mapping details for one association by the

application in one of the association ends. The

AssociationDef class allows the definition of fetch

strategies, cascade delete, orphan removal policy,

columns used by an order by clause, join columns, and

a join table. The JoinColumn class defines the FK

column in the detail side, and optionally the

corresponding PK in the master side (for multiple PK,

or ad-hoc joins). The joinTable is usually defined on

many-to-many situations to specify the table(s) that

implement the relationship.

The PK stereotype marks a property as part of the

PK of some persistent class. It can be applied on

association ends, meaning that the FK(s) columns are

also part of the PK. PK can be combinated with

ColumnMapping, AssociationMapping and so on.

Generated marks a column with generated values.

Horizontal, Flat, and Vertical stereotypes can be

applied to a generalization to specify which pattern will

be used to emulate inheritance on the database. With

Flat, all columns necessary to represent the inheritance

tree are stored in the same table. Usually, the instance

type is determined by a discriminator column, that can

be defined by applying the DiscriminatorColumn

stereotype at the general class, and filling the property

discriminatorValue for each generalization with the

Flat application.

The Vertical stereotype stores each class along its

properties in a distinct table, that is by default joined

by a common PK. It is possible to specify what

columns perform the join by the joinCols property. It

is also possible to define a discriminator. Finally the

Horizontal stereotype stores each concrete class

independently, and the origin table determines the type.

A class may specify an inheritance pattern even

when it inherits from a non persistent class. In this

situation (and only this), the properties and associations

of the general class will be persisted along the

persistent specializations. The Overrides stereotype

allows a class to override such properties (Attribute

Override) and associations (Association Override),

defining the columns, join columns, join tables,

among other details.

A class may also override properties and associations

of embedded/dependent classes. The tricky part here is

that one class can embed a class that embed another

class. The property path of embedded overrides is

stored by the ordered association propertyPath. In the

example of Figure 2 the path “balance.amount” refers

to the sequence {Account.balance, Quantity.amount}.

This allows the override to differentiate when the class

has more than one relationship to the same class.

The Enumerated stereotype allows the definition of

how enumerations are mapped (string or ordinal

values). The Transient stereotype marks a property or

association end to be ignored on persistence mapping.

5. ENORM AND ORM FRAMEWORKS
The way JPA, SA, and AR implements each ORM

pattern is distinct. AR separates database from class

definitions on migration files, where each table is

specified with its columns and references. JPA, in the

other hand, infers much of the database structure from

annotations placed before each class (or XML), but

does not have a central place where the database is

defined. In the middle ground, SA allows the definition

of tables, classes, and its mappings separately

(classical) or together (declarative), but the table

definitions are clearly separated at runtime.

JPA advanced a lot in the field of embedded and

dependent mapping, providing several resources to

automate complex collections of elements and

embedded classes. SA has a simple mechanism called

composites that deals with embedded objects, but not

Figure 5: Profile of ENORM

26 SIGMOD Record, June 2014 (Vol. 43, No. 2)

with dependent objects. AR also has a similar

mechanism named composed_of. JPA allows the partial

mapping of plain classes (such as Quantity) and a later

override by the container classes. SA and AR does not

have this resource.

SA and JPA supports all three inheritance patterns.

AR only supports the Flat strategy, and other strategies

can at best be emulated with a simple relationship.

SA allows the definition of queries based on

polymorphism for inheritance or class mapping. JPA

relies on one-to-one relationship between tables for

mappings and multi-table inheritance. AR does not

allows a class mapped to multiple tables. The

implementation of Account, with AR, JPA, and SA, is

available at the web site of our modeling tool [9].

6. LIMITATIONS AND SPECIAL CASES
This section enumerates some known limitations and

special use cases of ENORM.

● Flexible data sources. Currently, the profile only

supports the mapping of one class to many tables if

each table has a one-to-one relationship to the first

table. This is an easy way to specify the data source

without caring about checking how a complex mapping

would be persisted. A more flexible rule for data

sources would be equivalent to a side effect free

updatable view [7].

● Qualified associations. Qualified associations can

have more than one qualifier properties. This kind of

construct would need keys with tuples of objects, what

can be quite complicated to implement using ORM

tools. Qualified properties with upper cardinality over

one is a special case, representing a map of collection

elements, where each key can have more than one

associated value.

● Multiple Inheritance, multiple types. The profile

does not include resources to deal with the persistent

specialization of more than one persistent class, and the

resulting mapping would be unknown. However, a

class can specialize any number of other classes as long

as it only inherits persistent information from one tree

branch. Single relation with multiple type attributes [8]

was not included in ENORM.

● Association class and “n-ary”. The profile does

not have any specific mapping for the Association

Class element of UML, it is as any other class.

ENORM does not yet support persistent associations

with more than two classes. These associations must be

separated on binary associations.

● Generics and Template parameters. Mechanisms

such as generics can be specified using template

parameters on UML [20], and they are useful for strong

typed languages such as Java and C#. We did not

identify any additional extension necessary to the use

of template parameters.

7. EMPIRICAL EVALUATION
The goal of the empirical evaluation is to check if

ENORM had a greater rate of success in the activity of

changing models, regardless of any impact related to

implementation. Changing models was our choice

because it is more common than creating new models,

and captures both comprehension and application of

the notation.

Controlled experiments comparing the use of

ENORM and separated UML/Relational models were

performed to test our hypothesis. In this paper we

summarizes the results of an experiment performed in

2012 with 69 students1.

The tasks were designed as modeling activities,

showing models based upon Analysis Patterns and

asking the participants to apply a set of modifications,

creating an output model. These models and

instructions were extracted from the Analysis Pattern

literature [10], in order to reduce the artificiality of the

tasks, and augmented with ORM details. Each task was

as objective as possible, avoiding misinterpretations.

One of the tasks was similar to the evolution of the

accounting models (Figures 1 and 2), the other tasks

related to accountability and planning domains.

The subjects were senior undergraduate students and

graduate students, selected among those already

approved on the basic database, object oriented

development, and software engineering courses. Each

participant received a training in the format of a

tutorial with videos, and a small scale task just like the

experiment itself.

The experiment had a within-subjects design, in

which each treatment was applied to each subject, and

the starting order was randomized (counterbalancing)

so that the same number of subjects started with each

treatment [13, 15]. The treatment (method) is the main

independent variable assuming A (not using ENORM)

or B (using only ENORM).

The dependent variable is the number or missed

goals (misses) based on expected model. The time to

execute each task was fixed due to external constraints,

and was not evaluated in this experiment.

Other factors were controlled as follows: both

hardware and software used on the experiment was the

same to all participants; a specially developed

modeling tool was employed to guarantee a similar

environment, and detect the number of missed goals.

The Analysis of Variance (ANOVA) was employed

to compare the treatments, making it possible to verify

the residual effect in the sequence of activities. In other

words, it checks if there are significant difference in the

sequences AB or BA, an indication of learning effect.

1 Full technical report available at [21].

SIGMOD Record, June 2014 (Vol. 43, No. 2) 27

Table 2 presents the least square means of misses,

and p-value results analyzing method and sequence

(seq.) on each of the four tasks (T). The other variables

are the number of participants (P), and time in minutes

available to perform each task (Tim).
Table 2. ANOVA results, per task.

T P Tim
P-value Misses

Method Seq. A B

1 69 10 <0.001 0.56 16.6 11.6

2 69 20 <0.001 0.42 11.2 6.5

3 35 20 0.006 0.29 13.1 10.7

4 35 23 <0.001 0.25 7.5 2.4

Assuming results as statistically relevant at α = 0.05,

there is a significant difference (p<0.05) between

methods A and B, with method B presenting a lower

mean of misses at all tasks. The sample evidence does

not confirm the presence of residual effect, given the

absence of statistical significance for the effect of

sequence (p>0.05 at all tasks).

8. CONCLUSION
Despite the growing popularization of ORM patterns

by the adoption of persistence frameworks, the

mappings between objects and database are dispersed

in the code. Distinct frameworks employ distinct ways

of presenting these mappings, despite following the

same patterns.

This paper proposes ENORM, a new notation

implemented as an extension of UML class models that

allows the design of database based systems, providing

the essential patterns of ORM in a platform

independent way. ENORM unifies classes and

mappings focused on the structural aspects of

persistence, with the necessary detail for MDA tools.

Our controlled experiment indicated that ENORM had

a lower mean of missed goals when improving models,

in comparison to separated models.

9. REFERENCES
[1] A UML Profile for Data Modeling: 2003.

http://www.agiledata.org/essays/umlDataModelingProf

ile.html. Accessed: 2013-10-01.

[2] Active Record - Object-relation mapping put on rails:

2012. http://ar.rubyonrails.org/. Accessed: 2013-10-01.

[3] Atzeni, P. et al. 2013. The relational model is dead,

SQL is dead, and I don’t feel so good myself. SIGMOD

Rec. 42, 1 (Jul. 2013), 64–68.

[4] Beydeda, S. et al. 2005. Model-Driven Software

Development. Springer.

[5] Blakeley, J.A. et al. 2006. The ADO.NET entity

framework: making the conceptual level real. SIGMOD

Rec. 35, 4 (Dec. 2006), 32–39.

[6] Brown, K. and Whitenack, B.G. 1996. Crossing

Chasms: a pattern language for object-RDBMS

integration: the static patterns. Pattern languages of

program design 2. Addison-Wesley Longman

Publishing Co., Inc. 227–238.

[7] Dayal, U. and Bernstein, P.A. 1982. On the correct

translation of update operations on relational views.

ACM Trans. Database Syst. 7, 3 (Sep. 1982), 381–416.

[8] Elmasri, R. and Navathe, S.B. 2003. Fundamentals of

Database Systems. Addison Wesley.

[9] Essential ORM Modeler: 2013. http://sourceforge.net/

projects/eorm/. Accessed: 2013-12-05.

[10] Fowler, M. 1996. Analysis Patterns: Reusable Object

Models. Addison-Wesley Professional.

[11] Fowler, M. 2002. Patterns of Enterprise Application

Architecture. Addison-Wesley Longman Publishing

Co., Inc.

[12] JSR-000317 Java Persistence 2.0 - Final Release: 2009.

http://jcp.org/aboutJava/communityprocess/final/jsr317

/index.html. Accessed: 2013-10-01.

[13] Juristo, N. and Moreno, A.M. 2001. Basics of Software

Engineering Experimentation. Springer.

[14] Keller, W. 1997. Mapping Objects to Tables - A Pattern

Language. Proceedings of the 1997 European Pattern

Languages of Programming Conference (Irrsee,

Germany, 1997).

[15] Ko, A.J. et al. 2013. A practical guide to controlled

experiments of software engineering tools with human

participants. Empirical Software Engineering. (Sep.

2013), 1–32.

[16] Mellor, S.J. et al. 2004. MDA Distilled: Principles of

Model-Driven Architecture. Addison-Wesley.

[17] OMG 2001. OMG’s Model Driven Architecture.

[18] OMG 2005. Request For Proposal Information

Management Metamodel (IMM).

[19] SQLAlchemy - The Database Toolkit for Python: 2012.

http://www.sqlalchemy.org/. Accessed: 2013-10-01.

[20] Torres, A. et al. 2011. A synergistic model-driven

approach for persistence modeling with UML. Journal

of Systems and Software. 84, 6 (Jun. 2011), 942–957.

[21] Torres, A. et al. 2013. Technical Report - Comparing

ENORM and separated modeling using Relational and

UML class models: a within-subjects experimental

study. http://www.inf.ufrgs.br/~atorres/sigmod2013/.

[22] UML 2.4.1 Superstructure: 2011. http://www.omg.org/

spec/UML/2.4.1/Superstructure/PDF/. Accessed: 2013-

10-01.

28 SIGMOD Record, June 2014 (Vol. 43, No. 2)

