
How Do Humans and Data Systems Establish a Common
Query Language?

Ben McCamish
Oregon State University

mccamisb@oregonstate.edu

Vahid Ghadakchi
Oregon State University

ghadakcv@oregonstate.edu

Arash Termehchy
Oregon State University

termehca@oregonstate.edu

Liang Huang
Oregon State University

liang.huang@oregonstate.edu

Behrouz Touri
University of CA San Diego

btouri@eng.ucsd.edu

ABSTRACT
As most users do not precisely know the structure and/or
the content of databases, their queries do not exactly re-
flect their information needs. While database management
systems (DBMS) may interact with users and use their feed-
back on the returned results to learn the information needs
behind their queries, current query interfaces assume that
users do not learn and modify the way way they express their
information needs in form of queries during their interaction
with the DBMS. Using a real-world interaction workload, we
show that users learn and modify how to express their infor-
mation needs during their interactions with the DBMS and
their learning is accurately modeled by a well-known rein-
forcement learning mechanism. As current data interaction
systems assume that users do not modify their strategies,
they cannot discover the information needs behind users’
queries e↵ectively. We model the interaction between users
and DBMS as a game with identical interest between two ra-
tional agents whose goal is to establish a common language
for representing information needs in form of queries. We
propose a reinforcement learning method that learns and
answers the information needs behind queries and adapts to
the changes in users’ strategies and prove that it stochas-
tically improves the e↵ectiveness of answering queries. We
propose two e�cient implementation of this method over
large relational databases. Our empirical studies over real-
world query workloads indicate that our algorithms are e�-
cient and e↵ective.

1. INTRODUCTION
Most users do not know the structure and content of

databases and concepts such as schema or formal query lan-
guages su�ciently well to express their information needs
precisely in the form of queries [8]. They may convey their
intents in easy-to-use but inherently ambiguous forms, such

c�ACM 2018. This is a minor revision of the
paper entitled The Data Interaction Game pub-
lished in SIGMOD’18, ISBN978-1-4503-4703-7, June
10 - June 15, 2018, New York, NY, USA. DOI:
http://doi.acm.org/10.1145/3183713.3196899

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2018 ACM 978-1-4503-4703-7/18/06 ...$5.00.

as keyword queries, which are open to numerous interpreta-
tions. Thus, it is very challenging for a database manage-
ment system (DBMS) to understand and satisfy the intents
behind these queries. The fundamental challenge in the in-
teraction of these users and DBMS is that the users and
DBMS represent intents in di↵erent forms.

Many such users may explore a database to find answers
for various intents over a rather long period of time. For
these users, database querying is an inherently interactive
and continuous process. As both the user and DBMS have
the same goal of the user receiving her desired information,
the user and DBMS would like to gradually improve their
understanding of each other and reach a common language
of representing intents over the course of various queries and
interactions. The user may learn more about the structure
and content of the database and how to express intents as
she submits queries and observes the returned results. Also,
the DBMS may learn more about how the user expresses her
intents by leveraging user feedback on the returned results.
The user feedback may include clicking on the relevant an-
swers [33], or the signals sent in touch-based devices [20].
Ideally, the user and DBMS should establish as quickly as
possible this common representation of intents in which the
DBMS accurately understands all or most user’s queries.

Researchers have developed systems that leverage user
feedback to help the DBMS understand the intent behind
ill-specified and vague queries more precisely [6]. These sys-
tems, however, generally assume that a user does not modify
her method of expressing intents throughout her interaction
with the DBMS. For example, they maintain that the user
picks queries to express an intent according to a fixed prob-
ability distribution. It is known that the learning methods
that are useful in a static setting do not deliver desired out-
comes in a setting where all agents may modify their strate-
gies [14]. Hence, one may not be able to use current tech-
niques to help the DBMS understand the users’ information
need in a rather long-term interaction.

To the best of our knowledge, the impact of user learning
on database interaction has been generally ignored. In this
paper, we propose a novel framework that formalizes the in-
teraction between the user and the DBMS as a game with
identical interest between two active and potentially ratio-
nal agents: the user and DBMS. The common goal of the
user and DBMS is to reach a mutual understanding on ex-
pressing information needs in the form of keyword queries.
In each interaction, the user and DBMS receive certain pay-
o↵s according to how much the returned results are relevant

SIGMOD Record, March 2019 (Vol. 48, No. 1) 51

to the intent behind the submitted query. The user receives
her payo↵ by consuming the relevant information and the
DBMS becomes aware of its payo↵ by observing the user’s
feedback on the returned results. We believe that such a
game-theoretic framework naturally models the long-term
interaction between the user and DBMS. We explore the
user learning mechanisms and propose algorithms for the
DBMS to improve its understanding of intents behind the
user queries e↵ectively and e�ciently over large databases.
In particular, we make the following contributions:

• We model the long term interaction between the user
and DBMS using keyword queries as a particular type of
game called a signaling game [9] in Section 2.

• Using extensive empirical studies over a real-world in-
teraction log, we show that users modify the way they
express their information need over their course of inter-
actions in Section 3. We also show that this adaptation is
accurately modeled by a well-known reinforcement learn-
ing algorithm [27] in experimental game-theory.

• We describe our data interaction system that provides
an e�cient implementation of our reinforcement learn-
ing method on large relational databases in Section 5.
In particular, we first propose an algorithm that imple-
ments our learning method called Reservoir. Then, using
certain mild assumptions and the ideas of sampling over
relational operators, we propose another algorithm called
Poisson-Olken that implements our reinforcement learn-
ing scheme and considerably improves the e�ciency of
Reservoir.

• We report the results of our empirical studies on measur-
ing the e↵ectiveness of our reinforcement learning method
and the e�ciency of our algorithms using real-world and
large interaction workloads, queries, and databases in
Section 6. Our results indicate that our proposed re-
inforcement learning method is more e↵ective than the
start-of-the-art algorithm for long-term interactions. They
also show that Poisson-Olken can process queries over
large databases faster than the Reservoir algorithm.

2. A GAME-THEORETIC FRAMEWORK
Users and DBMSs typically achieve a common under-

standing gradually and using a querying/feedback paradigm.
After submitting each query, the user may revise her strat-
egy of expressing intents based on the returned result. If the
returned answers satisfy her intent to a large extent, she may
keep using the same query to articulate her intent. Other-
wise, she may revise her strategy and choose another query
to express her intent in the hope that the new query will
provide her with more relevant answers. We will describe
this behavior of users in Section 3 in more detail. The user
may also inform the database system about the degree by
which the returned answers satisfy the intent behind the
query using explicit or implicit feedback, e.g., click-through
information [13]. The DBMS may update its interpretation
of the query according to the user’s feedback.

Intuitively, one may model this interaction as a game be-
tween two agents with identical interests in which the agents
communicate via sharing queries, results, and feedback on
the results. In each interaction, both agents will receive
some reward according to the degree by which the returned
result for a query matches its intent. The user receives her
rewards in the form of answers relevant to her intent and

the DBMS receives its reward through getting positive feed-
back on the returned results. The final goal of both agents
is to maximize the amount of reward they receive during the
course of their interaction.

2.1 Intent
An intent represents an information need sought after by

the user. Current keyword query interfaces over relational
databases generally assume that each intent is a query in a
su�ciently expressive query language in the domain of in-
terest, e.g., Select-Project-Join subset of SQL [8, 18]. Our
framework and results are orthogonal to the language that
precisely describes the users’ intents. Table 1 illustrates
a database with schema Univ(Name, Abbreviation, State,
Rank) that contains information about university rankings.
A user may want to find the information about university
MSU in Michigan, which is precisely represented by the in-
tent e2 in Table 2(a), which using the Datalog syntax [1] is:
ans(z) Univ(x, ‘MSU ’, ‘MI’, z).

2.2 Query
Users’ articulations of their intents are queries. Many

users do not know the formal query language, e.g., SQL, that
precisely describes their intents. Thus, they may prefer to
articulate their intents in languages that are easy-to-use, rel-
atively less complex, and ambiguous such as keyword query
language [18, 8]. In the proposed game-theoretic frameworks
for database interaction, we assume that the user expresses
her intents as keyword queries. More formally, we fix a
countably infinite set of terms, i.e., keywords, T . A key-
word query (query for short) is a nonempty (finite) set of
terms in T . Consider the database instance in Table 1. Ta-
ble 2 depicts a set of intents and queries over this database.
Suppose the user wants to find the information about Michi-
gan State University in Michigan, i.e. the intent e2. Because
the user does not know any formal database query language
and may not be su�ciently familiar with the content of the
data, she may express intent e2 using q2 : ‘MSU’.

Some users may know a formal database query language
that is su�ciently expressive to represent their intents. Nev-
ertheless, because they may not know precisely the content
and schema of the database, their submitted queries may
not always be the same as their intents [6]. For example, a
user may know how to write a SQL query. But, since she
may not know the state abbreviation MI, she may articulate
intent e2 as ans(z) Univ(x, ‘MSU ’, y, z), which is di↵er-
ent from e2. We plan to extend our framework for these
scenarios in future work. But, in this paper, we assume that
users articulate their intents as keyword queries.

2.3 User Strategy
The user strategy indicates the likelihood that the user

submits query q given that her intent is e. In practice, a user
has finitely many intents and submits finitely many queries
in a finite period of time. Hence, we assume that the sets
of the user’s intents and queries are finite. We index each
user’s intent and query by 1  i  m and 1  j  n,
respectively. A user strategy, denoted as U , is a m ⇥ n
row-stochastic matrix from her intents to her queries. The
matrix on the top of Table 3(a) depicts a user strategy using
intents and queries in Table 2. According to this strategy,
the user submits query q2 to express intents e1, e2, and e3.

52 SIGMOD Record, March 2019 (Vol. 48, No. 1)

Table 1: A database instance of relation Univ

Name Abbreviation State Rank
Missouri State University MSU MO 20
Mississippi State University MSU MS 22
Murray State University MSU KY 14
Michigan State University MSU MI 18

Table 2: Intents and Queries
2(a) Intents

Intent# Intent
e1 ans(z) Univ(x, ‘MSU ’, ‘MS’, z)
e2 ans(z) Univ(x, ‘MSU ’, ‘MI’, z)
e3 ans(z) Univ(x, ‘MSU ’, ‘MO’, z)

2(b) Queries

Query# Query
q1 ‘MSU MI’
q2 ‘MSU’

Table 3: Two strategy profiles over the intents and queries in
Table 2. User and DBMS strategies at the top and bottom,
respectively.

3(a) A strategy profile

q1 q2

e1 0 1
e2 0 1
e3 0 1

e1 e2 e3

q1 0 1 0
q2 0 1 0

3(b) Another strategy profile

q1 q2

e1 0 1
e2 1 0
e3 0 1

e1 e2 e3

q1 0 1 0
q2 0.5 0 0.5

2.4 DBMS Strategy
The DBMS interprets queries to find the intents behind

them. It usually interprets queries by mapping them to a
subset of SQL [8, 16]. Since the final goal of users is to see
the result of applying the interpretation(s) on the underly-
ing database, the DBMS runs its interpretation(s) over the
database and returns its results. Moreover, since the user
may not know SQL, suggesting possible SQL queries may
not be useful. A DBMS may not exactly know the language
that can express all users’ intents. Current usable query
interfaces, including keyword query systems, select a query
language for the interpreted intents that is su�ciently com-
plex to express many users’ intents and is simple enough so
that the interpretation and running its outcome(s) are done
e�ciently [8].

To better leverage users feedback during the interaction,
the DBMS must show the results of and get feedback on a
su�ciently diverse set of interpretations [15, 31]. Of course,
the DBMS should ensure that this set of interpretations
is relatively relevant to the query, otherwise the user may
become discouraged and give up querying. This dilemma
is called the exploitation versus exploration trade-o↵. A
DBMS that only exploits, returns top-ranked interpretations
according to its scoring function. Hence, the DBMS may
adopt a stochastic strategy to both exploit and explore: it
randomly selects and shows the results of intents such that
the ones with higher scores are chosen with larger probabili-
ties [15, 31]. In this approach, users are mostly shown results
of interpretations that are relevant to their intents according
to the current knowledge of the DBMS and provide feedback
on a relatively diverse set of interpretations. More formally,

given Q is a set of all keyword queries, the DBMS strategy
D is a stochastic mapping from Q to L, where L is some in-
terpretation of the keyword query that contains some tuples
from the underlying database. The matrix on the bottom
of Table 3(a) depicts a DBMS strategy for the intents and
queries in Table 2. Based on this strategy, the DBMS uses
a exploitative strategy and always interprets query q2 as e2.
The matrix on the bottom of Table 3(b) depicts another
DBMS strategy for the same set of intents and queries. In
this example, DBMS uses a randomized strategy and does
both exploitation and exploration. For instance, it explores
e1 and e3 to answer q2 with equal probabilities, but it always
returns e2 in the response to q1.

2.5 Interaction & Adaptation
The data interaction game is a repeated game with iden-

tical interest between two players, the user and the DBMS.
At each round of the game, i.e., a single interaction, the user
selects an intent according to the prior probability distribu-
tion ⇡. She then picks the query q according to her strategy
and submits it to the DBMS. The DBMS observes q and
interprets q based on its strategy, and returns the results of
the interpretation(s) on the underlying database to the user.
The user provides some feedback on the returned tuples and
informs the DBMS how relevant the tuples are to her intent.
In this paper, we assume that the user informs the DBMS if
some tuples satisfy the intent via some signal, e.g., selecting
the tuple, in some interactions.

Next, we compute the expected payo↵ of the players. Since
DBMS strategy D maps each query to a finite set of inter-
pretations, and the set of submitted queries by a user, or a
population of users, is finite, the set of interpretations for all
queries submitted by a user, denoted as Ls, is finite. Hence,
we show the DBMS strategy for a user as an n ⇥ o row-
stochastic matrix from the set of the user’s queries to the
set of interpretations Ls. We index each interpretation in
Ls by 1  `  o. Each pair of the user and the DBMS
strategy, (U ,D), is a strategy profile. The expected payo↵
for both players with strategy profile (U ,D) is as follows,
where r(ei, e`) is some e↵ectiveness metric such as precision
at k [21].

ur(U, D) =
mX

i=1

⇡i

nX

j=1

Uij

oX

`=1

Dj` r(ei, e`), (1)

The expected payo↵ reflects the degree by which the user
and DBMS have reached a common language for commu-
nication. This value is high for the case in which the user
knows which queries to pick to articulate her intents and
the DBMS returns the results that satisfy the intents behind
the user’s queries. Hence, this function reflects the success
of the communication and interaction. For example, given
that all intents have equal prior probabilities, intuitively,
the strategy profile in Table 3(b) shows a larger degree of
mutual understanding between the players than the one in
Table 3(a). This is reflected in their values of expected pay-
o↵ as the expected payo↵s of the former and latter are 2

3 and
1
3 , respectively. We note that the DBMS may not know the
set of users’ queries beforehand and does not compute the
expected payo↵ directly. Instead, it uses query answering al-
gorithms that leverage user feedback, such that the expected
payo↵ improves over the course of several interactions.

SIGMOD Record, March 2019 (Vol. 48, No. 1) 53

3. USER LEARNING MECHANISM
It is well established that humans show reinforcement be-

havior in learning [29, 24]. Many lab studies with human
subjects conclude that one can model human learning using
reinforcement learning models [29, 24]. The exact reinforce-
ment learning method used by a person, however, may vary
based on her capabilities and the task at hand. We have
performed an empirical study of a real-world interaction log
to find the reinforcement learning method(s) that best ex-
plain the mechanism by which users adapt their strategies
during interaction with a DBMS.

3.1 Human Learning Schemes
To provide a comprehensive comparison, we evaluate six

reinforcement learning methods used to model human learn-
ing in experimental game theory and/or Human Computer
Interaction (HCI) [27, 5]. These methods mainly vary based
on 1) the degree by which the user considers past interac-
tions when computing future strategies, 2) how they up-
date the user strategy, and 3) the rate by which they up-
date the user strategy. Win-Keep/Lose-Randomize keeps a
query with non-zero reward in past interactions for an in-
tent. If such a query does not exist, it picks a query ran-
domly. Latest-Reward reinforces the probability of using a
query to express an intent based on the most recent reward
of the query to convey the intent. Bush and Mosteller’s and
Cross’s models increases (decreases) the probability of us-
ing a query based its past success (failures) of expressing
an intent. A query is successful if it delivers a reward more
than a given threshold, e.g., zero. Roth and Erev’s model
uses the aggregated reward from past interactions to com-
pute the probability by which a query is used. Roth and
Erev’s modified model is similar to Roth and Erev’s model,
with an additional parameter that determines to what ex-
tent the user forgets the reward received for a query in past
interactions.

3.2 Empirical Analysis
Interaction Logs: We use an anonymized Yahoo! in-

teraction log for our empirical study, which consists of key-
word queries submitted to a Yahoo! search engine in July
2010 [32]. We have used three di↵erent contiguous subsam-
ples of this log whose information is shown in Table 4. The
duration of each subsample is the time between the time-
stamp of the first and last interaction records. The records
of the 8H-interaction sample appear at the beginning of the
the 43H-interaction sample, which themselves appear at the
beginning of the 101H-interaction sample.

Intent & Reward: Accompanying the interaction log is
a set of relevance judgment scores for each query and result
pair. Each relevance judgment score is a value between 0
and 4 and shows the degree of relevance of the result to the
query, with 0 meaning not relevant at all and 4 meaning the
most relevant result. We define the intent behind each query
as the set of results with non-zero relevance scores. We use
the standard ranking quality metric Normalized Discounted
Cumulative Gain (NDCG) for the returned results of a query
as the reward in each interaction as it models di↵erent levels
of relevance [21]. The value of NDCG is between 0 and 1
and it is 1 for the most e↵ective list.

Training & Testing: We have used a set of 5,000 records
that appear in the interaction log immediately before the
first subsample of Table 4 and found the optimal values for

Table 4: Subsamples of Yahoo! interaction log

Duration #Interactions #Users #Queries #Intents

˜8H 622 272 111 62
˜43H 12323 4056 341 151
˜101H 195468 79516 13976 4829

parameters using grid search and the sum of squared errors.
We train and test a single user strategy over each subsample
and model, which represents the strategy of the user popu-
lation in each subsample. After estimating parameters, we
train the user strategy using each model over 90% of the to-
tal number of records in each selected subsample in the order
by which the records appear in the interaction log and test
over the remaining 10% using the user strategy computed at
the end of the training phase. We report the mean squared
errors over all intents in the testing phase for each subsample
and model in Table 5. A lower mean squared error implies
that the model more accurately represents the users’ learn-
ing method. We have excluded the Latest Reward results
from the figure as they are an order of magnitude worse than
the others.

Table 5: Accuracies of learning over the subsamples of Ta-
ble 4

Methods
Duration

101H 43H 8H
Bush and Mosteller’s 0.0672 0.1880 0.2434
Cross’s 0.0686 0.1908 0.2472
Roth and Erev’s 0.0666 0.1827 0.2522
Roth and Erev’s Modified 0.0666 0.1827 0.2522
Win-Keep/Lose-Randomize 0.0713 0.1876 0.2364

Results: Win-Keep/Lose-Randomize performs surpris-
ingly more accurately than other methods for the 8H-interaction
subsample. It indicates that in short-term and/or beginning
of their interactions, users may not have enough interactions
to leverage a more complex learning scheme and use a rather
simple mechanism to update their strategies. Both Roth
and Erev’s methods use the accumulated reward values to
adjust the user strategy gradually. Hence, they cannot pre-
cisely model user learning over a rather short interaction
and are less accurate than relatively more aggressive learn-
ing models such as Bush and Mosteller’s and Cross’s over
this subsample. Both Roth and Erev’s deliver the same re-
sult and outperform other methods in the 43-H and 101-H
subsamples. Win-Keep/Lose-Randomize is the least accu-
rate method over the two larger subsamples. Since larger
subsamples provide more training data, the predication ac-
curacy of all models improves as the interaction subsamples
becomes larger. The learned value for the forget parameter
in the Roth and Erev’s modified model is very small and
close to zero in our experiments, therefore, it generally acts
like the Roth and Erev’s model.

Long-term communications between users and DBMS may
include multiple sessions. Since Yahoo! query workload con-
tains the time stamps and user ids of each interaction, we
have been able to extract the starting and ending times of
each session. Our results indicate that as long as the user
and DBMS communicate over su�ciently many of interac-
tions, e.g., about 10k for Yahoo! query workload, the users
follow the Roth and Erev’s model of learning. Given that the
communication of the user and DBMS involve su�ciently

54 SIGMOD Record, March 2019 (Vol. 48, No. 1)

many interactions, we have not observed any di↵erence in
the mechanism by which users learn based on the numbers
of sessions in the user and DBMS communication.

Conclusion: Our analysis indicates that users show a
substantially intelligent behavior when adopting and modi-
fying their strategies over relatively medium and long-term
interactions. They leverage their past interactions and their
outcomes, i.e., have an e↵ective long-term memory. This
behavior is most accurately modeled using Roth and Erev’s
model. Hence, in the rest of the paper, we set the user
learning method to this model.

4. LEARNING ALGORITHM FOR DBMS
Current systems generally assume that a user does not

learn and/or modify her method of expressing intents through-
out her interaction with the DBMS. However, it is known
that the learning methods that are useful in static settings
do not deliver desired outcomes in the dynamic ones [3].
Moreover, it has been shown that if the players do not use
the right learning algorithms in games with identical inter-
ests, the game and its payo↵ may not converge to any desired
states [28]. Thus, choosing the correct learning mechanism
for the DBMS is crucial to improve the payo↵ and converge
to a desired state.

4.1 DBMS Reinforcement Learning
We adopt Roth and Erev’s learning method for adapta-

tion of the DBMS strategy, with a slight modification. The
original Roth and Erev method considers only a single ac-
tion space. In our work, this would translate to having only
a single query. Instead we extend this such that each query
has its own action space or set of possible intents. The
adaptation happens over discrete time t = 0, 1, 2, 3, . . . in-
stances where t denotes the tth interaction of the user and
the DBMS. We refer to t simply as the iteration of the learn-
ing rule. For simplicity of notation, we refer to intent ei and
result s` as intent i and `, respectively, in the rest of the
paper. Hence, we may rewrite the expected payo↵ for both
user and DBMS as:

ur(U, D) =
mX

i=1

⇡i

nX

j=1

Uij

oX

`=1

Dj`ri`,

where r : [m]⇥[o]! R+ is the e↵ectiveness measure between
the intent i and the result, i.e., decoded intent `. With
this, the reinforcement learning mechanism for the DBMS
adaptation is as follows.

a. Let R(0) > 0 be an n ⇥ o initial reward matrix whose
entries are strictly positive.

b. Let D(0) be the initial DBMS strategy with Dj`(0) =
Rj`(0)Po

`=1 Rj`(0)
> 0 for all j 2 [n] and ` 2 [o].

c. For iterations t = 1, 2, . . ., do

i. If the user’s query at time t is q(t), DBMS returns a
result E(t) 2 E with probability:

P (E(t) = i0 | q(t)) = Dq(t)i0(t).

ii. User gives a reward rii0 given that i is the intent
of the user at time t. Note that the reward depends

both on the intent i at time t and the result i0. Then,
set

Rj`(t + 1) =

⇢
Rj`(t) + ri` if j = q(t) and ` = i0

Rj`(t) otherwise
.

(2)

iii. Update the DBMS strategy by

Dji(t + 1) =
Rji(t + 1)Po

`=1 Rj`(t + 1)
, (3)

for all j 2 [n] and i 2 [o].

In the above algorithm R(t) is simply the reward matrix at
time t. We have also proved the following:

Theorem 4.1. The proposed learning algorithm in Sec-
tion 4.1 converges almost surely when the user learns using
Roth and Erev’s model.

The above result implies that the e↵ectiveness of the DBMS,
stochastically speaking, increases as time progresses when
the learning rule in Section 4.1 is utilized. The user may also
learn at a relatively slow rate such that from the perspective
of the database it seems as though the user isn’t learning. Of
course, the user may not perform any learning. Our results
also hold for the case when the user doesn’t learn. We have
also proved that the payo↵ of the two agents only increases
or remains the same. To see all proofs in full, we refer the
reader to our published work [22].

It is quite costly to materialize and maintain the strategy
of the DBMS as shown in the previous examples. Thus, we
maintain the strategy and reinforcements in a constructed
feature space using n-grams for each attribute value. Our
mapping is then a mapping from query features to tuple
features.

5. EFFICIENT QUERY ANSWERING OVER
RELATIONAL DATABASES

An e�cient implementation of our algorithm proposed in
Section 4 over large relational databases poses two chal-
lenges. First, since the set of possible interpretations and
their results for a given query is enormous, one has to find
e�cient ways of maintaining users’ reinforcements and up-
dating DBMS strategy. Second, keyword and other usable
query interfaces over databases normally return the top-k
tuples according to some scoring functions [16, 8]. Due to
a series of seminal works by database researchers [12], there
are e�cient algorithms to find such a list of answers. Never-
theless, our reinforcement learning algorithm uses a random-
ized semantics for answering algorithms in which candidate
tuples are associated a probability for each query that re-
flects the likelihood by which it satisfies the intent behind
the query. The tuples must be returned randomly accord-
ing to their associated probabilities. Using (weighted) sam-
pling to answer SQL queries with aggregation functions ap-
proximately and e�ciently is an active research area [17].
However, there has not been any attempt on using a ran-
domized strategy to answer so-called point queries over rela-
tional data and achieve a balanced exploitation-exploration
trade-o↵ e�ciently.

SIGMOD Record, March 2019 (Vol. 48, No. 1) 55

5.1 Keyword Query Interface
We use the current architecture of keyword query inter-

faces over relational databases that directly use schema in-
formation to interpret the input keyword query [8]. A no-
table example of such systems is IR-Style [16]. We provide
an overview of the basic concepts of such a system. We refer
the reader to [16, 8] for more explanation.

Tuple-set: Given keyword query q, a tuple-set is a set
of tuples in a base relation that contain some terms in q.
After receiving q, the query interface uses an inverted in-
dex to compute a set of tuple-sets. For instance, consider
a database of products with relations Product(pid, name),
Customer(cid, name), and ProductCustomer(pid, cid) where
pid and cid are numeric strings. Given query iMac John,
the query interface returns a tuple-set from Product and a
tuple-set from Customer that match at least one term in the
query.

Candidate Network: A candidate network is a join ex-
pression that connects the tuple-sets via primary key-foreign
key relationships. A candidate network joins the tuples
in di↵erent tuple-sets and produces joint tuples that con-
tain the terms in the input keyword query. One may con-
sider the candidate network as a join tree expression whose
leaves are tuple-sets. For instance, one candidate network
for the aforementioned database of products is Product ./
ProductCustomer ./ Customer. To connect tuple-sets via
primary key-foreign key links, a candidate network may in-
clude base relations whose tuples may not contain any term
in the query, e.g., ProductCustomer in the preceding exam-
ple. Given a set of tuple-sets, the query interface uses the
schema of the database and progressively generates candi-
date networks that can join the tuple-sets. For e�ciency
considerations, keyword query interfaces limit the number
of relations in a candidate network to be lower than a given
threshold. Keyword query interfaces normally compute the
score of joint tuples by summing up the scores of their con-
structing tuples multiplied by the inverse of the number of
relations in the candidate network to penalize long joins [8].
We use the same scoring scheme. We also consider each
(joint) tuple to be candidate answer to the query if it con-
tains at least one term in the query.

5.2 Efficient Exploitation & Exploration
We propose the following two algorithms to generate a

weighted random sample of size k over all candidate tuples
for a query.

5.2.1 Reservoir
To provide a random sample, one may calculate the total

scores of all candidate answers to compute their sampling
probabilities. Because this value is not known beforehand,
one may use weighted reservoir sampling [7] to deliver a
random sample without knowing the total score of candidate
answers in a single scan of the data as follows. Reservoir
occurs after the complete joins of the candidate network have
be computed. Thus, it samples over tuples in the individual
tables and tuples in the joined tables. Reservoir generates
the list of answers only after computing the results of all
candidate networks, therefore, users have to wait for a long
time to see any result. It also computes the results of all
candidate networks by performing their joins fully, which
may be ine�cient. We propose the following optimizations
to improve its e�ciency and reduce the users’ waiting time.

5.2.2 Poisson-Olken
Poisson-Olken algorithm uses Poisson sampling to output

progressively the selected tuples as it processes each candi-
date network [25]. First, when a join needs to be constructed
between multiple tables in a candidate network, tuples are
only joined based on some statistics collected prior to inter-
action. These include how likely a given tuple might join
with another and how many tuples are in each relation. As
tuples are joined, they are sampled immediately, allowing
the algorithm to return before it has performed the entire
join.

The expected value of produced tuples in the Poisson-
Olken algorithm is close to k. However, as opposed to reser-
voir sampling, there is a non-zero probability that Poisson-
Olken may deliver fewer than k tuples. To drastically reduce
this chance, one may use a larger value for k in the algorithm
and reject the appropriate number of the resulting tuples
after the algorithm terminates [7]. The resulting algorithm
will not progressively produce the sampled tuples, but, as
our empirical study in Section 6 indicates, it is faster than
Reservoir over large databases with relatively many candi-
date networks as it does not perform any full join. For more
details, including the algorithms, see our full publication
in [22].

6. EMPIRICAL STUDY

6.1 Effectiveness
It is di�cult to evaluate the e↵ectiveness of online and

reinforcement learning algorithms for information systems
in a live setting with real users because it requires a very
long time and a large amount of resources [31, 15, 26, 14].
Thus, most studies in this area use purely simulated user
interactions [26, 15]. A notable exception is [31], which uses
a real-world interaction log to simulate a live interaction
setting. We follow a similar approach and use Yahoo! in-
teraction log [32] to simulate interactions using real-world
queries and dataset.

Strategy Initialization: We train a user strategy over
the Yahoo! 43H-interaction log whose details are in Section 3
using Roth and Erev’s method, which is deemed the most
accurate to model user learning according to the results of
Section 3. This strategy has 341 queries and 151 intents.
The DBMS starts the interaction with an empty strategy
and adds queries as it receives them, initialized with equal
probabilities.

Algorithms: We compare the algorithm introduced in
Section 4.1 against the state-of-the-art and popular algo-
rithm for online learning in information retrieval called UCB-
1 [26, 23]. It has been shown to outperform its competitors
in several studies [23, 26]. It calculates a score for an in-
tent e given the tth submission of query q as: Scoret(q, e) =
Wq,e,t

Xq,e,t
+ ↵

q
2ln t

Xq,e,t
, in which X is how many times an in-

tent was shown to the user, W is how many times the user
selects a returned intent, and ↵ is the exploration rate set
between [0, 1]. The first term in the formula prefers the in-
tents that have received relatively more positive feedback,
i.e., exploitation, and the second term gives higher scores
to the intents that have been shown to the user less often
and/or have not been tried for a relatively long time, i.e.,
exploration. UCB-1 assumes that users follow a fixed prob-
abilistic strategy. Thus, its goal is to find the fixed but

56 SIGMOD Record, March 2019 (Vol. 48, No. 1)

unknown expectation of the relevance of an intent to the
input query, which is roughly the first term in the formula;
by minimizing the number of unsuccessful trials.

Results: We simulate the interaction of a user popula-
tion that starts with our trained user strategy with UCB-1
and our algorithm. We measure the e↵ectiveness of the algo-
rithms using the standard metric of Reciprocal Rank (RR)
[21]. In each interaction, an intent is randomly picked from
the set of intents in the user strategy by its prior probability
and submitted to UCB-1 and our method. Afterwards, each
algorithm returns a list of 10 answers and the user clicks
on the top-ranked answer that is relevant to the query ac-
cording to the relevance judgment information. We run our
simulations for one million interactions.

Figure 1 shows the accumulated Mean Reciprocal Rank
(MRR) over all queries in the simulated interactions. Our
method delivers a higher MRR than UCB-1 and its MRR
keeps improving over the duration of the interaction. UCB-
1, however, increases the MRR at a much slower rate. Since
UCB-1 is developed for the case where users do not change
their strategies, it learns and commits to a fixed probabilistic
mapping of queries to intents quite early in the interaction.
We have also observed that our method allows users to try
more varieties of queries to express an intent and learn the
one(s) that convey the intent e↵ectively. As UCB-1 com-
mits to a certain mapping of a query to an intent early in
the interaction, it may not return su�ciently many relevant
answers if the user tries this query to express another intent.
This new mapping, however, could be promising in the long-
run. Hence, the user and UCB-1 strategies may stabilize in
less than desirable states. Since our method does not com-
mit to a fixed strategy that early, users may try this query
for another intent and reinforce the mapping if they get rel-
evant answers. Thus, users have more chances to try and
pick a query for an intent that will be learned and mapped
e↵ectively to the intent by the DBMS.

Figure 1: Mean reciprocal rank for 1,000,000 interactions

6.2 Efficiency
Databases and Queries: We have built two databases

from Freebase (developers.google.com/freebase), TV-Program
and Play. TV-Program contains 7 tables and consists of 291,026
tuples. Play contains 3 tables and consists of 8,685 tu-
ples. For our queries, we have used two samples of 621 (459
unique) and 221 (141 unique) queries from Bing (bing.com)
query log whose relevant answers after filtering our noisy

clicks, are in TV-program and Play databases, respectively
[10]. After submitting each query and getting some results,
we simulate user feedback using the relevance information
in the Bing log.

Query Processing: We have used Whoosh inverted in-
dex (whoosh.readthedocs.io) to index each table in databases.
Whoosh recognizes the concept of table with multiple at-
tributes, but cannot perform joins between di↵erent tables.
Because the Poisson-Olken algorithm needs indexes over pri-
mary and foreign keys used to build candidate network, we
have built hash indexes over these tables in Whoosh. Given
an index-key, these indexes return the tuple(s) that match
these keys inside Whoosh. To provide a fair comparison
between Reservoir and Poisson-Olken, we have used these
indexes to perform joins for both methods. We have limited
the size of each candidate network to 5. Our system returns
10 tuples in each interaction for both methods.

Results: Table 6 depicts the time for processing candi-
date networks and reporting the results for both Reservoir
and Poisson-Olken over TV-Program and Play databases
over 1000 interactions. These results also show that Poisson-
Olken is able to significantly improve the time for executing
the joins in the candidate network, shown as performing
joins in the table, over Reservoir in both databases. The
improvement is more significant for the larger database, TV-
Program. Poisson-Olken progressively produces tuples to
show to user. But, we are not able to use this feature for
all interactions. For a considerable number of interactions,
Poisson-Olken does not produce 10 tuples, as explained in
Section 5.2. Hence, we have to use a larger value of k and
wait for the algorithm to finish in order to find a randomize
sample of the answers as explained at the end of Section 5.2.
Both methods have spent a negligible amount of time to re-
inforce the features, which indicate that using a rich set
of features one can perform and manage reinforcement e�-
ciently.

Table 6: Average candidate networks processing times in
seconds for 1000 interactions

Database Reservoir Poisson-Olken

Play 0.078 0.042
TV Program 0.298 0.171

7. RELATED WORK
Database community has proposed several systems that

help the DBMS learn the user’s information need by show-
ing examples to the user and collecting her feedback [19,
11, 4, 30, 2]. In these systems, a user explicitly teaches the
system by labeling a set of examples potentially in several
steps without getting any answer to her information need.
Thus, the system is broken into two steps: first it learns the
information need of the user by soliciting labels on certain
examples from the user and then once the learning has com-
pleted, it suggests a query that may express the user’s infor-
mation need. These systems usually leverage active learning
methods to learn the user intent by showing the fewest pos-
sible examples to the user [11]. However, ideally one would
like to have a query interface in which the DBMS learns
about the user’s intents while answering her (vague) queries
as our system does. As opposed to active learning methods,
one should combine and balance exploration and learning
with the normal query answering to build such a system.
Moreover, current query learning systems assume that users

SIGMOD Record, March 2019 (Vol. 48, No. 1) 57

follow a fixed strategy for expressing their intents. Also, we
focus on the problems that arise in the long-term interaction
that contain more than a single query and intent.

8. CONCLUSION
Many users do not know how to express their information

needs. We showed that users learn and modify how they ex-
press their information needs during their interaction with
the DBMS and modeled the interaction between the user
and the DBMS as a game, where the players would like
to establish a common mapping from information needs to
queries via learning. As current query interfaces do not ef-
fectively learn the information needs behind queries in such
a setting, we proposed a reinforcement learning algorithm
for the DBMS that learns the querying strategy of the user
e↵ectively. We provided e�cient implementations of this
learning mechanisms over large databases.

Currently the algorithm proposed in this work does not
consider optimal strategy profiles. In the future we would
like to have the DBMS algorithm target these optimal strat-
egy profiles such that the mutual understanding between the
two players is optimal. Another question to ask is whether
there are information preserving transformations of data,
that can deliver a more e↵ective interaction, e.g. merging
some entities. Given that the aforementioned transforma-
tions are costly and they do improve the interaction, we
would need to find the most cost-e↵ective ones.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases: The Logical Level. Addison-Wesley, 1994.
[2] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M.

Hellerstein, and A. Silberschatz. Learning and verifying
quantified boolean queries by example. In PODS, 2013.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The nonstochastic multiarmed bandit problem. SIAM

journal on computing, 32(1):48–77, 2002.
[4] A. Bonifati, R. Ciucanu, and S. Staworko. Learning join

queries from user examples. TODS, 40(4), 2015.
[5] Y. Cen, L. Gan, and C. Bai. Reinforcement learning in

information searching. Information Research: An

International Electronic Journal, 18(1), 2013.
[6] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.

Probabilistic information retrieval approach for ranking of
database query results. TODS, 31(3), 2006.

[7] S. Chaudhuri, R. Motwani, and V. Narasayya. On random
sampling over joins. In Proceedings of the 1999 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’99, pages 263–274, New York, NY, USA,
1999. ACM.

[8] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on
structured and semi-structured data. In SIGMOD, 2009.

[9] I. Cho and D. Kreps. Signaling games and stable equilibria.
Quarterly Journal of Economics, 102, 1987.

[10] E. Demidova, X. Zhou, I. Oelze, and W. Nejdl. Evaluating
Evidences for Keyword Query Disambiguation in Entity
Centric Database Search. In DEXA, 2010.

[11] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
Explore-by-example: An automatic query steering
framework for interactive data exploration. In SIGMOD,
2014.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proceedings of the Twentieth

ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS ’01, pages 102–113,
New York, NY, USA, 2001. ACM.

[13] L. A. Granka, T. Joachims, and G. Gay. Eye-tracking
analysis of user behavior in www search. In SIGIR, 2004.

[14] A. Grotov and M. de Rijke. Online learning to rank for
information retrieval: Sigir 2016 tutorial. In Proceedings of

the 39th International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR
’16, pages 1215–1218, New York, NY, USA, 2016. ACM.

[15] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing
exploration and exploitation in listwise and pairwise online
learning to rank for information retrieval. Information

Retrieval, 16(1):63–90, 2013.
[16] V. Hristidis, L. Gravano, and Y. Papakonstantinou.

E�cient IR-Style Keyword Search over Relational
Databases. In VLDB 2003.

[17] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview
of data exploration techniques. In SIGMOD, 2015.

[18] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems
usable. In SIGMOD, 2007.

[19] H. Li, C.-Y. Chan, and D. Maier. Query from examples:
An iterative, data-driven approach to query construction.
PVLDB, 8(13), 2015.

[20] E. Liarou and S. Idreos. dbtouch in action database kernels
for touch-based data exploration. In IEEE 30th

International Conference on Data Engineering, Chicago,

ICDE 2014, IL, USA, March 31 - April 4, 2014, pages
1262–1265, 2014.

[21] C. Manning, P. Raghavan, and H. Schutze. An Introduction

to Information Retrieval. Cambridge University Press,
2008.

[22] B. McCamish, V. Ghadakchi, A. Termehchy, B. Touri, and
L. Huang. The data interaction game. In Proceedings of the

2018 International Conference on Management of Data,
SIGMOD ’18, pages 83–98, New York, NY, USA, 2018.
ACM.

[23] T. Moon, W. Chu, L. Li, Z. Zheng, and Y. Chang. An
online learning framework for refining recency search
results with user click feedback. ACM Transactions on

Information Systems (TOIS), 30(4):20, 2012.
[24] Y. Niv. The neuroscience of reinforcement learning. In

ICML, 2009.
[25] F. Olken. Random Sampling from Databases. PhD thesis,

University of California, Berkeley, 1993.
[26] F. Radlinski, R. Kleinberg, and T. Joachims. Learning

diverse rankings with multi-armed bandits. In Proceedings

of the 25th international conference on Machine learning,
pages 784–791. ACM, 2008.

[27] A. E. Roth and I. Erev. Learning in extensive-form games:
Experimental data and simple dynamic models in the
intermediate term. Games and economic behavior,
8(1):164–212, 1995.

[28] L. Shapley. Some topics in two-person games. Advances in

game theory, 52:1–29, 1964.
[29] H. Shteingart and Y. Loewenstein. Reinforcement learning

and human behavior. Current Opinion in Neurobiology,
25:93–98, 04/2014 2014.

[30] Q. Tran, C. Chan, and S. Parthasarathy. Query by output.
In SIGMOD, 2009.

[31] A. Vorobev, D. Lefortier, G. Gusev, and P. Serdyukov.
Gathering additional feedback on search results by
multi-armed bandits with respect to production ranking. In
WWW, pages 1177–1187. International World Wide Web
Conferences Steering Committee, 2015.

[32] Yahoo! Yahoo! webscope dataset anonymized Yahoo!
search logs with relevance judgments version 1.0.
labs.yahoo.com/Academic Relations, 2011. [Online;
accessed 5-January-2017].

[33] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The
k-armed dueling bandits problem. J. Comput. Syst. Sci.,
78(5), 2012.

58 SIGMOD Record, March 2019 (Vol. 48, No. 1)

