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ABSTRACT
The ability to e�ciently analyze changing data is a key
requirement of many real-time analytics applications. Tra-
ditional approaches to this problem were developed around
the notion of Incremental View Maintenance (IVM), and are
based either on the materialization of subresults (to avoid
their recomputation) or on the recomputation of subresults
(to avoid the space overhead of materialization). Both tech-
niques are suboptimal: instead of materializing results and
subresults, one may also maintain a data structure that sup-
ports e�cient maintenance under updates and from which
the full query result can quickly be enumerated. In two pre-
vious articles, we have presented algorithms for dynamically
evaluating queries that are easy to implement, e�cient, and
can be naturally extended to evaluate queries from a wide
range of application domains. In this paper, we discuss our
algorithm and its complexity, explaining the main compo-
nents behind its e�ciency. Finally, we show experiments that
compare our algorithm to a state-of-the-art (Higher-order)
IVM engine, as well as to a prominent complex event recog-
nition engine. Our approach outperforms the competitor
systems by up to two orders of magnitude in processing time,
and one order in memory consumption.

1 Introduction
The ability to e�ciently analyze changing data is a key
requirement of many real-time analytics applications like
Stream Processing [20], Complex Event Recognition [9], Busi-
ness Intelligence [17], and Machine Learning [22].

In this context, we tackle the problem of dynamic query
evaluation, where a given query Q has to be evaluated against
a database that is constantly changing. Concretely, when
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database db is updated to database db+ u under update
u, the objective is to e�ciently compute Q(db+ u), taking
into consideration that Q(db) was already evaluated and
re-computations could be avoided.

Dynamic query evaluation is of utmost importance if re-
sponse time requirements for queries under concurrent data
updates have to be met or if data volumes are so large that
full re-evaluation of queries based on raw data is prohibitive.

The following example illustrates our setting. Assume that
we wish to detect potential credit card fraud. Credit card
transactions specify their timestamp (ts), account number
(acc), and amount (amnt). A typical fraud pattern is that,
in a short period of time, a criminal tests a stolen credit card
with a few small purchases to then make larger purchases
(cf. [18]). Assuming that the short period of time is 1 hour,
this pattern could be detected by dynamically evaluating the
query in Figure 1. Queries like this may exhibit arbitrary
local predicates and multi-way joins with equality as well as
inequality predicates. Traditional techniques to process such
queries dynamically can be categorized in two approaches: re-
lational and automaton-based. We outline the core principles
of relational approaches in the following and refer to [13] for
an in-depth discussion of the drawbacks of automaton-based
approaches.

Relational approaches such as [2, 10, 16] build upon the
technique of Incremental View Maintenance (IVM) [7]. To
process a query Q over a database db, IVM techniques ma-
terialize the output Q(db) and evaluate delta queries [10].
Upon update u, delta queries use db, u, and the materialized
Q(db) to compute the set of tuples to add/delete from Q(db)
in order to obtain Q(db+ u). If u is small with respect to
the database db, this is expected to be faster than recomput-
ing Q(db+ u) from scratch. To further speed up dynamic
query processing, also the result of some subqueries of Q
may be redundantly materialized. This approach is known
as Higher-Order IVM (HIVM) [15,16].

Unfortunately, (H)IVM shows a serious drawback in terms
of additional memory overhead, which quickly becomes pro-
hibitive for interactive data analytics scenarios: materializa-
tion of Q(db) requires ⌦(|Q(db)|) space, where |db| denotes
the size of db. Therefore, when Q(db) is large, which is often
the case in data preparation scenarios for training statistical
models, materializing Q(db) quickly becomes impractical,
especially for main-memory based systems. HIVM is even
more a↵ected by this problem than IVM since it not only
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Figure 1: Example query for detecting fraudulent
credit card activity.

materializes the result of Q but also the results of some sub-
queries. In fact some of these subresults can be partial join
results, which can be larger than both db and Q(db). For
example, in our fraud query, HIVM would materialize the
results of the join in the shaded area in Figure 1. Intuitively,
this join builds the table of all pairs of small transactions
that could be part of a credit card fraud if a third relevant
transaction occurs. Therefore, if we assume that there are
N small transactions in the time window, all of the same
account, this materialization will take ⇥(N2) space. This
naturally becomes impractical when N grows.

While these problems are inherent to (H)IVM methods,
they can be avoided by taking a di↵erent approach to dynamic
query evaluation: instead of materializing Q(db) we can
build a succinct data structure that (1) supports e�cient
maintenance under updates and (2) represents Q(db) in the
sense that from it we can generate Q(db) as e�ciently as
if it were materialized. In particular, the representation is
equipped with index structures so that we can enumerate
Q(db) with constant delay [19]: one tuple at a time, while
spending only a constant amount of work to produce each
new tuple. This makes the enumeration competitive with
enumeration from materialized query results.

In essence, we hence separate dynamic query processing
into two stages: (1) an update stage where we only maintain
under updates the (small) information that is necessary for
result enumeration and (2) an enumeration stage where the
query result is e�ciently enumerated.

In our work, which is documented in detail in [12] and
[13], we are concerned with designing a practical family of
algorithms for dynamic query evaluation based on this idea
for queries featuring both equi-joins and inequality joins, as
well as certain forms of aggregation. Our main insight is that,
for acyclic conjunctive queries, such algorithms can naturally
be obtained by modifying Yannakakis’ seminal algorithm for
processing acyclic joins in the static setting [23].

In a first step, we address the problem of e�ciently evaluat-
ing acyclic aggregate-join queries by providing the Dynamic
Yannakakis Algorithm (Dyn) [12]. The representation of
query results that underlies this algorithm has several desir-
able properties:
- (P1) It allows to enumerate Q(db) with constant delay.
- (P2) For any tuple �t, it can be used to check whether

�t 2 Q(db) in constant time.
- (P3) It requires only O(|db|) space and is hence independent

of the size of Q(db).
- (P4) it features e�cient maintenance under updates: given

update u to db, we can update the representation of Q(db)
to a representation of Q(db+ u) in time O(|db| + |u|). In
contrast, (H)IVM may require ⌦(|u| + |Q(db+u)|) time in
the worst case. For the subclass of q-hierarchical queries [4],
our update time is O(|u|).
Based on this technique to dynamically process queries

with equi-joins, we provide the core intuiton of a generaliza-
tion of the Dynamic Yannakakis Algorithm to conjunctive
queries with arbitrary ✓-joins. We show that, in the spe-
cific case of inequality joins, this generalization improves the
state of the art for dynamically processing inequality joins
by performing consistently better, with up to two orders of
magnitude improvements in processing time and one order
in memory consumption.

It is important to note that we consider query evaluation
in main memory and measure time and space under data
complexity [21]. That is, the query is considered to be fixed
and not part of the input. This makes sense under dynamic
query evaluation, where the query is known in advance and
the data is constantly changing.

2 Preliminaries
Query Language. Throughout the paper, let x, y, z, . . .
denote variables (also commonly called column names or
attributes). A hyperedge is a finite set of variables. We use
x, y, . . . to denote hyperedges. A Generalized Conjunctive
Query (GCQ) is an expression of the form

Q = ⇡y

�
r1(x1) � · · · � rn(xn) |

m�

i=1

✓i(zi)
�
.

Here r1, . . . , rn are relation symbols; x1, . . . , xn are hyper-
edges (of the same arity as r1, . . . , rn); ✓1, . . . , ✓m are predi-
cates over z1, . . . , zm, respectively; and both y and

Sm
i=1 zi

are subsets of
Sn

i=1 xi. We treat predicates abstractly: for
our purpose, a predicate over x is a (not necessarily finite)
decidable set ✓ of tuples over x. For example, ✓(x, y) = x < y
is the set of all tuples (a, b) satisfying a < b. We indicate
that ✓ is a predicate over x by writing ✓(x). Throughout the
paper, we consider only non-nullary predicates with x 6= ;.

Example 2.1. The following query is a GCQ.

⇡y,z,w,u

�
r(x, y) � s(y, z, w) � t(u, v) | x < z ^ w < u

�

Intuitively, the query asks to take the natural join of r(x, y)
and s(y, z, w), form the cartesian product with t(u, v), and
subsequently select those tuples that satisfy x < z and w < u.

We call y the output variables of Q and denote them out(Q).
If y = x1[ · · ·[xn then Q is called full and we may omit the
symbol ⇡y for brevity. We denote by full(Q) the full GCQ
obtained from Q by setting out(Q) to x1 [ · · · [ xn. The
elements ri(xi) are called atoms. at(Q) denotes the set of all
atoms in Q, and pred(Q) the set of all predicates in Q. A
conjunctive query (or CQ) is a GCQ where pred(Q) = ;.
Semantics. We evaluate GCQs over Generalized Multiset
Relations (GMRs for short) [12,15,16]. Let dom(x) denote
the domain of variable x. As usual, a tuple over x is a
mapping �t that assigns a value from dom(x) to every x 2 x.
A GMR R over x is a function R : T[x]! Z mapping tuples
over x to integers such that R(�t) 6= 0 for finitely many tuples �t.
Here, T[x] denotes the set of all tuples over x. In contrast to
classical multisets, the multiplicity of a tuple in a GMR can
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R

x y z Z
1 2 2 2
2 4 6 3
1 2 3 3

S

u v Z
4 5 5
2 3 4
1 4 2

T

u v Z
4 5 �4
2 1 6
1 4 3

S � T

u v Z
4 5 �20
1 4 6

⇡y(R)
y Z
2 5
4 3

S + T

u v Z
4 5 1
2 3 4
1 4 5
2 1 6

S � T

u v Z
4 5 9
2 3 4
1 4 �1
2 1 �6

�y<u(R � S)
x y z u v Z
1 2 2 4 5 10
1 2 3 4 5 15

Figure 2: Operations on GMRs.

hence be negative, allowing to treat insertions and deletions
uniformly. We write var(R) for x; supp(R) for the finite set
of all tuples with non-zero multiplicity in R; �t 2 R to indicate
�t 2 supp(R); and |R| for |supp(R)|. A GMR R is positive
if R(�t) > 0 for all �t 2 supp(R). The operations of GMR
union (R + S), minus (R � S), projection (⇡z R), natural
join (R � T ) and selection (�P (R)) are defined similarly
as in relational algebra with multiset semantics. Figure 2
illustrates these operations; see [12, 16] for formal semantics.

A database over a set A of atoms is a function db that
maps every atom r(x) 2 A to a positive GMR dbr(x) over
x. We write |db| for

P
r(x)2A |dbr(x)|. Given a database db

over the atoms occurring in query Q, the evaluation of Q
over db, denoted Q(db), is the GMR over y constructed in
the expected way: take the natural join of all GMRs in the
database, do a selection over the result w.r.t. each predicate,
and finally project on y. It is instructive to note that after
evaluation, each result tuple has an associated multiplicity
that counts the number of derivations for the tuple. In other
words, the query language has built-in support for COUNT
aggregations. We note that, in their full generality, GMRs
can carry multiplicities that are taken from an arbitrary
algebraic semiring structure (cf., [15]), which can be useful
to describe the computation of more advanced aggregations
over the result of a GCQ [1]. To keep the notation and
discussion simple we fix the ring Z of integers throughout
the paper, but our results generalize to arbitrary semirings
and their associated aggregations.

Updates and deltas. An update to a GMR R is simply a
GMR �R over the same variables as R. Applying update
�R to R yields the GMR R + �R. An update to a database
db is a collection u of (not necessarily positive) GMRs, one
GMR ur(x) for every atom r(x) of db, such that dbr(x) + ur(x)

is positive. We write db+u for the database obtained by
applying u to each atom of db.

Computational Model. We focus on dynamic query eval-
uation in main-memory. We assume a model of computation
where the space used by tuple values and integers, the time
of arithmetic operations on integers, and the time of memory
lookups are all O(1). We further assume that every GMR
R can be represented by a data structure that allows (1)
enumeration of R with constant delay (as defined in Sec-
tion 3); (2) multiplicity lookups R(�t) in O(1) time given �t;
(3) single-tuple insertions and deletions in O(1) time; while
(4) having size that is proportional to |R|. We further assume
the existence of dynamic data structures that can be used
to index GMRs on a subset of their variables. Concretely if

R is a GMR over x and I is an index of R on y ✓ x then
we assume that for every y-tuple �s we can retrieve in O(1)
time a pointer to the GMR R ��s, which is the GMR over x
consisting of all tuples that project to �s:

R ��s 2 GMR[x] : �t 7!
(

R(�t) if �t[y] = �s

0 otherwise

Moreover, we assume that single-tuple insertions and dele-
tions to R can be reflected in the index in O(1) time and that
an index takes space linear in |R|. Essentially, our assump-
tions amount to perfect hashing of linear size [8]. Although
this does not directly match a realistic setting, it is well
known that complexity results for this model can be trans-
lated, through amortized analysis, to average complexity in
real-life implementations [8].

3 Dynamic Yannakakis
In this section we formulate Dyn, a dynamic version of the
Yannakakis algorithm [23], that focuses on the evaluation of
CQs. How to deal with ✓-joins is discussed in Section 4.

3.1 Intuition
A data structure D supports enumeration of a set E if
there is a routine enum such that enum(D) outputs each
element of E exactly once. Such enumeration occurs with
delay d if the time until the first output; the time between
any two consecutive outputs; and the time between the last
output and the termination of enum(D), are all bounded
by d. D supports enumeration of a GMR R if it supports
enumeration of the set ER = {(�t, R(�t)) | �t 2 supp(R)}. When
evaluating a GCQ Q over a database db, we will be interested
in representing the elements of Q(db) by means of a data
structure Ddb, such that we can enumerate Q(db) from Ddb.
If, for every db, the delay to enumerate Q(db) from Ddb is
independent of |db| then we say that the enumeration occurs
with constant delay [19].

As a trivial example of constant delay enumeration (CDE
for short) of a GMR R, assume that the pairs (�t, R(�t)) of
ER are stored in an array A (without duplicates). Then
A supports CDE of R: enum(A) simply iterates over each
element in A, one by one, always outputting the current
element. Since array indexation is a O(1) operation, this
gives constant delay. This example shows that CDE of
Q(db) can always be done naively by materializing Q(db) in
an in-memory array. Unfortunately, this requires memory
proportional to |Q(db)| which, depending on Q, can be of size
polynomial in |db|. We hence desire other data structures to
represent Q(db) using less space, while still allowing CDE.

To understand how this can be done, it is instructive to
consider a simple binary join Q = R(x, y) � S(y, z) and
analyze why traditional join processing algorithms do not
yield CDE. Suppose that we evaluate Q using a simple in-
memory hash join with R as build relation and S as probe
relation. Assume that the corresponding index of R on
y (i.e. the hash table) has already been computed. Now
observe that, when iterating over S to probe the index, we
may have to visit an unbounded number of S-tuples that do
not join with any R-tuple. Consequently, the delay between
consecutive output tuples may be as large as |S|, which is not
constant. A similar analysis shows that other join algorithms,
such as the sort-merge join, do not yield enumeration with
constant delay.
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How can we obtain CDE for R(x, y) � S(y, z)? Intuitively
speaking, if we can ensure to only iterate over those S-tuples
that have matching R-tuples, we trivially obtain constant
delay since then every probe will yield a new output tuple.
As such, the key is to first compute Y = ⇡y(R) � ⇡y(S)
and index both R and S on y. We can then iterate over the
elements of Y , probing both R and S in each iteration to
generate the output with constant delay. In the presence of
updates, this means that we only need to maintain Y , as well
as the indexes on R and S—all of which are of size linear in
db and can be maintained e�ciently.

3.2 The Algorithm
To extend the intuition of Section 3.1 from a binary join
to general CQs that feature both multiway equi-joins and
projections, we need to maintain for all the relations that
are used as probe relations in a join, the set of tuples that
will match the corresponding build relation(s). Of course, we
also need to decide in what order we will join the relations,
since this determines the auxiliary sets of tuples (like Y
above) that we need to maintain. For Dyn, this query plan
is specified by means of a pair (T, N) called a GJT pair.

GJT pairs. To simplify notation, we denote the set of all
variables (resp. atoms, resp. predicates) that occur in an
object X (such as a query) by var(X) (resp. at(X), resp.
pred(X)). In particular, if X is itself a set of variables, then
var(X) = X. We extend this notion uniformly to labeled
trees. E.g., if n is a node in tree T , then varT (n) denotes the
set of variables occurring in the label of n, and similarly for
edges and trees themselves. If T is clear from the context,
we omit subscripts from our notation.

Definition 3.1. A GJT pair is a tuple (T, N) with T a
generalized join tree and N a sibling-closed connex subset of
T . A generalized join tree (GJT) is a node-labeled directed
tree T = (V, E) such that:
- T is binary: every node has at most two children.
- Every leaf is labeled by an atom.
- Every interior node n is labeled by a hyperedge and has at

least one child c such that var(n) ✓ var(c). Such a child is
called a guard of n.

- Whenever the same variable x occurs in the label of two
nodes m and n of T , then x occurs in the label of each
node on the unique path linking m and n.

A simple GJT is a GJT where var(n) ✓ var(c) for every node
n with child c, i.e., a GJT where every child is a guard of its
parent. A connex subset of T is a set N ✓ V that includes
the root of T such that the subgraph of T induced by N is
a tree. N is sibling-closed if for every node n 2 N with a
sibling m in T , m is also in N . The frontier of a connex set
N is the subset F ✓ N consisting of those nodes in N that
are leaves in the subtree of T induced by N .

Figure 3 shows a GJT pair (T1, N1) and a GJT T2. T1 is
simple, but T2 is not since t(x, u) is not a guard of {x, y}. The
set N1 = {{x}, {x, y}, t(x, u)}, highlighted in gray, is a sibling-
closed connex subset of T1, and its frontier is {{x, y}, t(x, u)}.

Definition 3.2. Let (T, N) be a GJT pair and assume that
{|r1(x1), . . . , rn(xn)|} is the multiset of atoms occurring as
labels in the leaves of T . Then the query associated to T is
the full join Q[T] = (r1(x1) � · · · � rn(xn)) and the query
associated to (T, N) is the CQ Q[T, N] = ⇡var(N)(Q[T]).

{x}

(T1, N1)

{x, y}

r(x, y, z) s(x, y, v)

t(x, u)

{x, y}

(T2)

{x, y}

r(x, y, z) t(x, u)

s(x, y, v)

Figure 3: Two example GJTs.

⇢{x}
x #
1 24

⇢{x,y}
x y #
1 2 4
2 2 21

⇢r = dbr

x y z #
1 2 3 2
2 2 4 3
2 2 8 4

⇢s = dbs

x y v #
1 2 4 2
1 3 5 3
2 2 4 3

⇢t = dbt

x u #
1 6 2
1 3 4
4 5 5

= ⇡x(⇢{x,y} � ⇢t)

= ⇡x,y(⇢r � ⇢s)
P{x,y}
S{x,y}

x
1

Sr

x y
1 2
2 2

Ss

x y
1 2
2 2

Pt

St

x
1

Figure 4: (T1, N1)-representation for the database db
specified by the GMRs depicted at the leaves.

The data structure. Following the intuition of Section 3.1,
a GJT pair (T, N) acts as query plan by which Dyn processes
Q[T, N] dynamically. In particular, the GJT T specifies the
data structure to be maintained and drives the processing of
updates, while the connex set N drives the enumeration of
query results. The data structure itself is defined next.

Definition 3.3. Let (T, N) be a GJT pair and let db be a
database over at(Q). The T -reduct (or semi-join reduction)
of db is a collection ⇢ of GMRs, one GMR ⇢n for each node
n 2 T , defined inductively as follows:
- if n = r(x) is an atom, then ⇢n = dbr(x)

- if n has a single child c, then ⇢n = ⇡var(n)⇢c

- otherwise, n has two children c1 and c2. In this case we
have ⇢n = ⇡var(n) (⇢c1 � ⇢c2). Note that, because n has a
guard child, this is actually a semijoin.

A T -reduct needs to be augmented by suitable index struc-
tures to be used for both enumeration and maintenance under
updates. Concretely for each node n with parent p in T , the
following indexes are created:
- If n belongs to N , then we store an index Pn of ⇢n on

var(p) \ var(n), called the parent index of n.
- If n is a node with a sibling m, then we store an index Sn

of ⇢n on var(n) \ var(m), called the sibling index of n.
The T -reduct ⇢ together with the collection of indexes is
called a (T, N)-representation for db, or (T, N)-rep for short.

Figure 4 depicts an example (T1, N1)-representation ⇢ for
the database db composed of the GMRs shown at the leaves
of the tree. It is important to observe that the size of this
representation for a database db can be at most linear in
the size of db. The reason is that each interior node only
does projections or semijoins. Therefore, as illustrated in
Figure 4, for each node n there is some descendant atom
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Algorithm 1 Dyn: Dynamic Yannakakis

1: function enumT,N (⇢)
2: for each �t 2 ⇢root(T ) do enumT,N (root(T ),�t, ⇢)

3: function enumT,N (n,�t, ⇢)
4: if n is in the frontier of N then yield (�t, ⇢n(�t))
5: else if n has one child c then
6: for each �s 2 ⇢c ��t do enumT,N (c,�s, ⇢)
7: else n has two children c1 and c2

8: for each �t1 2 ⇢c1 ��t do
9: for each �t2 2 ⇢c2 ��t do

10: for each (�s1, µ) 2 enumT,N (c1, �t1, ⇢) do
11: for each (�s2, ⌫) 2 enumT,N (c2, �t2, ⇢) do
12: yield (�s1 [ �s2, µ⇥ ⌫)

13: procedure updateT,N (⇢, u)
14: for each n 2 leafs(T ) labeled by r(x) do
15: �n  ur(x)

16: for each n 2 nodes(T ) \ leafs(T ) do
17: �n  empty GMR over var(n)

18: for each n 2 nodes(T ), traversed bottom-up do
19: ⇢n+ = �n

20: if n has a parent p and a sibling m then
21: �p+ = ⇡var(p) (⇢m � �n)
22: else if n has parent p then
23: �p+ = ⇡var(p) �n

↵ (possibly n itself) such that supp(⇢n) ✓ supp(⇡var(n) db↵).
Consequently, the indexes are also of size linear in db.

Given these definitions, the enumeration and maintenance
algorithms that form the Dynamic Yannakakis algorithm are
shown in Algorithm 1. They operate as follows.

Enumeration. To enumerate from a (T, N)-rep we iterate
over the reductions ⇢n with n 2 N in a nested fashion,
starting at the root and proceeding top-down. When n is the
root, we iterate over all tuples in ⇢n. For every such tuple �t,
we iterate only over the tuples in the children c of n that are
compatible with �t (i.e., tuples in ⇢c that join with �t). Note
that such tuples can be enumerated e�ciently thanks to the
index Pc. This procedure continues until we reach nodes
in the frontier of N at which time the output tuple can be
constructed. The pseudocode is given by the routine enum
in Algorithm 1, where the tuples that are compatible with �t
are computed by ⇢c ��t.

Update processing. To maintain a (T, N)-rep under up-
date u it su�ces to traverse the nodes of T in a bottom-up
fashion. At each node n we have to compute the update �n

to apply to ⇢n and its associated indexes. For leaf nodes, this
update is given by the update u itself. For interior nodes,
�n can be computed from the update and the original reduct
of its children. Algorithm 1 gives the pseudocode. Here,
line 21 is then implemented by means of a straightforward
hash-join (using the sibling index Sm on ⇢m). As a side e↵ect
of modifying ⇢ the associated indexes are also updated (not
shown).

Theorem 3.4. Let (T, N) be a fixed GJT pair. Given a
(T, N)-rep of db with T -reduct ⇢, enumT,N (⇢) enumerates
Q[T, N](db) with constant delay. Moreover, update(⇢, u)
updates the (T, N)-rep from a (T, N)-rep of db to a (T, N)-
rep of db+ u in time O(|db| + |u|). If T is simple, then the
update time is O(|u|), hence independent of |db|.

Note that updateT,N can be used to build a (T, N)-rep of
db in time O(|db|): start from an empty (T, N)-rep (which rep-
resents the empty database) and then call updateT,N (⇢, u)
with u = db. This hence shows that Dyn can be used to
enumerate Q[T, N](db) with constant delay after linear time
preprocessing.

We also note that if �t is a tuple over var(M) for some
connex subset M ✓ N of T , then checking whether �t 2
⇡var(M)Q[T, N](db) can be done in constant time: it su�ces

to check that �t[var(m)] 2 ⇢m for every m 2 M and return
true if and only if this is the case. Since T and N are fixed,
the size of M is bounded and these are a constant number
of checks, all of which run in constant time.

Discussion. Dyn heavily relies on having a GJT pair (T, N)
to process queries. If, for a CQ Q there exists some GJT
pair (T, N) such that Q ⌘ Q[T, N] then Q is said to be
free-connex acyclic, and (T, N) is called a GJT pair for Q.
Q is acyclic if full(Q) ⌘ Q[T] for some T .1 Not all CQs
are (free-connex) acyclic. For instance, the triangle query
r(x, y) � s(y, z) � t(x, z) is the prototypical example of a non-
acyclic query. Furthermore, ⇡x,z(r(x, y) � s(y, z)) is acyclic
but not free-connex acyclic. Since every free-connex acyclic
CQ is acyclic, this example shows that free-connex acyclic
CQs form a strict subclass of the acyclic CQs. Recent analysis
of query logs show that free-connex acyclic queries occur
very frequently in practice [5]. We refer readers interested in
algorithms for computing GJT pairs for GCQs to [14].

One may wonder whether algorithms with the same proper-
ties as Dyn can be obtained for CQs that are not free-connex
acyclic. It is known that this is not possible for the class of
all acyclic CQs, unless multiplication of two n ⇥ n binary
matrices can be computed in O(n2) time [3]. Using further
complexity-theoretic assumptions, it is possible to show that
this is also not possible for the class of all CQs [6].

It is also known [4] that, unless the Online Matrix-Vector
Multiplication conjecture [11] is false, the class of queries that
allow both (1) constant-delay enumeration of query results
and (2) update processing time O(|u|) for every update u, is
exactly the class of so-called q-hierarchical queries. While we
forego a formal definition of this class, we show in [12] that a
CQ Q is q-hierarchical if, and only if there exists a GJT pair
(T, N) for Q such that T is simple. Since Dyn has update
time O(|u|) for exactly these queries, Dyn hence meets the
theoretical lower bound.

For readers familiar with the Yannakakis algorithm [23]
it may not be obvious from the description above why Dyn
can be claimed to be a dynamic version of Yannakakis. We
refer to [12] for a discussion.

4 Dealing with ✓-joins
To extend Dyn to also process ✓-joins, it is instructive to
consider the GCQ Q = (R(x, y) � S(y, z) | x < z) where the
✓-join is an inequality-join. To obtain CDE for Q, assume
that we have already computed Y = ⇡x,y(�x<z(R(x, y) �
S(y, z))) and that, moreover, we have a more powerful index
structure I that allows, for any tuple {x, y}-tuple �t over, to
enumerate �x<z(S(y, z) ��t) with constant delay. We can
then obviously enumerate Q with constant delay by iterating

1
There exists many equivalent definitions of when a join query is

acyclic, and consequently also of when a CQ with projections is free-
connex acyclic. See [12,14] for a discussion of why the new definition
that we give here is equivalent to the existing ones.
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over the elements of �t 2 Y , and for each such �t, probe
I to produce the tuples �s 2 �x<z(S(y, z) ��t), outputting
each �s [ �t. Since �x<z(S(y, z) ��t) allows CDE, the entire
procedure is CDE. The key question then, is how we can
build this more powerful index structure I. The solution is
to build a normal (hash-based) index J of S on y but use
sorting to store the index in such a way that for every �t over
y this index returns a pointer to S ��t for which tuples are
enumerated in descending order on z. This now supports
CDE of �x<z(S(y, z) ��t), for every �t over {x, y}: use J to
enumerate R ��t with constant delay and in decreasing order
on z. Yield the current tuple �s that is being enumerated in
this fashion, provided that �t(x) < �s(z). As soon as �t(x) � �s(z)
we know that all subsequent �s will fail the inequality, and we
can hence terminate. This example forms the basic intuition
in how we can extend Dyn to deal with GCQs with inequality
joins. We next sketch the generalization to arbitrary ✓-joins,
and refer to [13] for detailed exposition.

First, in the presence of ✓-joins, a GJT pair is defined
exactly as in Definition 3.1 except that now additionally
every edge p! c from parent p to child c is labeled by a set
pred(p ! c) of predicates. It is required that every predi-
cate ✓(z) in this set satisfies z ✓ var(p) [ var(c). The query
Q[T, N] associated to (T, N) then becomes ⇡var(N)(Q[T] |
^�(z)2pred(T )✓(z)). Here, pred(T ) are all the predicates occur-
ring on edges in T .

Next, (T, N)-reps are extended to account for predicates.
Concretely, the inductive definition of ⇢n in the T -reduct
becomes:
- if n = r(x) is an atom, then ⇢n = dbr(x)

- if n has a single child c, then ⇢n = ⇡var(n)�pred(n!c)⇢c

- otherwise, n has two children c1 and c2. In this case we
set ⇢n = ⇡var(n)�pred(n) (⇢c1 � ⇢c2).

Here pred(n) denotes the set of all predicates on the edges
from n to its children in T . The indexes that we need to
maintain are modified as follows: Pn should now allow CDE
of �pred(p!n)(⇢n ��t), for every �t over var(p), where p is n’s

parent. Sn should allow CDE of �pred(p)(⇢n ��t) for every

tuple �t over var(m) where m is the sibling of n. The exact
design of these indexes of course depends on the semantics
of the predicates included in T ; for inequality predicates we
have sketched above how they work. The generalization of
Dyn works as long as we have these indexes.

Finally, Algorithm 1 is modified so that in Lines 6, 8 and
9 we iterate over �pred(n!c)(⇢c ��t) resp. �pred(n!c1)(⇢c1 ��t)

and �pred(n!c2)(⇢c2 ��t). Lines 19, 21, 23 are modified to
compute the � GMRs under the now-modified definition
of (T, N)-rep. We refer to the general version of Dyn with
arbitrary ✓-joins as GDyn, and the version where all ✓-joins
are inequalities as IEDyn.

Theorem 4.1. Let (T, N) be a fixed GJT pair. Given a
(T, N)-rep of db, both GDyn and IEDyn correctly enumerate
Q[T, N](db) and update the (T, N)-rep to a rep of db+ u
under update u. In the case that all predicates in ✓-joins are
inequalities, IEDyn has the following complexity. If there
is at most one inequality on each edge in T , then IEDyn
enumerates with constant delay and has O(M ·log(M)) update
time where M = (|db|+ |u|). If T has some edge that contains
multiple inequalities, the delay is O(log(|db|)) and the update
time is O(M2 · log(M)).2

2
In [13] there was an incorrect claim: we stated that updates could

5 Experimental Evaluation
We have implemented (IE)Dyn as a query compiler that
generates executable code in the Scala programming language.
The generated code instantiates a (T, N)-rep for a query Q
and defines trigger functions that are used for maintaining
the (T, N)-rep under updates.

Our implementation supports two modes of operation:
push-based and pull-based. In both modes, the system main-
tains the (T, N)-rep under updates. In the push-based mode
the system generates, on its output stream, the delta re-
sult �Q(db, u) := Q(db+ u)�Q(db) after each single-tuple
update u. To do so, it uses a modified version of enumera-
tion that we call delta enumeration. Similarly to how enum
enumerates Q(db), delta enumeration enumerates �Q(db, u)
with constant delay (if Q has at most one inequality per pair
of atoms) resp. logarithmic delay (otherwise). To do so, it
uses both (1) the (T, N)-reduct GMRs ⇢n and (2) the delta
GMRs �⇢n that are computed by update when processing
u. In this case, however, one also needs to index the �⇢n

similarly to ⇢n. In the pull-based mode, in contrast, the sys-
tem only maintains the (T, N)-rep under updates but does
not generate any output stream. Nevertheless, at any time a
user can call enum to obtain the current output.

It should be noted that our implementation also supports
the processing of general acyclic GCQs that are not neces-
sarily free-connex. This is done using the following simple
strategy. Let Q be acyclic but not free-connex. First, com-
pute a free-connex acyclic approximation QF of Q. QF can
always be obtained from Q by extending the set of output
variables of Q. In the worst case, we need to add all vari-
ables, and QF becomes the full join underlying Q. Then,
use (IE)Dyn to maintain a (T, N)-rep for QF . When op-
erating in push-based mode, for each update u, we use the
(T, N)-rep to delta-enumerate �QF (db, u) and project each
resulting tuple to materialize �Q(db, u) in an array. Sub-
sequently, we copy this array to the output. Note that the
materialization of �Q(db, u) here is necessary since the delta
enumeration can produce duplicate tuples after projection.
When operating in pull-based mode, we materialize Q(db)
in an array, and use delta enumeration of QF to maintain
the array under updates. Of course, under this strategy, we
require ⌦(|Q(db)|) space in the worst case, just like (H)IVM
would, but we avoid the (partial) materialization of delta
queries. Note the distinction between the two modes: in
push-based mode �Q(db, u) is materialized (and discarded
once the output is generated), while in pull-based mode Q(db)
is materialized upon requests. Finally, our implementation
also supports common aggregates like SUM and AVG, see [12]
for more information.

5.1 Conjunctive Queries
We evaluate a subset of queries available in the industry-
standard benchmarks TPC-H and TPC-DS. In particular, we
evaluate those queries involving only equijoins, whose FROM-
WHERE clauses are acyclic. Queries are divided into acyclic
full-join queries (called FQs) and acyclic aggregate queries.
Acyclic full join queries are generated by taking the FROM
clause of the corresponding queries on the benchmarks. We
omit the ORDER BY and LIMIT clauses, we replaced the

be processed in time O(M · log(M)) in this last case. We then found
a bug in our algorithm and we currently do not know if this bound
can be achieved. See [14] for a proof that IEDyn runs in the bounds
claimed here.
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Figure 5: Dyn usage of resources as a percentage of the resources consumed by DBToaster (lower is better).

Benchmark Query # of tuples

TPC-H

Full joins

FQ1 2,833,827
FQ2 2,617,163
FQ3 2,820,494
FQ4 2,270,494

Aggregate
queries

Q1 7,999,406
Q3 10,199,406
Q4 9,999,406
Q6 7,999,406
Q9 11,346,069
Q12 9,999,406
Q13 2,200,000
Q16’ 1,333,330
Q18 10,199,406

TPC-DS

Full joins FQ5 10,669,570

Aggregate
queries

Q3 11,638,073
Q7 13,559,239
Q19 11,987,115
Q22 36,138,621

Table 1: CQ benchmark stream sizes.

left-outer join in TPC-H query Q13 by an equijoin, and
modified TPC-H Q16 to remove an inequality. See [12] for
the full query specification.

Our workload consist of a stream of updates, where each
update consists of a single-tuple insertion. The streams were
generated using the TPC-H and TPC-DS data generators.
The number of tuples in each stream is depicted in Table 1.

We compare IEDyn with DBToaster [16] using memory
footprint and update processing time as comparison metrics.
DBToaster is a state-of-the-art implementation of HIVM. It
operates in pull-based mode, and is optimized for aggrega-
tions over equi-joins. DBToaster has been extensively tested
for such queries and has proven to be more e�cient than
a commercial database management system, a commercial
stream processing system and an IVM implementation [16].
It is therefore an interesting implementation to compare to.
DBToaster compiles given SQL statements into executable
trigger programs in di↵erent programming languages. We
compare against those generated in Scala from the DBToaster
Release 2.2.3

3https://dbtoaster.github.io/

Figure 5 depicts the resources used by Dyn as a percent-
age of the resources used by DBToaster, both operating in
pull-based mode. For each query, we plot the percentage of
memory used by Dyn considering that 100% is the memory
used by DBToaster, and the same is done for processing
time. This improves readability and normalizes the chart.
To present the absolute values, on top of the bars correspond-
ing to each query we write the memory and time used by
DBToaster. Some executions of DBToaster failed because
they required more than 16GB of main memory. In those
cases, we report 16GB of memory and the time it took the
execution to raise an exception. We mark such queries with
an asterisk (*) in Figure 5. Note that Dyn never runs out of
memory, and times reported for Dyn are the times required
to process the entire update stream.

From Figure 5 we see that for full join queries (FQ1-
FQ5), Dyn outperforms DBToaster by close to one order
of magnitude in both memory consumption and processing
time, illustrating the e↵ectiveness of maintaining (T, N)-reps
rather than the query results themselves, especially when
these results are large. For aggregate queries, Figure 5 shows
that Dyn can significantly improve the memory consumption
of HIVM while improving processing time—up to two orders
of magnitude for TPC-H Q13’ and TPC-DS Q7. See [12] for
an in-depth discussion.

While the T -reps maintained by IEDyn feature constant
delay enumeration, this theoretical notion hides a constant
factor that could decrease performance in practice when
compared to full materialization. Experiments detailed in [12]
show that this not the case: Dyn’s enumeration time is
competitive with DBToaster.

5.2 Conjunctive Queries with Inequalities
To gauge the e↵ectiveness of IEDyn on GCQs that feature
inequality joins, we evaluate the acyclic queries listed in
Table 2 on synthetically-generated streams of single-tuple
insertion updates. The sizes of the update streams are inten-
tionally kept low, since they generate huge output sizes (cf.
Table 2).

Here we only compare IEDyn with Esper4 but refer to [13]
for a more detailed comparison against other state of the art

4http://www.espertech.com/esper/esper-downloads/
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Query Expression Join Type |Stream| |Output|
GCQ1 R(a, b, c) � S(d, e, f) | a < d < Full 12k 18, 017k
GCQ2 R(a, b, c) � S(d, e, f) � T (g, h, i) | a < d � e < g < Full 2.7k 178, 847k
GCQ3 R(a, b, c) � S(d, e, f) � T (g, h, i) | a < d � d < g < Full 2.7k 90, 425k
GCQ4 R(a, b, c) � S(d, e, f, k) � T (g, h, i, k) | a < d � d < g <, = Full 21k 297, 873k
GCQ5 ⇡a,b,d,e,f,g,h(GCQ3) < Free-connex 2.7k 114, 561k
GCQ6 ⇡d,e,f,g,h,k(GCQ4) <, = Free-connex 21k 99, 043k
GCQ7 ⇡b,c,e,f,h,i(GCQ3) < Free-connex 2.7k 114, 561k
GCQ8 ⇡b,c,e,f,h,i(GCQ4) <, = Free-connex 21k 297, 873k

Table 2: GCQ benchmark queries, together with update stream and result sizes, k = 1000.
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Figure 6: IEDyn resource usage as a percentage of
the resources used by Esper (lower is better).

systems. Esper is a complex event processing engine with a
relational model based on Stanford STREAM [2]. It operates
in push-based mode. We use the Java-based open source
implementation4 for our comparisons.

Figure 6 depicts the resources used by IEDyn as a per-
centage of the resources used by Esper, both operating in
push-based mode. IEDyn significantly outperforms Esper
on all full join queries (GCQ1–GCQ4). We note that for
these queries, even in push-based mode IEDyn can support
the enumeration of query results from its data structures
at any time while competing push-based systems have no
such support. Hence, IEDyn is not only more e�cient but
also provides more functionality. IEDyn also significantly
outperforms Esper on free-connex queries GCQ5 and GCQ6

with more than a threefold improvement in processing time
and an order of magnitude improvement in memory usage on
Q7. For non-free-connex queries GCQ7 and GCQ8, IEDyn
continues to significantly outperform Esper in processing
time, showing an order of magnitude improvement in mem-
ory usage for GCQ7.

6 Summary
Traditional techniques for dynamic query evaluation are
based either on materialization (to avoid recomputation of
subresults), or on recomputation of (to avoid the space over-
head of materialization). We have shown that both tech-
niques are suboptimal: instead of materializing subresults,
one can use Dynamic Yannakakis to maintain a data struc-
ture that is succinct; and yet supports all operations one
commonly expects from materialization: enumeration with
constant delay as well as fetching single tuples in constant
time. Our experiments against state-of-the art engines in
di↵erent domains show that this can improve performance
by orders of magnitude.
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