Report on the Workshop on Factorized Databases

Dan Olteanu
Department of Informatics
University of Zurich

1 Overview

The workshop took place in Zurich and online from
August 2 to 4, 2022. Tt was attended by researchers
from 17 academic institutions and industry labs, in-
cluding Microsoft Gray Systems Lab, Omics Data
Automation, Oracle Labs Zurich, RelationalAl, and
TigerGraph. It featured 18 talks and plenty of op-
portunities for discussions. The vast majority of
participants attended in person.

The talks and the list of participants are available

at the workshop’s webpage: https://fdbresearch.

github.io/FDBworkshop2022.html.

2 Factorized Databases in Brief

Factorized representations are relational algebra ex-
pressions built using the union operator, the Car-
tesian product operator and data values. Succinct-
ness is achieved by using the distributivity of prod-
uct over union. Factorization is complementary to
value-based compression, such as run-length encod-
ing; the two can be combined to achieve an even
greater compression factor.

Factorized databases build on two observations:

First, the tabular representation of the answers to
conjunctive queries over relational databases entail
redundancy that can be avoided by a lossless, yet
more succinct factorized representation.

Second, for any conjunctive query, factorized rep-
resentations of the query answer can be computed
directly from the input database and in time pro-
portional to their sizes and the input database size.

Since their introduction a decade ago (Olteanu
and Zavodny, ICDT 2012; Bakibayev, Olteanu, and
Zavodny, PVLDB 2012), there has been great pro-
gress on the theory, systems and applications of fac-
torized databases. What makes them interesting to
study and use in practice is their proper balance
between succinctness and efficiency of subsequent
processing. An increasing body of follow-up work
shows that diverse processing can be executed di-
rectly on such factorized representations, so with-

SIGMOD Record, June 2023 (Vol. 52, No. 2)

out the need to de-factorize. The work showcased
at the workshop can be broadly classified as follows:

1. Foundations of factorized databases;

2. Enumeration and ranking of query answers;
3. Succinct query provenance;

4. Graph databases;

5. Factorized in-database analytics;

6. Factorized machine learning.

3 Technical Program

This workshop offered a brief look at progress on
the above six areas of research and a great opportu-
nity to look ahead. Further reading on this progress
is available at https://fdbresearch.github.io/
impact.html.

3.1 Foundations of Factorized Databases

Factorized databases exploit the structure of the
conjunctive query to avoid the full tabular mate-
rialization of the query answer. Yet what happens
in case there is no query to guide the construction
of the factorization?

Dan Suciu (University of Washington) proposed
an information-theoretic view of the problem of fac-
torizing a noisy input relation. Reformulated, the
problem is to synthesize a join over smaller rela-
tions such that its answer approximates well the
input relation. He put forward an approach to com-
pute a good approximate factorization that exploits
approximate dependencies in the data. In the lan-
guage of information theory, approximate functional
dependencies become constraints on conditional en-
tropy, approximate multi-valued dependencies be-
come constraints on mutual information, while the
traditional axioms for such dependencies become
simple Shannon inequalities.

53



3.2 Query Enumeration and Ranking

An important property of the factorized represen-
tation of a relation is that, despite its succinctness,
the tuples in the relation can be enumerated with
constant delay, which is as efficient as from a tabu-
lar representation.

Nofar Carmeli (ENS Paris) presented a dichotomy
for the problems of quantile query evaluation and
of direct access to the k-th answer of a conjunctive
query according to a user-specified order: There is a
syntactic characterization of all conjunctive queries
that admit logarithmic delay after linear-time pre-
processing needed to construct a succinct represen-
tation of the query answer. An equivalent syntactic
characterization was previously given for the class
of group-by aggregate and order-by queries whose
answer tuples can be enumerated with constant de-
lay over factorized databases.

Paris Koutris (University of Wisconsin-Madison)
considered the trade-off between join materializa-
tion and answer enumeration for a class of acyclic
queries. He also discussed the answer enumeration
problem for join queries and a given ranking func-
tion. Deep further analyzed such trade-offs for sev-
eral classes of queries with projection, such as k-
path reachability.

Antoine Amarilli (Télécom Paris-Tech) extended
the constant-delay enumeration result from factor-
ized databases to general circuits in decomposable
deterministic negation normal form. This result has
applications to the enumeration problem for: the
matches of document spanners on words; the an-
swers to monadic second-order queries on trees with
support for efficient update operations; and the ex-
traction results for enumeration grammars.

3.3 Query Provenance

Factorization can be also applied to the provenance
polynomial of a query. Conjunctive queries can be
classified based on how well their provenance poly-
nomials factorize, regardless of the input database:
Hierarchical queries are precisely the conjunctive
queries whose provenance polynomials can be fac-
torized such that each variable (representing an in-
put tuple) only occurs a constant number of times; if
the hierarchical query has no self-join, then there is
a factorization of the provenance polynomial where
each variable occurs at most once. This has appli-
cations to probabilistic databases, where such vari-
ables are random and carry probability distribu-
tions. In this setting, the hierarchical queries (with-
out self-joins) can be computed in polynomial time
in the size of the database.

Daniel Deutch (Tel Aviv University) presented

54

the problem of computing Shapley values in query
answering and explained how this relates to the
problem of query evaluation over probabilistic data-
bases. Here as well, the hierarchical queries are pre-
cisely the conjunctive queries for which the Shapley
value of any input tuple can be computed in poly-
nomial time. Two effective solutions for computing
Shapley values of the input tuples using tools from
probabilistic query evaluation were also presented.

The factorization of the provenance polynomial is
a space-efficient alternative to its representation in
disjunctive normal form and allows for efficient com-
putation of expressive provenance-related queries
used for query explanation.

Boris Glavic (Illinois Institute of Technology) in-
troduced the PUG system (Provenance Unification
through Graphs) for why and why-not provenance.
PUG takes a Datalog query and a provenance ques-
tion as input and generates a Datalog program that
computes an explanation, which is the part of the
provenance that is relevant to answer the question.
This system demonstrates how a desirable factoriza-
tion of provenance can be achieved by rewriting the
input query. This is akin to factorization of prove-
nance polynomials in the semi-ring model. Recent
results on how provenance factorization by circuits
impacts the performance of queries over bag seman-
tics probabilistic databases were also presented.

3.4 Graph Databases

Factorization is a natural fit for the representation
and processing of graph data, since graph traversals
call for many-to-many joins with large outputs that
are representable succinctly in factorized form.

Amine Mhedhbi (University of Waterloo) revis-
ited column-oriented storage and query processing
techniques in the context of graph database man-
agement systems. It is argued that a core decision
in the design of such a graph database management
system is to adopt a factorized tuple-set representa-
tion scheme to avoid repetitions of values. A block-
based processor that factorizes the intermediate an-
swers of joins over graph data was also presented.

Ainur Smagulova (TigerGraph) presented an ap-
proach for parallel execution of SQL queries on top
of a graph processing engine. The nodes in the dis-
tributed system receive factorized representations
of join results and compute aggregates directly over
such factorizations.

3.5 Factorized In-Database Analytics

A wide range of analytics can be computed directly
on factorized databases so without the materializa-
tion of the database joins. The workshop showcased

SIGMOD Record, June 2023 (Vol. 52, No. 2)



examples of such analytics, from SQL aggregates to
linear programs and linear algebra expressions.

Zachary Huang (University of Columbia) intro-
duced the problem of iterative analytics over joins.
The proposed solution avoids the materialization
of the join answer and shares the computation of
a bulk of aggregates across the iterations and also
within each iteration. This is supported by a suc-
cinct representation of the join called Calibrated
Junction Hypertree. This problem is relevant in a
variety of applications such as OLAP, query expla-
nation, streaming data, and data augmentation for
machine learning.

Immanuel Trummer (Cornell University) consid-
ered the problem of adaptive query evaluation and
introduced a new query engine that combines worst-
case optimal factorized evaluation with intra-query
learning. It breaks down the execution time into
time slices in which different execution plans can
be used. By judiciously balancing exploration of
new execution plans versus exploitation of promis-
ing, previously used execution plans, it places upper
bounds on the expected gap between optimal and
actual execution cost.

Florent Capelli (University of Lille) discussed the
problem of optimizing linear programs whose vari-
ables are tuples in the answers to conjunctive queries
over relational databases. The insight is that for
any such linear program there are equivalent linear
programs whose variables range over values from a
factorized representation of the query answer. The
reduction in the number of variables in the equiv-
alent linear program is on par with the reduction
from the size of a table representation to that of a
factorized representation of the query answer.

Amir Shaikhha (University of Edinburgh) pre-
sented a declarative language that can express re-
lational algebra with aggregations, linear algebra,
and functional collections over data such as rela-
tions and matrices using nested semi-ring dictionar-
ies. Such dictionaries can express multisets, arrays,
matrices and restricted factorized representations.
Thanks to the algebraic structure of semi-ring dic-
tionaries, this language unifies a wide range of op-
timizations that are commonly confined to either
database or linear algebra systems.

Nils Vortmeier (Ruhr-University Bochum) intro-
duced the FiGaRo algorithm for the factorized com-
putation of QR decomposition over matrices defined
by relational database joins. FiGaRo avoids the ma-
terialization of the join and pushes the QR decom-
position past the join. For acyclic joins, it takes
time linear in the database size and independent of
the join size and incurs far less rounding errors than

SIGMOD Record, June 2023 (Vol. 52, No. 2)

the classical QR algorithms.

David Justo (Microsoft) considered the problem
of compiling factorized linear algebra expressions to
different programming language targets. The pro-
posed solution leverages and extends the Oracle’s
GraalVM industrial polyglot compiler and runtime.

3.6 Factorized Machine Learning

The efficient computation of aggregates over factor-
ized databases enables more complex analytics such
as training machine learning models.

Arun Kumar (University of California San Diego)
reflected on lessons learned on the benefits and lim-
its of factorized machine learning, as well as the
roadblocks and open challenges in translating this
paradigm to practice. The talk overviewed works
that applied the factorized machine learning para-
digm to generalized linear models, clustering meth-
ods, a unified formal framework based on linear al-
gebra, and models with feature interactions.

Mahmoud Abo Khamis (RelationalAI) reported
on the rAD native in-database automatic differen-
tiation framework built at Relational Al to support
machine learning, data analytics, and mathemati-
cal optimization. The input to rAD is a program
in Rel, a declarative generalization of Datalog with
aggregation and function symbols. This input pro-
gram computes a multivalued function. The out-
put to rAD is another Rel program that computes
the derivatives of the input program with respect to
some given input relations. Performing automatic
differentiation in a high-level database language like
Rel enables the evaluation of the derivatives while
enjoying many features offered by the underlying
database engine like factorization, query optimiza-
tion and compilation, as well as support for higher
order derivatives.

Milos Nikolic (University of Edinburgh) presented
the problem of data imputation in normalized rela-
tional databases. An interesting insight is that the
state-of-the-art Multiple Imputation by Chained E-
quations method, which requires the training of mul-
tiple regression models, can be reformulated such
that the computationally most intensive parts of the
training process are shared across the models and
executed entirely on the normalized data within the
database system.

4 Conclusion

Factorized databases are a rich field of study that of-
fers technical challenges and solutions for both the-
oretical and systems research. They proved useful
at the interface of databases and other fields such

55



as optimization, linear algebra, and machine learn-
ing, as they help effectively reduce the asymptotic
complexity and improve the runtime performance
for problems computed over database joins.

This workshop is the first effort to put together
researchers who work on the theory, systems and
applications of factorized databases. The partici-
pants considered it a success. The social activities
in the beautiful summer days in Zurich also helped
bring the on-site participants together.

An exciting topic that was not represented at the
workshop is the use of factorization for incremental
maintenance of query results and machine learning
models trained over database queries under updates
to the input database.

There are open problems in the six main topics
represented at the workshop.

Does relational data admit more succinct repre-
sentations than factorizations yet still allow for de-
sirable properties such as constant-delay tuple enu-
meration and linear-time sum-product aggregates?
Which further popular machine learning models,
matrix decomposition techniques and iterative lin-
ear algebra methods over relational data can bene-
fit from factorization? Beyond linear programs, can

56

(non-)convex optimization programs over databases
be rewritten to much smaller programs following a
factorized data structure?

On the systems side, recent and promising ef-
forts combine techniques such as vectorization, com-
pression, and block-based access with factorization.
Prototypes that exploit factorization for efficient
maintenance of conjunctive queries under updates
and for training machine learning already exist in
industry (the RelationalAT engine) and also in the
public domain (the LMFAO and F-IVM engines).

5 Acknowledgements

This workshop celebrated the end of Dan Olteanu’s
ERC consolidator grant “Foundations of Factorized
Data Management Systems” and the start of his
chair for Data Systems and Theory at the Univer-
sity of Zurich. The author would like to acknowl-
edge the help of: Denise Gloor on logistics; Haozhe
Zhang on the workshop web page; and Ahmet Kara
and Qing Chen on technical support. This project
has received funding from the European Union’s
Horizon 2020 research and innovation programme
under grant agreement No 682588.

SIGMOD Record, June 2023 (Vol. 52, No. 2)



