
ON THE USE OF BIT MAPS FOR MULTIPLE KEY RETRIEVAL

Oscar Vallarino
University of Toronto

Abstract: The t radi t ionl l f i l e structures used to support fast response to complex user queries have been
based on the inverted l st organization, using either the pointer or b i t string representation. In this
paper, the use of bi t m~ps for executing multiple key searches is studied. Bit maps turn out to be less
precise inverted l is ts Where the inversion is kept for a quantization of attribute domains and the objects
referenced are blocks of data records. The goal is to reduce the total number of I/O accesses required to
execute a retrieval based on a Boolean qualification. An evaluation of the method is given for both storage
space and expected retrieval time under simplified assumptions. Key Words and Phrases: Multiple key
retr ieval, inverted l i s t s , b i t strings, bi t maps, Boolean queries, data base management. CR Categories:
3.70, 3.71, 3.73, 3.74,!4.33, 4.34

I . INTRODUCTION

One of the most deiirable features to have in
large data bases is theJabi l i ty to perform fact re-
t r ieval by means of queries to the system. In this
paper we consider the p~oblem of executing Boolean
queries with the goal of reducing the I/0 time re-
quired to retrieve the ~ecords that sat isfy the
request. The motivatioh behind executing Boolean
queries e f f i c ien t l y is that , besides being a user's
language in themselves,! they ~might be producea as a
result of interpreting a higher level query language
such as SQUARE [I0] .

Inverted l i s t s hav e been the tradi t ional f i l e
organization used to support fast response to un-
anticipated queries and|they are well covered in
the l i terature [3,5,14,~5,16,17,20]. Two basic
representations for inverted l i s ts have been em-
ployed in data retrieva~ systems: the pointer l i s t
representation and the b i t str ing representation.
In the former, for eachlattr ibute values (index
term) present in the fi~e a l i s t of pointers
(accession numbers of a~dresses of records) is
kept which ident i f ies al l record occurrences in
the f i l e which have that at tr ibute value. In the
la t te r , a b i t str ing is lkept which contains one
b i t for each record in the f i l e ; the nth b i t is set
to 1 or 0 depending on the nth record having or not
the value under consideration for the at t r ibute.
Davis and Lin [I] were the f i r s t to report the use
of b i t str ing inverted ~ists. Later, Thiel and
Heaps [22,23] and King [21] have used b i t strings
for implementing inverted indexes in document
retr ieval applications,lusing counts of zero sub-
strings for compression!purposes. In this paper, a
complementary inversionj technique derived from the
b i t s t r ing representatign is considered.

The collection of binary encoded inverted l i s t s
for the attr ibute domaihs of a f i l e forms a Boolean
matrix. In some cases,lthis matrix is quite sparse.

This research has been Supported by the National Research Council of Canada.
Computer Science, University of Toronto, Toronto, Ontario, Canada, M5S IA7.

This is due to the fact that, for some attributes,
the number of different values present in the f i l e
is rather large, producing a relat ively high
frequency of low occurrence values. This sparseness
suggests the idea of subdividing the matrix into
submatrices and considering a second Boolean matrix
which is a b i t map that indicates which submatrices
of the f i r s t contain a non-zero element. I f a
submatrix is non-zero i t is assigned a one l b i t
in the second matrix, otherwise i t is mapped to a
0 bit .

In section 4, the use of these bi t maps in
multiple key data retrieval is described. In
section 5 we make an evaluation of the method for
both storage requirements and number of I/O accesses
needed. Both storage space and exPected retrieval
time are considered under the assumptions of random
distribution of values in attribute domains, domain
independence, and record occurrence independence
within the f i l e . Updating strategies are discussed
in section 6.

In the paper, the terminology used by Codd in
his relational model of data [8,9] is informally
adopted. The terms relation, domain, and tuple
correspond to the logical view of the data. We
wi l l assume that a relation is physically stored
as a " f l a t f i l e " , and therefore the terms f i l e ,
f ie ld , and record would be the corresponding to
those of Codd's, and we wi l l use them interchangeably
The techniques are explained by means of examples.

2. THE PROBLEM

In on-line querying, I/O operations are the
principal component accounting for retrieval time.
Thus, any attempt to improve performance must aim at
reducing the number of I/O accesses made. Also, an
eff ic ient data access strategy must recognize the
operational characteristics of the mass storage
devices presently available. These are (1) the
access latency and (2) the data transfer rate. I t

Author address: Department of

108

,..ay take anywhere between I0 and I00 milliseconds
for the I /0 device to posit ion before data transfer
can be i n i t i a t ed ; but once the device has been
positioned data can be sent to the processor at
very high transfer rates. Therefore, the f i l e
structure must take advantage of the high data rates
possible by I /0 devices by using large data blocks,
and at the same time i t must minimize the number
of disk accesses. The data re t r ieva l scheme described
in the next sections has been designed with these
considerations in mind.

We consider the problem of executing a Boolean
query Q1V Q2 V . . . V Qt, where each Qi is a con-
junction of re lat ional conditions of the form
CI^C2^...^Chi. Inverted l i s t s have t r ad i t i ona l l y
been used for this data re t r ieva l problem. In the
usual inverted f i l e organization, a col lect ion of
pointer l i s t s is kept for each at t r ibute domain,
one l i s t per each value present in the f i l e for
that a t t r ibu te . We w i l l reduce our analysis to
queries on inverted at t r ibutes. Farley and Schuster
[7] and Reardon [19] have considered the re t r ieva l
problem for Boolean queries when not a l l a t t r ibute
domains are inverted.

I f each of the Ci is an equal i ty condit ion,
then generally only one access is required to
retr ieve the inverted l i s t corresponding to the
value referenced. This would be the case, for
example, i f the data base consists of a f i l e of
technical ar t ic les and the index terms are keywords
describing the a r t i c les . When some condition Ci
in the query involves a range specif icat ion by means
of the operators <, s, >, ~, or m a merge of several
inverted l i s t s is required. (The condition (Ci~c)
can be represented as (Ci<c) V (Ci>c).) In order
to ret r ieve the data records that sa t is fy the
conjunction, the result ing l i s t s must then be
intersected to determine the pointers to the data
records desired. F ina l ly , i f the query is a dis-

j u n c t i o n of conjunctions an additional merge must
be performed with the l i s t s corresponding to con-
junction results before record re t r ieva l can be
done. A l te rna t ive ly , i f the result ing inverted
l i s t s for each condition of the conjunction are of
very d i f ferent lengths, one can select the shortest
one, retr ieve each of the records i t points to
and evaluate the other conditions af ter each record
has been retr ieved. The t rade-of f here is that ,
in general, more records w i l l be retr ieved than
those that sat is fy the query. This strategy
should be selected when the number of accesses
to ret r ieve inverted l i s t s that are saved is
larger than the number of extra accesses made
to retr ieve data records.

When one deals with a large f i l e and several
at t r ibute domains are inverted, the inverted l i s t s
begin to grow, both in number and in length, and
processing them e f f i c i e n t l y becomes another f i l e
problem in i t s e l f . Cardenas has discussed this
problem in [20]. To cope with the large number
of inverted values, usually a index tree is bu i l t
on top of the domain values. The index permits
to f ind quickly the inverted l i s t s corresponding
to the values referenced in the query. The inverted
l i s t s are also kept in sorted order by pointer values
to speed up merging and intersecting (the price
being paid, of course, in slower update).

Under these conditions, merging and in te r -
secting become ser ia l operations and c~n be per-
formed in para l le l . This intersecting/merging
process insures that every record in the f i l e which
sa t is fy the query is retr ieved and that mult iple
re t r ieva ls of records are not performed.

The total re t r ieva l time required to execute
a Boolean query by means of inverted l i s t s fol low-
ing the merging/intersecting procedure discussed
above depends d i rec t l y on the number of a t t r ibute
values referenced e x p l i c i t l y or i m p l i c i t l y by the
query and on the number of data records retr ieved.
We can reduce the I /0 time needed to retr ieve the
inverted l i s t s by considering a more coarse
inversion, and the I /0 time due to record re t r ieva ls
by re t r iev ing large data blocks and by clustering
the records within these blocks. Wong and Chaing
have previously addressed this question in [18];
in the scheme they propose, inverted l i s t s are
kept only for canonical conjunctions of a t t r ibu te /
value pairs and records are clustered in the f i l e
according to the par t i t ion ing induced by this set
of conjunctions. However, this f i l e structure
presents update d i f f i c u l t i e s and i t may be expen-
sive to construct i f the number of d i s t i nc t
at t r ibute/value pairs is large. We w i l l describe
next the use of b i t maps to achieve the former
objectives.

3. BIT MAPS

For c l a r i t y of exposit ion, we f i r s t introduce
some notation. Let F denote our f i l e , N denote the
total number of records in F, and k be the number
of d i f fe rent at t r ibutes (i . e . , f ie lds of F)
inverted. We w i l l denote the domain Qf the i th
a t t r ibute by di ; Mi w i l l belthe total number of
d i s t i nc t values present in # for d i .

Flog(N)l bi ts are required to address any
record in F (a l l logarithms expressions throughout
the paper are in base 2; the notation Fx] is used
to represent the smallest integer greater than
or equal to x). For a gSven domain di of!F, the
total space required to store the b i t str ing
inverted l i s t s (ignoring the space required to
store the domain values themselves for the access-
ing index) is N*Mi b i t s , while the pointer l i s t
representation requires N'Flog(N)1 b i ts . Therefore,
when Mi<Flog(N)I, the b i t str ing representation is
more economical in terms of space.

For k domains inverted, the tota l number of
bi ts required for the inverted l i s t s stored as b i t
str ings is k

N* z Mi, of which only k*N bi ts are I ,
i=l

therefore the proportion of non-zero bi ts is only
k

k/z Mi. So, in the case of large f i l e s ,
i=l

i f we store the inverted l i s t s as b i t s t r ings, we
w i l l be incurring in extensive space overhead
because the result ing Boolean matrix w i l l be largely
sparse. On the other hand, when dealing with Boolean
queries, the b i t str ing representation makes the
operations of merging and intersecting very e f f i c i en t
since we can use the Booleans OR and AND d i rec t l y ,
and computers usually provide instructions to
execute these operations. Furthermore, the

109

implementation of the ~
since i t reduces to a o
string. This approach
could reduce the space
we wil l consider the us
the Boolean matrix corr,
of bit string inverted
inverted in F.

The idea of using i
the presence of absence
object is well known an(
maps have appeared in tl

operator becomes t r i v ia l ,
)mplementation on a bit
iould be attractive i f we
~verhead. To this end,
~ of a bit map to compress
~sponding to the collection
ists for all the attributes

~ingle bit to represent
~o a certain property or

many applications of b i t
e l i terature. Pooch and

Nieder I l l] have survey(d the use of bit maps
techniques for sparse m(trix manipulation. Hardgrave
[12] has proposed the u~e of b i t maps and bit strings
for representation of large sparse sets. More
recently, the use of bihary strings and superimposed
coding for multiple key~retrieval has been also
discussed by Knuth [5].i; Casey [4] has described a
tree structure imple~enCation that also makes use
of bi t mappings and superimposed coding.

We wil l denote the!Boolean matrix corresponding
to the collection of bit string inverted l ists main-
tained for the f i l e by BO. Let us now consider a
subdivision of this matrix into a set of small
rectangular submatrices!of similar shape, and let
us form another Booleanlmatrix Bl that represents
a b i t map of BO. Each b i t of Bl wi l l correspond
~o a "rectangle" in theipartit ion of BO. I f this
rectangle is made of all O's, the corresponding bi t
in Bl is set to O, otherwise i t is set to I. We
wil l present the schemelwith an example. Figure l
shows a sample f i l e called CARS with five attributes:
CAR# (which is the key that uniquely identifies
each record), MAKE/MODEL, and MILES.

CARS (CAR# SAKE RODEL RILES)

32~ ~ORD 75 23
350 ~W 68 152
363 qHEVPOZET 70 121
~12 ~IAT 69 9~
~5 VOLVO 72 82
~67 ~OED 71 27
50~ ~ORD 75 .7
527 CHEVROLET 7q 39
539 CHEVROLET 68 136
5 . 8 CHRYSLER 7, . 2
570 CHRYSLER 73 83
582 ~OLVO 75 15
630 CBRISL~R 70 89
638 ~O¥OTA 7W 72
652 ~OED 70 116
673 D~TSUN 73 5W
739 CHEVROLET 73 33
7 . 1 VW 72 130
750 CHEVROLET 75 8
761 V~LVO 70 90
817 D~TSUN 73 77
822 F~ED 7~ 31.
837 FO~D 70 1~2
85~ C~FVROLET 71 6~

Figure I.' ~ sample file

Figure 2 i l lustrates a ~it map for the Boolean
I matrix corresponding to,the collection of inverted

l ists of the f i l e CARS,!where rectangles of size
2x2 were mapped to one ~it. The attributes inverted
are MAKE, MODEL, and MITES. For the attribute MILES
the inversion is provided for a subdivision of the
domain into]6 equal intervals. Record keys are

indicated to the right.

RAKE RODEL R I L E S

E
• ~ " ~ r , - - ~ I W ~ • • • o-Q~•~q

COCC10CCCOOCGCC1C310000000000CO0 32u
octocoollccoccccc~oeoo00oooo~o~ 350
IOCCCOCCOClO00COCO000¢O000001CCO 363
COC100CCC1COCCCCC0030~00010000CC ~12
OCCCO01COOCCIeCrC~O3OeO01CO00CCO u~5
OC~010COCCCIOeCCG313OOOOOOOqOOCO U67

0011100101000CC1 OCC01000COCC~OC~COG]lOO0000OOCCO 50~
11001130C0001~10 1CCCCCCOCCCCCCIOCCOlO0~O00COCOC3 527
00110110010ClCG0 1CCCCCO010CCCCCCC~0300O03CO001CO 539
1C100C01¢110C0CC 01CCCO0?OCCOOClrqOc31OOQO0000CO0 5~8
IO001C01CC1CGC1C 01CCCCCGOCCO01CCC)~3000ClCOOOCCC 570
1C010C111CCCLCCC q~COOCICOCOOO~C1C13300D~OCOOCCCO 582
1010010100011C0~ 01CCCCO0~C1CC~¢C(3~O~OOO1GO00000 630
011001130010)1C0 330C01CqCCCOOO~CCCCOOOO1COOO3CCq ~3~
lC01C010C100CC10 O¢~C1COCCCIO~CCC(~JOOOOCOCO1GCCC 652
100101011C001£C0 O~ICCCCOCCCGC1CCC~09~IC~OOCCOC3 673
0110CC11CI01CCCC I~C{COCCOCCCOC1CC3001CO00COOOCCO 739
lOlO0100OCO1GO01 COCCOCC1COC01C~CC~O~OCOOO00OlOCO 7~1

10CCOCCOOCCOOC~011~O000COOCCOCC~ 750
~1 OOOCO01r~GIOOCCCCOOOOOGOIOOOOCGO 761

O01CCCCOOOCO01fCCC~OOO01O¢OOCCCO 817
O00CIOP~PO00CC1C¢}0100000000OCCO 8~2
OqCOIOCOOGIOCOCCC3GO~OCOOCO~OC1C 837
IO00CCCCOCCIOECGCOOOOOIOOOOOCCE3 85~

F i q u r e 2 . K i t =a F a~'] = ~ t ~ i x o f i n v c r ~ e ~ Z l s C s
f o e £ i l e C ~ S .

Each bit of matrix Bl has two functions: one is to
indicate whether the corresponding rectangle in
B is or not all-zero, and the other is to indicate
the presence or absence of a range of attribute
values in a group of records. Thus the matrix B1
represents in fact a collection of less precise
inverted l ists where the objects "inverted" are
groups of records, and each column corresponds to
an interval of values in the corresponding attribute
domain. In the scheme described, data records are
assumed to be stored in large blocks (or buckets)
and a bi t map descriptor is provided for each block
(this bi t descriptor would correspond to a row of
matrix Bl.) In the above example, records would
have been stored in blocks of 2 records.

4. DATA RETRIEVAL

How can we use the bi t map in data retrieval?
Since the bi t map represents a collection of less
precise inverted l ists i t can only direct the
retrieval of a block of records. Furthermore, we
now have retrieval precision less than l since
some of the blocks could be accessed due to spurious
bit combinations and may not contain any record that
satisfies the query.

Let's consider the processing required to
execute the general Boolean query Q using bit maps.
The bi t map can be processed either by rows or by
columns. In the second method, we proceed as i f
processing normal bi t string inverted l is ts . (Now,
for the operator ~, the Boolean operation to be
used should be "set to l" instead of complementa-
tion.) A set of bi t string "accumulators" of the
same length as a column of bi t map is kept in core.
For each condition of a conjunction, we OR together
the columns involved; then we AND the obtained
result columns which yields the result correspond-
ing to the conjunctions, and f inal ly OR this to the
result columns of other conjunctions to obtain the
final result for the disjunction. In order to find
the blocks that "satisfy" the query, one then must

II0

scan the accumulator with the final result perform-
ing a counting operation to determine the index of
the l bits in i t . Since the resulting bit vector
represented by the accumulator wil l contain mostly
O's, a fast scan can be made by means of logical
masking instructions (considering, say, 256 bytes
at a time) and then shifting through a register
when the resulting substring is non-zero.

In the method of processing by rows, we must
test whether each row has at least one l bi t in the
columns corresponding to the attribute values
referenced in the query. When this happens,
the block corresponding to that row may contain a
record that satisfies the query and should be
retrieved. The method of processing by rows was
f i r s t used by Burke and Rickman [13] for attribute
oriented searches but without considering the
possibil ity of attribute values groupings. Unless
the bit map f i ts entirely in core, scanning by rows
is impractical because i t implies searching the
entire bit map. However, the method of processing
by rows is interesting because i t leads to the
idea of clustering those records with the same
attribute values in the same block. This is further
discussed in section 6.

In either method, since a block retrieved
may or may not contain a record that satisfies
the query, once the block is in core a sequential
search must be performed evaluating the query on
each record in the block.

5. PERFORMANCE EVALUATION

Are these bit maps or coarse inverted l ists
represented as bit strings better than conventional
inverted lists? Assuming that we can perform
unambiguously all required operations, to evaluate
the alternative f i l e structures we must compare

(a) the storage requirements, and
(b) the efficiency of performing the

operations of retr ieval, deletion,
modification, and addition of records.

5.1 Storage requirements

• In order to formulate the problem analytically,
we wil l make the following simplifying assumptions
about the f i l e :
(1) all attribute domains inverted are independent
of one another,
(2) record occurrences in the f i l e are independent
of one another,
(3) values present in the f i l e for any given
attribute domain are randomly distributed.

Let Bil denote the set of bi t map columns
corresponding to the domain di. I f , for domain
i , we map "rectangles" of size pxqi to one b i t ,
the matrix Bil wil l consist of FN/pl*FMi/qil
bits. Therefore, the total space required by the

k
bi t map B1 is FN/pl s FMi/qil bits. This has to

i=l
be compared with the space required by inverted
pointer l is ts , which is k*N*FLog(N)I bits. p
wil l be an integer representing the blocking factor
of records in buckets of secondary storage; in
general Mi<N, and therefore, l<qi<p. (I f p=l and

qi : l for all i , then bit maps reduce to bi t string
inverted l is ts .) I f we choose qi=l, i=] k,
then bi t maps wil l require less space than inverted
pointer l ists when (approximately)

k
p ~ F(zMi)/(k*FLog(N)l)l.

i=l
However, i f we let p and the gi be too large the
bit map wil l be saturated with l 's and would be of
l i t t l e value for data retr ieval. These parameters
must be selected in each particular case according
to the f i l e characteristics and query usage. This
problem is further discussed in the next section.

We npw derive a probability expression which
wil l be needed later. Let's consider a row of Bil.
Any one bi t in this row represents p values of di
corresponding to record occurrences in F. Given
our mapping definit ion, a row of Bil consists of
FMi/qi] bits. Each of these bits represe:its a
rectangle of pxqi bits in BO. Therefore, a row
of Bil represents FMi/qil rectangles among which
the possible p attribute values wil l be distributed.
What is the probability that any one of these
rectangles is made of all zeros? Under our previous
assumptions, any given value is assigned to a
given rectangle is equal to the probability that
all values be assigned to the others, that is:

vi = ((FMi/qil - l)/FMi/qi l) p , i=l k.

Thus, the probability of a rectangle having at
least one l b i t , and therefore, the probability
of being mapped a l bi t in Bl is l -v i .

5.2 Retrieval time
What is the retrieval performance to be

expected from bit maps? We wil l develop our
analysis for the simplified case of a conjunctive
query Q = Cl^C2^...^Ch, where mi values are
referenced in each condition Ci, i=l ,h, h~k.

A block wil l satisfy the query i f at least one
of the p possible records in i t satisfies the query.
Therefore, the probability of a successful access,
Ps, wil l be

Ps = Prob{block contains at least one record which
satisfies the query}

: l - Prob{none of the p records satisfies t h e

query}
: l - (Prob{one record in block does not satisfy

~ h e query}) p
= - (l - Prob{a record in the block satisfies

)h i query}>P
= (l - Prob{each group of mi bits in record

descripto[(in BO) has at least one l})P
H

= l - (l -i~iProb{group of mi bits has at
least one l})P

= l - (l -i~l(l_ - Prob{group of mi bits i f made

of all O's}))P
h

= l - (l - i~ l (l - ((Mi - l)/Mi)mi)) p

The probability that a block is accessed, that
is, the probability that the b i t map descriptor of
t h e block indicates that the block contains a record
that "satisfies" the query, is

111

Pa : Prob{each of the su
query descriptor (i
h

: 7T

i=l
h

: i~ l
h

=ig 1
h

= 71"

i=l

Hence,

pd = Prob{false drop}
= Prob{access is made

contains at least o

~strings of mi bits in the
Bl) has at least one l }

Prob{substring i mi bits has at least
one l }

(I - Prob{al l mi b i ts are 0})
!

• I
(I - (v i) ml) i

i

(I - (((r M i / q i l - i l) / F M i / q i l) p) m i) .

} - Prob{the block retrieved
le record which sat isf ies

the query}
= Pa - Ps !

h
= i~ l (l - (((FMi /q i l - l l /FMi /q i l)P) mi)

I
h

+ (I -i~_l(l_ - ((Mi l) /M i)m i)) p - I .

Note that when - "- t~e p robab i l i t y of fa lse
drop becomes O. p - q l - l ' I

!

From the above anal~sis i t fo l lows that the
expected number of fa lse drop accesses made in
executing the query Q is |FN/p]*Pd, and the expected
number of accesses made for re t r i eva l of data
blocks is FN/pI*Pa. I f ~e fu r the r assume that the
mi a t t r i bu te values referenced by each condi t ion
of the query are a l l consecutive (as would be the
case in a condi t ion of the f6rm (Ci<c)) , then
the number of accesses made to re t r i eve b i t map

h I
columns is z Fmi /q i l , an 4 therefore the to ta l

i= l l
expected number of accesses, E(Q), due to r e t r i eva l
of b i t map columns and data blocks for the query

under consideration is E Q) = z Fmi/qi] + FN/p]*Pa.

The expressions for the I
Pd, can be easily extend~
junctive query by consid,
d is jo int sets; for examp
Ql and Q2 do not involve
conditions, then Pa(Q) =

i=l
)robabi l i t ies Pa, Ps, and
~d to the case of a dis-
~ring the union of non-
e, i f Q -- Ql V Q2 and
mutually exclusive
Pa(Ql) + Pa(Q2) - Pa(Ql^Q2).

We now return to thq question of determining
the value of the paramet,!rs p and qi . The optimum
value of p and qi w i l l b~ those that minimize the
number of I/O accesses made, that is E(Q).
Minimizing E(Q) analyt ica l ly is d i f f i c u l t even for
the simplif ied query being considered, unless
unwarrantable assumption S are made about the
parameters defining the f i l e , Mi and N, and those
defining the query structure, mi and h. The
problem is further complicated by the effect of
clu~tering because clustering invalidates the
assumptions of uniform dist r ibut ion, and attr ibute
and record independence In the data base. (Cluster-
ing is discussed in the @ext section.)

I

Choosing the parameters p and qi involves the
tradit ional time/space trade-off: we would want
to set p and qi as large!as possible to reduce the

space required by the b i t maps. However, as p and
qi increase so w i l l the probabi l i ty of false drop
and therefore the number of accesses made. To get
a feel of the behavior of E(Q) consider the follow-
ing practical example: N=lO0000; h=4; Ml=lO,
M2=200, M3=lO00, M4=2000; ml = l , m2 = 3, m3 = 200,
m4 = lO; ql = q2 = I . We assume that q3 = q4 = q,
and p are the parameters to be considered as
variables. Figure 4 shows E(Q) as a function of p
aad q.

10 t

~.0 ~

z

tO z

101

~L~C~[NG FRCTO~ (~i

Figure 4. Effect of blocking factor and attr ibute
domain quantization on the number of accesses made.

This and other examples that were'computed
show that E(Q) seems to be more sensitive to the
qi than to p, thus allowing a larger range of
possible values for p. In the example, for p=lO,
q=4 would give better performance than q=l
requiring only I /4 as many bits to be stored for
these attr ibutes. For p>lO performance deterior-
ates rapidly due to the increased number of false

'drop accesses being made. In general, i f Mi << N,
then qi=l should be chosen. Additional experi-
mentation is needed to determine the optimum values
for the qi and p as a function of the f i l e
characteristics and query structure.

6. UPDATE OPERATIONS

We consider f i r s t the case of additions of new
records. First we must select the bucket where
the record is going to be placed. I f we consider
variable length buckets, then we can assume that
every bucket has enough spare space for one or
more additional records. For fixed length buckets,
when a bucket is f u l l we could allocate a new
bucket at the end of the f i l e and star t a new bi t
map descriptor for i t . However, in this case, an
additional b i t map column would have to be kept to
ident i fy those buckets that are f u l l .

Let us assume f i r s t that the b i t map f i t s
ent i re ly in core. This is not as unl ikely as i t
would appear. For example, i f the f i l e has lO,O00

112

records, and i t is stored as l,O00 blocks of lO
records each, for each of which a 96-bit descriptor
is kept, the bit map would occuply only 12K bytes,
which would f i t in a disk track and could be read
into core with a single access.

In this case, the bit map would be processed
by rows. When a new record X has to be added to the
f i l e , we generate the bi t map descriptor of X and
use a clustering approach to decide where to place X.
The new record should be stored within the block
with the most "similar" bi t map descriptor. Let
x be the bi t map descriptor of record X. We select
the block corresponding to bi t map row y where the
new record is to be placed such that d(x,y) is
minimum, where d(x~) is the number of l 's in (x
XOR y), that is, the Hamming distance between x and
y. In the case that more than one such block y is
found, one of them could be selected at random, or
the bucket with most space remaining could be chosen.

This approach for placing new records in the
f i l e has two advantages: (1) i t would cluster
the additions in the bi t maps which wil l reduce
the probability of false drops in future retrievals,
and (2) i t would cluster the records in the buckets
on disk, which wil l result in fewer accesses during
retrieval since the records will tend to be grouped
together according to the values inverted.

I f the bi t map is too large to f i t entirely
in core then processing by rows is too expensive
and we must store and process i t by columns. In
this case, the update strategies suggested by
Casey [4] can be applied. In order to add a new
record X to the f i l e we generate and execute a
query with X's values for the domains inverted, and
retrieve the bit map columns corresponding to the
attribute values associated with X. (In the case
that the new record to be added involves a value
for an attribute not presently in the f i l e , the
selection must of course be based only on the
remaining attributes.) In general, upon executing
the query, we would obtain a set of candidate
blocks where the new record could be placed, any
one of which could be chosen. The clustering
effectiveness wil l now be much less than before
because whole block descriptors are not being
considered. Note that in order to make available
a whole bi t map row, another copy of the bi t map
would have to be stored by rows which would imply
doubling the space requirements and update
overhead.

As with additions, to delete record X we
generate a query with X's values for the domains
inverted. We execute the query to find the
location of X in the f i l e . Since one or more
blocks may be retrieved, the record to be deleted
must be further identified by means of the primary
key attribute in the f i l e , and then flagged as
deleted. The bi t map descriptor for the block
containing the deleted record must then be
recomputed again as a function of all the records
in the block. I f many attributes are inverted this
may be time consuming; a "garbage collection"
approach could be adopted in which the bi t map is
not updated immediately but periodically. Under
this strategy all blocks updated are flagged
(possibly by using an additional bi t map column)
and their corresponding bit map descriptor

recomputed during the garbage collection pass.
This strategy wil l tend to degrade clustering
effectiveness (and therefore retrieval performance).
This might require that garbage collect~bn be
executed rather frequently, possibly as a function
of the percentage of flagged blocks..

Modifications to the f i l e are best treated as
a deletion of the old record followed by the
addition of the modified record. This wil l ensure
the clustering effect and preserve the precision
of the bi t maps.

From the above discussion i t follows that,
unless the bi t map is small enough to f i t in core,
update operations are fa i r ly expensive. However,
the possibil ity of dynamic clustering offered by
the method could produce a definite improvement in
performance during retrievals. Further research
lies ahead to investigate this interesting
possibil i ty.

7. CONCLUSION

The use of bit maps for multiple key retrieval
has been discussed and some simple expressions
relating to space and time performance have been
derived. Bit maps represent less precise inverted
l ists where the inversion corresponds to a
quantization of the attribute domain and the
objects are groups of data records.

Bit maps have the advantage that l:ess space
wi l l be generally requirea than in the normal
pointer representation of inverted l ists. The
merging and intersecting process required to
execute complex Boolean queries are greatly
faci l i tated since they reduce' to Boolean
operations on bit strings. ~pdate opeqations are
expensive but the required CF# processing~ is simple
because bit map columns are df fixed length.

The main disadvantages of the method is its
retrieval precision less than l , i .e . , the
possibil ity of useless accesses, due to the problem
of false drops. However, this problem can be
minimized by using the clustering strategy'for
record addition and modification. The possibil ity
of dynamic clustering provided by the scheme would
also fmprove retrieval performance, especially
when the average number of records that satisfy
the query is large.

AcknowledBements

The author is grateful to S.A. Schuster and
K.C. Sevcik for their cr i t ical reading of this
paper.

8. REFERENCES

[i] Davis, D.R., and Lin, A.D.
"Secondary key retrieval using an IBM 7090-
1301 system". CACM 8, 4 (April 1965), 243-246.

[2] Fraser, W.D.
"A proposed system for multiple descriptor
data retr ieval", in Some Problems in
Information Systems, M. K ~ d . - T .
Scarecrow Press, New York, 1965, pp. 187-205.

I13

[3]

[4]

[5]

[6]

Lefkovitz, D.
File structures fo~ on-line systems. Spartan
Press, New York,--T~.69.

Casey, R.G.
"Design of tree structures for eff ic ient
querying". CACM l (, 9 (September 1973),
549-556.

Knuth, D.E.
The art of ~ programming V3: sortin 9
and searchin 9. Ad¢ison-Wesley, Re---ading,
Mass., 1973, pp. 5~0-567.

Rothnie, J.B., and iLozano, T.
"Attribute based fi!le organization in a paged
environment". CAC~ 17, 2 (February 1974),
63-69.

[7] Farley, G.H.J., and Schuster, S.A.
"Query execution add index selection for
relational data basies." Technical report
CSRG-53, Computer Systems Research Group,
University of Toronto, 1975.

[
[8] Codd, E.F. i

"A relational modeli for large shared data
banks". CACM 13, 6 (June 1970), 377-387.

[9] Codd, E.F.
"Relational completeness of data base sub-
languages". Couranlt Computer Science Symposia
6, in Data Base ~ , Randall Rustin (Ed.),
P r e n t i ~ a l T , NewlJersey, 1972, pp. 65-98.

[lO] Boyce, R.F., Chamb~rlin, D.D., King III,W.F.,
and Hammer, M.M. ~pecifying queries as
relational expressions: SQUARE". IBM
Technical Report R~1291, IBM Res. Labs.,
San Jose, California, October 1973.

[I I] Pooch, U.W., and Niieder, A.
"A survey of indexilng techniques for sparse
matrices". ACM Computing Surveys 5, 2 (June
1973), I 0 9 - I ~ I

[12] Hardgrave, W.T. i
"The prospects of large capacity set support
systems imbedded within generalized data base
management systems"L. Proo. International
Computing Symposiu~ 19T3, Davos, Switzerland.
North-Holland Publ~shing Co., Amsterdam,
1974, pp. 549-556. l

[13] Burke, J.M., and Riickman, J.T.
"Bit maps and f i l t e r s for attr ibute-oriented
searches". Interndtional Journal of Computer
and Information Sciences 2 , - ~ 3 ~ 1 8 7 - 2 0 0 .

[14] Martin, J.
Computer Data-BaseiOrBanization. Prentice-Hall,
New Jersey, 1975, ~p. 379-200.

[15] Hsiao, D., and Har~ry, F.
"A formal system far information retrieval
from f i les" . CACMtI3, 2 (February 1970),
67-73. i

[16] Vose, M.R., and Riqhardson, J.S.
"An approach to in~erted index maintenance".
The Computer Bulletin 16, 5 (May 1972) 256-262.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ingl is , J.
"Inverted indexes and mu l t i l i s t structures".
The Computer Journal 17 (February 1974),
59-63.

Wong, E., and Chaing, T.C.
"Canonical structure in attribute based f i l e
organization". CACM 14, 9 (September 1971),
593-597.

Reardon, B.C.
"An adaptive information retrieval system
using partial f i l e inversion". Information

~ and Retrieval 2, lO (February 1974),

Cardenas, A.F.
"Analysis and performance of inverted data
base structures". CACM 5, 18 (May 1975),
253-263.

King, D.R.
"The binary vector as a basis of an inverted
index f i l e " . Journal of Library Automation
7, 4 (D e c e m b e r ~ ~ 7 - 3 1 4 .

Thiel, L.H. and Heaps, H.S.
"Program design for restrospective searches
on large data bases". Information Storage
and Retrieval 8 (1972), 1-20.

Heaps, H.S. and Thiel, L.H.
"Optimum procedures for economic information
retr ieval" . Information Storage and
Retrieval 6 (1970), 137-153.

114

