ON THE USE OF BIT MAPS FOR MULTIPLE KEY RETRIEVAL

Oscar Vallarino

University of Toronto

Abstract: The traditionb] file structures used to support fast response to complex user queries have been

based on the inverted ljist organization, using either the pointer or bit string representation.
paper, the use of bit maps for executing multiple key searches is studied.

In this
Bit maps turn out to be less

precise inverted lists where the inversion is kept for a quantization of attribute domains and the objects

referenced are blocks of data records.

execute a retrieval basfd on a Boolean qualification.
eval time under simplified assumpt1ons. Key Words and Phrases:
retrieval, inverted 115{5, bit strings, bit maps, Boolean queries, data base management.

space and expected retr

3.70, 3.71, 3.73, 3. 74,‘4 33, 4.34

1. INTRODUCTION

One of the most desirable features to have in
large data bases is the|ability to perform fact re-
trieval by means of querles to the system. In this
paper we consider the problem of executing Boolean
queries with the goal of reducing the I/0 time re-
quired to retrieve the records that satisfy the
request. The motivation behind executing Boolean
queries efficiently is that, besides being a user's
language in themselves,! they' might be produced as a
result of interpreting a higher level query language
such as SQUARE [10].

Inverted lists have been the traditional file
organization used to support fast response to un-
anticipated queries and|they are well covered in
the literature [3,5,14,15,16,17,20]. Two basic
representations for inverted lists have been em-
ployed in data retrieval systems: the pointer list
representation and the bit string representation.
In the former, for each|attribute values (index
term) present in the file a list of pointers
(accession numbers of addresses of records) is
kept which identifies all record occurrences in
the file which have that attribute value. In the
latter, a bit string isikept which contains one
bit for each record in the file; the nth bit is set
to 1 or 0 depending on the nth record having or not
the value under consideration for the attribute.
Davis and Lin [1] were the first to report the use
of bit string inverted Jists. Later, Thiel and
Heaps [22,23] and King [21] have used bit strings
for implementing inverted indexes in document
retrieval applications, using counts of zero sub-
strings for compression}purposes. In this paper, a
comp]ementary inversion| technique derived from the
bit'string representation is considered.

The collection of b1nary encoded inverted Tists
for the attribute domains of a file forms a Boolean
matrix. In some cases,‘th1s matrix is quite sparse.

This research has been supported by the National Research Council of Canada.

The goal is to reduce the total number of I/0 accesses required to
An evaluation of the method is given for both storage

Multiple key
CR Categories:

This is due to the fact that, for some attributes,
the number of different values present in the file
is rather large, producing a relatively high
frequency of low occurrence values. This sparseness
suggests the idea of subdividing the matrix into
submatrices and considering a second Boolean matrix
which is a bit map that indicates which submatrices
of the first contain a non-zero element. If a
submatrix is non-zero it is assigned a one 1 bit

in the second matrix, otherwise it is mapped to a

0 bit.

In section 4, the use of these bit maps in
multipie key data retrieval is described. In
section 5 we make an evaluation of the method for
both storage requirements and number of I/0 accesses
needed. Both storage space and expected retrieval
time are considered under the assumptions of random
distribution of values in attribute domains, domain
independence, and record occurrence independence
within the file. Updating strategies are discussed
in section 6.

In the paper, the terminology used by Codd in
his relational model of data [8,9] is informally
adopted. The terms relation, domain, and tuple
correspond to the logical view of the data. We
will assume that a relation is physically stored
as a "flat file", and therefore the terms file,
field, and record would be the corresponding to
those of Codd's, and we will use them interchangeably
The techniques are explained by means of examples.

2. THE PROBLEM

In on-line querying, 1/0 operations are the
principal component accounting for retrieval time.
Thus, any attempt to improve performance must aim at
reducing the number of I/0 accesses made. Also, an
efficient data access strategy must recognize the
operational characteristics of the mass storage
devices presently available. These are (1} the
access latency and (2) the data transfer rate. It

Author address: Department of

Computer Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A7.

108

way take anywhere between 10 and 100 milliseconds
for the 1/0 device to position before data transfer
can be initiated; but once the device has been
positioned data can be sent to the processor at
very high transfer rates. Therefore, the file
structure must take advantage of the high data rates
possible by 1/0 devices by using large data blocks,
and at the same time it must minimize the number

of disk accesses. The data retrieval scheme described
in the next sections has been designed with these
considerations in mind.

We consider the problem of executing a Boolean
query Q1 V Q2 vV ... V Qt, where each Qi is a con-
junction of relational conditions of the form
CIaC2A...AChi. Inverted lists have traditionally
been used for this data retrieval problem. In the
usual inverted file organization, a collection of
pointer lists is kept for each attribute domain,-
one 1list per each value present in the file for
that attribute. We will reduce our analysis to
queries on inverted attributes. Farley and Schuster
[7] and Reardon [19] have considered the retrieval
problem for Boolean queries when not all attribute
domains are inverted.

If each of the Ci is an equality condition,
then generally only one access is required to
retrieve the inverted list corresponding to the
value referenced. This would be the case, for
example, if the data base consists of a file of
technical articles and the index terms are keywords
describing the articles. When some condition Ci
in the query involves a range specification by means
of the operators <, <, >, 2, or = a merge of several
inverted 1ists is required. (The condition {Cizc)
can be represented as (Ci<c) V (Ci>c).) In order
to retrieve the data records that satisfy the
conjunction, the resulting lists must then be
intersected to determine the pointers to the data
records desired. Finally, if the query is a dis-
Jjunction of conjunctions an additional merge must
be performed with the Tists corresponding to con-
junction results before record retrieval can be
done. Alternatively, if the resulting inverted
lists for each condition of the conjunction are of
very different lengths, one can select the shortest
one, retrieve each of the records it points to
and evaluate the other conditions after each record -
has been retrieved. The trade-off here is that,
in general, more records will be retrieved than
those that satisfy the query. This strategy
should be selected when the number of accesses
to retrieve inverted lists that are saved is
larger than the number of extra accesses made
to retrieve data records.

When one deals with a large file and several
attribute domains are inverted, the inverted 1ists
begin to grow, both in number and in length, and
processing them efficiently becomes another file
problem in itself. Cardenas has discussed this
preblem in [20]. To cope with the large number
of inverted values, usually a index tree is built
on top of the domain values. The index permits
to find quickly the inverted 1ists corresponding
to the values referenced in the query. The inverted
1ists are also kept in sorted order by pointer values
to speed up merging and intersecting (the price
being paid, of course, in slower update).

109

Under these conditions, merging and inter-
secting become serial operations and ckn be per-
formed in parallel. This intersecting/merging
process insures that every record in the file which
satisfy the query is retrieved and that multiple
retrievals of records are not performed.

The total retrieval time required to execute
a Boolean query by means of inverted lists follow-
ing the merging/intersecting procedure discussed
above depends directly on the number of attribute
values referenced explicitly or implicitly by the
query and on the number of data records retrieved.
We can reduce the I/0 time needed to retrieve the
inverted lists by considering a more coarse
inversion, and the I/0 time due to record retrievals
by retrieving large data blocks and by clustering
the records within these blocks. Wong and Chaing
have previously addressed this question in [18];
in the scheme they propose, inverted lists are
kept only for canonical conjunctions of attribute/
value pairs and records are clustered in the file
according to the partitioning induced by this set
of conjunctions. However, this file structure
presents update difficulties and it may be expen-
sive to construct if the number of distinct
attribute/value pairs is large. We will describe
next the use of bit maps to achieve the former
objectives.

3. BIT MAPS

For clarity of exposition, we first introduce
some notation. Let F denote our file, N denote the
total number of records in F, and k be the number
of different attributes (i.e., fields of F)
inverted. We will denote the domain qf the ith
attribute by di; Mi will be[the total number of
distinct values present in F for di.

MMog(N)1 bits are required to address any
record in F (a1l logarithms expressions throughout
the paper are in base 2; the notation I'x1 is used
to represent the smallest integer greater than
or equal to x). For a gjven domain di of/F, the
total space required to store the bit string
inverted lists (ignoring the space required to
store the domain values themselves for the access-
ing index) is N*Mi bits, while the pointer list
representation requires N*[Tog(N)1 bits. Therefore,
when Mi<[1og(N)1, the bit string representation is
more economical in term$ of space.

For k domains inverted, the total numbér of
bits required for the inverted lists stored as bit
strings is k

N* & Mi,
i=1
therefore the proportion of non-zero bits is only

k/z Mi,
i=]

if we store the inverted lists as bit strings, we
will be incurring in extensive space overhead
because the resulting Boolean matrix will be largely
sparse. On the other hand, when dealing with Boolean
queries, the bit string representation makes the
operations of merging and intersecting very efficient
since we can use the Booleans QR and AND directly,
and computers usually provide instructions to
execute these operations. Furthermore, the

of which only k*N bits are 1,

So, in the case -of large files,

implementation of the =|operator becomes trivial,
since it reduces to a-complementation on a bit
string. This approach would be attractive if we
could reduce the space overhead. To this end,

we will consider the use of a bit map to compress
the Boolean matrix corresponding to the collection
of bit string inverted lists for all the attributes
inverted in F. 1

The idea of using a single bit to represent
the presence of absence of a certain property or
object is well known anﬁ many applications of bit
maps have appeared in the Titerature. Pooch and
Nieder [11] have surveyed the use of bit maps
techniques for sparse matrix manipulation. Hardgrave
[12] has proposed the uje of bit maps and bit strings
for representation of large sparse sets. More
recently, the use of biﬁary strings and superimposed
coding for multiple key retrieval has been also
discussed by Knuth [5].: Casey [4] has described a
tree structure 1mp1emeniation that also makes use
of bit mappings and superimposed coding.

We will denote the ‘Boolean matrix corresponding
to the collection of bit string inverted 1ists main-
tained for the file by BO. Let us now consider a
subdivision of this matrix into a set of small
rectangular submatrices of similar shape, and let
us form another Boolean matrix B1 that represents
a bit map of BO. Each bit of B1 will correspond
to a "rectangle" in the!partition of BO. If this
rectangle is made of all 0's, the corresponding bit
in B1 is set to 0, otherwise it is set to 1. We
will present the scheme with an example. Figure 1
shows a sample file calied CARS with five attributes:
CAR# (which is the key that uniquely identifies
each record), MAKE, MODEL, and MILES.

MAKE

CARS (CAR# MODEL MILES)
324 FORD 75 23
350 ¥ 68 152
363 HEVPOLET 70 121
412 AT 69 94
445 voLVO 72 82
467 ORD 71 27
504 FOED 75 47
527 CHEVROLET 74 39
539 CHEVROLET 68 136
548 CHRYSLER 74 42
570 CHRYSLER 73 83
562 VOLlvo 75 15
630 CHRYSLER 70 89
638 TOYOTA 74 72
652 FOED 70 116
673 TSUN 73 54
739 %:EVROLET 73 33
741 i 72 130
750 CHEVEOLET 75 8
761 VOLVO 76 90
817 DATSUN 73 77
822 POED 74 31,
837 FORD 70 142
854 CHFVROLET 71 64

Figure 1. P sample file
|

Figure 2 illustrates a bit map for the Boolean
matrix corresponding to|the collection of inverted
lists of the file CARS,|where rectangles of size

2x2 were mapped to one bit. The attributes inverted
are MAKE, MODEL, and MIiES. For the attribute MILES
the inversion is provided for a subdivision of the
domain into 16 equal intervals. Record keys are

110

MEKE FODEL
A e m,

indicated to the right.

MNILES

FIRT:

(i arathenaateneasanes
CCCICCCCOOCeeC1Ca10000800000C00
0CCCCCOI1CCELCLCNINICCOA0C020COT
10CCCCCO2C1000C0C0000C0C0C00ICCES

cagvaney

€0C100CCC1L0LCCCCINI0CD0010000CC

32
350
363
412

CCCCeo1cocce10¢r(n030€001C000CCO uus

CCCCICCANCCTIC0CCCITIN0000C0NCOCO 46T
00111031¢1000CC1 0CLOIGCOCOCCI0CICOEIIC00000C0CCH S04
1100113CCCO01010C 10CCCCCeCCeeC10C231000000C0C0CY 527
0011C110013C1C o0 1CCCLOACI1CCLCCCCCINIOCCOIZ0001CH 539
1€100C01C110CCCC 2UCCCONN0LCO0CIrS0C100000006C00 548
10001C01CCCCC1C SICCCLCCOCCO01CCLIDINOGCICEIOCCE 570
1€010C111CCT1CCC 0ICOCCICACHIVCCIT1DI80020C000CCO 582
1010010100011€0C 01CCCCRICICCACCCIZNINARIC0INC0D 630
0110C 1120C10)1CC G00C01CACCLC00CLLCHN00100002CES RIF
1€01C010C100CCHC COOCICACCCICICCLCINNI00C0L01CCCE 652
100101011C0C1CC2 DNICCCLATCLOIICCCIIBNCILC005C0CY) 673
0110CC11CT01CCCt TICCCOCEOCCOOCICOIn0TCI00LoI0CCy 739

101001006€0160C Y

CACCOCCICLCOICerea0nanes0081ney

Tu1

16CCCCC00CL000aC1103000C00CC0OCHD 75¢C
] 000C001,26100CCCC00C005010030CC0 761
001CCCLQOC0010ICII22001CC0ONCCCH 817
¢oCCI0rna0oeliC1CCI10000000000CO 822
CRCC10C00C10C0CCCICNINCIOCOI0CIT 837
12600CCCICCTINCCECA0000100000CCCT 854

EO

Piqure 2., Bit map ani catrix of inverted lists
for file CARS.

Each bit of matrix B1 has two functions: one is to
indicate whether the corresponding rectangle in

B is or not all-zero, and the other is to indicate
the presence or absence of a range of attribute
values in a group of records. Thus the matrix Bl
represents in fact a collection of less precise
inverted 1ists where the objects "inverted" are
groups of records, and each column corresponds to
an interval of values in the corresponding attribute
domain. In the scheme described, data records are
assumed to be stored in large blocks (or buckets)
and a bit map descriptor is provided for each block
(this bit descriptor would correspond to a row of
matrix B1.) In the above example, records would
have been stored in blocks of 2 records.

4, DATA RETRIEVAL

How can we use the bit map in data retrieval?
Since the bit map represents a collection of less
precise inverted lists it can only direct the
retrieval of a block of records. Furthermore, we
now have retrieval precision less than 1 since
some of the blocks could be accessed due to spurious
bit combinations and may not contain any record that
satisfies the query.

Let's consider the processing required -to
execute the general Boolean query Q using bit maps.
The bit map can be processed either by rows or by
columns. In the second method, we proceed as if
processing normal bit string inverted lists. (Now,
for the operator =, the Boolean operation to be
used should be "set to 1" instead of complementa-
tion.) A set of bit string "accumulators’ of the
same length as a column of bit map is kept in core.
For each condition of a conjunction, we OR together
the columns involved; then we AND the obtained
result columns which yields the result correspond-
ing to the conjunctions, and finally OR this to the
result columns of other conjunctions to obtain the
final result for the disjunction. In order to find
the blocks that "satisfy" the query, one then must

scan the accumulator with the final result perform-
ing a counting operation to determine the index of
the 1 bits in it. Since the resulting bit vector
represented by the accumulator will contain mostly
0's, a fast scan can be made by means of logical
masking instructions (considering, say, 256 bytes
at a time) and then shifting through a register
when the resulting substring is non-zero.

In the method of processing by rows, we must
test whether each row has at least one 1 bit in the
columns corresponding to the attribute values
referenced in the query. When this happens,
the block corresponding to that row may contain a
record that satisfies the query and should be
retrieved. The method of processing by rows was
first used by Burke and Rickman [13] for attribute
oriented searches but without considering the
possibility of attribute values groupings. Unless
the bit map fits entirely in core, scanning by rows
is impractical because it implies searching the
entire bit map. However, the method of processing
by rows is interesting because it leads to the
idea of clustering those records with the same
attribute values in the same block. This is further
discussed in section 6.

In either method, since a block retrieved
may or may not contain a record that satisfies
the query, once the block is in core a sequential
search must be performed evaluating the query on
each record in the block.

5. PERFORMANCE EVALUATION

Are these bit maps or coarse inverted Tists
represented as bit strings better than conventional
inverted lists? Assuming that we can perform
unambiguously all required operations, to evaluate
the alternative file structures we must compare

(a) the storage requirements, and

(b) the efficiency of performing the
operations of retrieval, deletion,
modification, and addition of records.

5.1 Storage requirements

" In order to formulate the problem analytically,
we will make the following simplifying assumptions
about the file:

(1) all attribute domains inverted are independent
of one another, '

(2) record occurrences in the file are independent
of one another,

(3) wvalues present in the file for any given
attribute domain are randomly distributed.

Let Bil denote the set of bit map columns
corresponding to the domain di. If, for domain
i, we map "rectangles" of size pxqi to one bit,
the matrix Bil will consist of [N/p1*[Mi/qi]
bits. Therefore, the total space required by the

bit map Bl is FN/p]iz fMi/qi]1 bits. This has to
=1

be compared with the space required by inverted
pointer lists, which is k*N*[Log(N)1 bits. p

will be an integer representing the blocking factor
of records in buckets of secondary storage; in
general MisN, and therefore, 1sqi<p. (If p=1 and

qi=1 for all i, then bit maps reduce to bit string
inverted lists.) If we choose gi=1, i=1,...,k,
then bit maps will require less space than inverted
pointer 1ists when (approximate]yg

p = (M) /(k¥TLog(M) 1.

1=

However, if we let p and the gi be too large the
bit map will be saturated with 1's and would be of
1little value for data retrieval. These parameters
must be selected in each particular case according
to the file characteristics and query usage. This

problem is further discussed in the next section.

We npw derive a probability expression which
will be needed later. Let's consider a row of Bil,
Any one bit in this row represents p values of di
corresponding to record occurrences in F. Given
our mapping definition, a row of Bil consists of
[Mi/qil bits. Each of these bits represents a
rectangle of pxqi bits in BO. Therefore, a row
of Bil represents IMi/qil rectangles among which
the possible p attribute values will be distributed.
What is the probability that any one of these
rectangles is made of all zeros? Under our previous
assumptions, any given value is assigned to a
given rectangle is equal to the probability that
all values be assigned to the others, that is:

vi = ((TMi/qi1 - 1)/MMizqinP , i=1,... k.

Thus, the probability of a rectangle having at
least one 1 bit, and therefore, the probability
of being mapped a1 bit in B1 is 1-vi.

5.2 Retrieval time

What is the retrieval performance to be
expected from bit maps? We will develop our
analysis for the simplified case of a conjunctive
query Q = C1AC2A...ACh, where mi values are
referenced in each condition Ci, i=1,...,h, hsk.

A block will satisfy the query if at least one
of the p possible records in it satisfies the query.
Theref$¥es the probability of a successful access,
Ps, wi e

Ps = Prob{block contains at least one record which

satisfies the query}

1 - Prob{none of the p records satisfies the
query}

1 - (Prob{one record in block does not satisfy
the query})P ,

1 - (1 - Prob{a record in the block satisfies

the query})P

1- ?1 - Prob{each group of mi bits in record

descriptog (in BO) has at least one 1})P

1 - (1 -;1,Prob{group of mi bits has at
least one 1})P

1-(1 -](1 - Prob{group of mi bits if made
of all 0's}))P

1 (=T (0= (- DMM)P,

The probability that a block is accessed, that
is, the probability that the bit map descriptor of
the block indicates that the block contains a record
that "satisfies" the query, is

SV RS

Pa = Prob{each of the substrings of mi bits in the
query descriptor (ip B1) has at least one 1}

h
= m Prob{substring i of mi bits has at least

i=1 one 1}
h
=i£1(1 - Prob{all mi bits are 0})
h .
=1, (1= (v1)™)
h .
=1 (1= (((IMi/qi - 1)/MMi/qi)P)M).
1=
Hence,
pd = Prob{false drop}

[

Prob{access is made}} - Prob{the block retrieved
contains at least one record which satisfies

the query}
= Pa - Ps ‘
= B0 = (g1 /i DP™)
T N | '
+ (1 -.w](1 - ((Mi T 1)/Mi)miyyP -,
']=

Note that when p=qi=1, the probability of false
drop becomes 0.

|

From the above analysis it follows that the
expected number of false drop accesses made in
executing the query Q is|[N/pT*Pd, and the expected
number of accesses made for retrieval of data
blocks is [N/p1*Pa. If te further assume that the
mi attribute values referenced by each condition
of the query are all conﬁecutive (as would be the
case in a condition of the fdrm (Ci<c)), then
the number of accesses made to retrieve bit map

h |
columns is & [mi/qil, and therefore the total
i=] 1
expected number of accesses, E{Q), due to retrieval
of bit map columns and data blocks for the query
; h
under consideration is E(Q) = £ mi/qil + IN/pT*Pa.
! i=1
The expressions for the probabilities Pa, Ps, and
Pd, can be easily extended to the case of a dis-
junctive query by considering the union of non-
disjoint sets; for example, if Q = Q1 V Q2 and
Q1 and Q2 do not involve:mutually exclusive

conditions, then Pa{Q) =|Pa(Q1) + Pa(Q2) - Pa(Q1»Q2).

We now return to th¢ question of determining
the value of the parameters p and qi. The optimum
value of p and qi will bi those that minimize the
number of 1/0 accesses made, that is E(Q).
Minimizing E(Q) analytically is difficult even for
the simplified query being considered, unless
unwarrantable assumptions are made about the
parameters defining the file, Mi and N, and those
defining the query structure, mi and h. The
problem is further compljcated by the effect of
clugtering because clustering invalidates the
assumptions of uniform distribution, and attribute
and record independence xn the data base. (Cluster-
ing 1s discussed in the next section.)

Choosing the parame%ers p and qi involves the
traditional time/space trade-off: we would want
to set p and qi as large|as possible to reduce the

space required by the bit maps. However, as p and
qi increase so will the probability of false drop
and therefore the number of accesses made. To get
a feel of the behavior of E{Q) consider the follow-
ing practical example: N=100000; h=4; M1=10,
M2=200, M3=1000, M4=2000; m1 = 1, m2 = 3, m3 = 200,
md = 103 q1 = g2 = 1. We assume that q3 = ¢4 = q,
and p are the parameters to be considered as
variables. Figure 4 shows E(Q) as a function of p
and q.

10*

10°

EXPECTED NUMBER OF ACCESSES

2 Ge2
10 i

1
10 he 100 10

DLECKING FRCTOR (™

Figure 4. Effect of blocking factor and attribute
domain quantization on the number of accesses made.

This and other examples that were" computed
show that E(Q) seems to be more sensitive to the
gi than to p, thus allowing a larger range of
possible values for p. In the example, for p=10,
g=4 would give better performance than g=1
requiring only 1/4 as many bits to be stored for
these attributes. For p>10 performance deterior-
ates rapidly due to the increased number of false

‘drop ‘accesses being made. In general, if Mi << N,

then qi=1 should be chosen. Additional experi-
mentation is needed to determine the optimum values
for the qi and p as a function of the file
characteristics and query structure.

6. UPDATE OPERATIONS

We consider first the case of additions of new
records. First we must select the bucket where
the record is going to be placed. If we consider
variable length buckets, then we can assume that
every bucket has enough spare space for one or
more additional records. For fixed length buckets,
when a bucket is full we could allocate a new
bucket at the end of the file and start a new bit
map descriptor for it. However, in this case, an
additional bit map column would have to be kept to
identify those buckets that are full,

Let us assume first that the bit map fits
entirely in core. This is not as unlikely as it
would appear. For example, if the file has 10,000

records, and it is stored as 1,000 blocks of 10
records each, for each of which a 96-bit descriptor
is kept, the bit map would occuply only 12K bytes,
which would fit in a disk track and could be read
into core with a single access.

In this case, the bit map would be processed
by rows. When a new record X has to be added to the
file, we generate the bit map descriptor of X and

use a clustering approach to decide where to place X.

The new record should be stored within the block
with the most "similar" bit map descriptor. Let

X be the bit map descriptor of record X. We select
the block corresponding to bit map row y where the
new record is to be placed such that d(x,y) is
minimum, where d(x,y) is the number of 1's in (x
XOR y), that is, the Hamming distance between x and
y. In the case that more than one such block y is
found, one of them could be selected at random, or

the bucket with most space remaining could be chosen.

This approach for placing new records in the

file has two advantages: (1) it would cluster

the additions in the bit maps which will reduce

the probability of false drops in future retrievals,
and (2) it would cluster the records in the buckets
on disk, which will result in fewer accesses during
retrieval since the records will tend to be grouped
together according to the values inverted.

If the bit map is too large to fit entirely
in core then processing by rows is too expensive
and we must store and process it by columns. 1In
this case, the update strategies suggested by
Casey [4] can be applied. In order to add a new
record X to the file we generate and execute a
query with X's values for the domains inverted, and
retrieve the bit map columns corresponding to the
attribute values associated with X. (In the case
that the new record to be added involves a value
for an attribute not presently in the file, the
selection must of course be based only on the
remaining attributes.) In general, upon executing
the query, we would obtain a set of candidate
blocks where the new record could be placed, any
one of which could be chosen. The clustering
effectiveness will now be much less than before
because whole block descriptors are not being
considered. Note that in order to make available
a whole bit map row, another copy of the bit map
would have to be stored by rows which would imply
doubling the space requirements and update
overhead. ’

As with additions, to delete record X we
generate a query with X's values for the domains
inverted. We execute the query to find the
location of X in the file. Since one or more
blocks may be retrieved, the record to be deleted
must be further identified by means of the primary
key attribute in the file, and then flagged as
deleted. The bit map descriptor for the block
containing the deleted record must then be
recomputed again as a function of all the records
in the block. If many attributes are inverted this
may be time consuming; a “garbage collection"
approach could be adopted in which the bit map is
not updated immediately but periodically. Under
this strategy all blocks updated are flagged
(possibly by using an additional bit map column)
and their corresponding bit map descriptor

113

recomputed during the garbage collection pass.

This strategy will tend to degrade clustering
effectiveness (and therefore retrieval performance).
This might require that garbage collectibn be
executed rather frequently, possibly as a function
of the percentage of flagged blocks.,

Modifications to the file are best treated as
a deletion of the old record followed by the
addition of the modified record. This will ensure
the clustering effect and preserve the precision
of the bit maps.

From the above discussion it follows that,
unless the bit map is small enough to fit in core,
update operations are fairly expensive. However,
the possibility of dynamic clustering offered by
the method could produce a definite improvement in
performance during retrievals. Further research
lies ahead to investigate this interesting
possibility.

7. CONCLUSION

The use of bit maps for multiple key retrieval
has been discussed and some simple expressions
relating to space and time performance have been
derived. Bit maps represent less precise inverted
lists where the inversion corresponds to a
quantization of the attribute domain and the
objects are groups of data records.

Bit maps have the advantage that Tess space
will be generally requirea than in the normal
pointer representation of inverted lists. The
merging and intersecting process required to
execute complex Boolean queries are greatly
facilitated since they reduce' to Boolean
operations on bit strings. Update operations are
expensive but the required CH process#ng is simple
because bit map columns are of fixed length.

The main disadvantages of the method is its
retrieval precision less than 1, i.e., the
possibility of useless accesses, due to the problem
of false drops. However, this problem can be
minimized by using the clustering strategy’for
record addition and modification. The possibility
of dynamic clustering provided by the scheme would
also improve retrieval performance, especially
when the average number of records that satisfy
the query is large.

Acknowledgements

The author is grateful to S.A. Schuster and
K.C. Sevcik for their critical reading of this
paper.

8. REFERENCES

[1] Davis, D.R., and Lin, A.D.
"Secondary key retrieval using an IBM 7090-
1301 system". CACM 8, 4 (April 1965), 243-246.
[2] Fraser, W.D.

"A proposed system for mulitiple descriptor
data retrieval”,-in Some Problems in
Information Systems, M. Kocken (Ed.).
Scarecrow Press, New York, 1965, pp. 187-205.

[3]

[4]

£5]

(6]

(7]

(el

L9]

[10]

(11l

[12]

[13]

(14]

[15]

L16]

Lefkovitz, D.

File structures fon on-line systems. Spartan
Press, New York, 1969.

Casey, R.G.

"Design of tree strnuctures for efficient
querying". CACM 16, 9 (September 1973),
549-556.

Knuth, D.E.

The art of computen programming V3: sorting
and searching. Adéison—Nes]ey, Reading,

Mass., 1973, pp. 550-567.

Rothnie, J.B., and Lozano, T.

“Attribute based fille organization in a paged
environment”. CACﬂ 17, 2 (February 1974),
63-69. !

Farley, G.H.J., and Schuster, S.A.

"Query execution and index selection for

relational data bases." Technical report
CSRG-53, Computer \ystems Research Group,
University of Toronto, 1975.

Codd, E.F. |

"A relational model for large shared data
banks". CACM 13, 6 (June 1970), 377-387.

Codd, E.F.
"Relational completieness of data base sub-
languages". Courant Computer Science Symposia

6, in Data Base Systems, Randall Rustin (Ed.),
Prentice Hall, New Jersey, 1972, pp. 65-98.

Boyce, R.F., Chamberlin, D.D., King III,W.F.,
and Hammer, M.M. "gpecifying queries as
relational expressions: SQUARE". IBM
Technical Report R{1291, IBM Res. Labs.,

San Jose, California, October 1973.

Pooch, U.W., and Nileder, A.

"A survey of indexilng techniques for sparse
matrices". ACM Computing Surveys 5, 2 (June
1973), 109-1330 |

Hardgrave, W.T.
"The prospects of large capacity set support
systems imbedded wilthin generalized data base
management systems". Proc. International

Computing Symposium 1973, Davos, Switzerland.
North-Holland Publishing Co., Amsterdam,

1974, pp. 549-556.

Burke, J.M., and Rickman, J.T.
"Bit maps and filtdrs for attribute-oriented

searches". Interndtional Journal of Computer
and Information Sciences 2,3 (1973), 187-200.
Martin, J. :

Computer Data-Base /Organization.
New Jersey, 1975, pp. 379-200.

Prentice-Hall,

Hsiao, D., and Hardry, F.

"A formal system far information retrieval
from files". CACM N3, 2 (February 1970),
67-73. !

Vose, M.R., and Righardson, J.S.
“An approach to inverted index maintenance".
The Computer Bulletin 16, 5 (May 1972) 256-262.

114

7]

(18]

L19]

[20]

[21]

[22]

[23]

Inglis, J.

“Inverted indexes and multilist structures".
The Computer Journal 17 (February 1974),
59-63.

Wong, E., and Chaing, T.C.

"Canonical structure in attribute based file
organization". CACM 14, 9 (September 1971),
593-597.

Reardon, B.C.
"An adaptive information retrieval system
using partial file inversion". Information

Storage and Retrieval 2, 10 (February 1974),
-56.

Cardenas, A.F.

"Analysis and performance of inverted data
base structures". CACM 5, 18 (May 1975),
253-263.

King, D.R.

"The binary vector as a basis of an inverted
index file". Journal of Library Automation
7, 4 (December 1974), 307-374.

Thiel, L.H. and Heaps, H.S.

"Program design for restrospective searches
on large data bases". Information Storage
and Retrieval 8 (1972), 1-20.

Heaps, H.S. and Thiel, L.H.

"Optimum procedures for economic information
retrieval”. Information Storage and
Retrieval 6 (1970), 137-153.

