
A HIERARCHICAL CONTROLLER FOR
CONCURRENT ACCESSING OF DISTRIBUTED DATABASES

Mohamed G. Gouda
Information Science

Honeywell Systems and Research Center, Minneapolis, MN

ABSTRACT: An access controller for a distributed
database is a (central or distributed) structure
which routes access requests to the different com-
ponents of the database. Such a controller is
also supposed to resolve the conflicts between con-
current requests, if any, such-that deadlock situ-
ations never arise.

In this paper, some architectures for distributed
access controllers of distributed databases are
investigated. In particular, three controllers
with hierarchical architectures are considered.
The controllers are evaluated based on three cri-
teria: (i) freedom of deadlocks, (ii) robustness,
and (iii) parallelism. The third criterion implies
that the added redundancy to increase the control-
ler robustness against failure conditions should
also contribute to the amount of achieved paral-
lelism during the no-failure periods. We then
define a controller architecture which satisfies
all the three criteria.

1. Introduction

The problem of concurrent accessing of distributed
databases has received much attention in recent
years (Mullery 75), (Grapa 75), (Thomas 76), (Pee-
bles 77), and (Peebles 78). The problem seems
difficult since all the already known schemes to
solve it require "too much" overhead in terms of
additional memory, processing, and (unfortunately)
communication. Neverthless, and regardless of its
difficulty, it is a fundamental problem that has to
be solved if truly distributed databases are to be
realized in an efficient way.

In this paper, we consider the problem for some
distributed database system. The considered sys-
tem is outlined in Figure 1. It has a number of
user processes which access some data sets via an
access controller. The user processes generate
requests for some data sets in the system. It is
the function of the access controller to route
these requests to the appropriate data sets without
causing a deadlock situation between any number of
"conflicting" requests.

When a data set D receives a request from some user
process U, the data set D sends an acknowledgement
to u. The acknowledgement serves as a permission
for U to directly access the data set D. In this
case, U is said to be holding the data set D. When
the user process U finishes with the data set D, it
releases D which then waits for the next request.

If D receives the next request while it is being
held by U, it stores the request in some back up
store until it is released by U.

A user process U can request, at any instant, to
access any number of data sets in the system pro-
vided that U is not holding any data sets at this
instant. Thus, it is a one step allocation
scheme; and user processes should be designed to
request data sets assuming worst case conditions.
In some cases, this may prove to be a severe as-
sumption; and further research is still needed in
such &&es.

User

processes: [i;req”ests 0 l 0 [+requests

Distributed
Access Control Structure

Data
Sets: 0 01

Fig. l-The Outline of a Distributed Database System

The format of a user U request to allocate the
data sets D. ..,D.
shown in F&e 2.

for an access session is
%en user U sends this request.

Number of
Data sets Data Sets

User Required by Required by
Identifier user u User u

*
7

‘~--y--q
Fig. 2 The Format of a User Request

65

it should wait to receive acknowledgements from all
the requested data sets, before it can access any
of them. When U finishes with one of the held
data sets, it releases the set. Only when U re-
leases all the held data sets that it can request
another collection of data sets for the next access
session.

To improve the system robustiness and throughput,
the access controller should be distributed (Jensen
78); i.e., it should consist of a number of autono-
mous communicating processes that do not share any

common memory (Gouda 77a, 77b). This seems an at-
tractive choice specially since new technologies
have lowered the cost of hardware in recent years.
A distributed controller should satisfy the follow-
ing three requirements:

(i) No deadlock situation can arise between any
set of concurrent conflicting requests (dead-
lock free controller).

(ii) Proper operation should continue even if some
processes in the controller fail (robust
controller).

(iii)Highly parallel operation is achieved (para-
llel controller).

In section 2, a hierarchical deadlock-free control-
ler is specified. The specified controller is
pipelined; thus its operation is reasonably paral-
lel. However, this controller has a single failure
point; i.e., it is not robust. In section 3, the
controller architecture is modified to increase its
robustness. The modification consists of adding
extra processes to the controller without affecting
its freedom of deadlocks. Unfortunately, the addi-
tional processes do not improve the system paral-
lelism. Therefore, in section 4, the architecture
is modified such that the additional processes do
improve the controller parallelism during the no-
failure periods.

2. A Deadlock-Free Controller

Consider the distributed access controller in
Figure 3.

c2'

It has four control processes C, Cl,
and C which form a tree structure.

processes3Ul, U
The user

and U are connected to the root
process C. And'ihe datz sets D D2,...,
are connected to the leaf proceiles C

and D

Since the control processes are seque!i;ia cj 1 TFdjk3.

straight forward to show that any conflicting re-
quests (i.e., requests directed to a common collec-
tion of data sets) will flow within the controller
tree in sequence. Thus, deadlock situations can
never arise.

The distributed database system shown in Figure 3
represents a virtual system rather than a physical
system. Actually, it can be mapped into many dif-
ferent physical systems. For example, it can be
mapped, as shown in Figure 4, into a distributed
system of three processes p
communication channels c

1,2

lin,,2f and p3 and two

2,3'

To explain the different interactions within the
access controller, the structure and activities of
a typical control process in the controller are
specified. In the controller tree, each control
process (except the root and the leaves) has one
parent control process and some son control pro-

cesses. A control process with one parent and r
sons, denoted sonl, son*,..., and son,, is shown
in Figure 5a.

Also shown in Figure 5a is the different messages
exchanged between the control process and its par-
ent and sons. The control process receives a
request from its parent; and answers by sending
back an ack (for an acknowledgement). The received
request is partitioned into a number (less than or
equal to r) of requests. These requests are then
sent to different sons and acknowledgements are
received as an answer.

The data structure of the control process is shown
in Figure 5b. It consists of one input register,
a "map" for the controller tree, and r output re-
gisters. The input register is used to store the
input request after receiving it from the parent
process. The controller tree map is used in the
partitioning of the input request into a number of
output requests, and in the assignment of each out-
put request to a different son process. The out-
put registers are used to store the output requests
prior to sending them to the corresponding son pro-
cesses,

Fig. 3 A Tree-like Distributed Access Controller

Fig. 4 Mapping the Virtual Controller to a
Physical Architecture

66

Parent

request

Control

Process

r

Fig. 5(a) Input/Output

Parent

I

r’
Son, L

Son,

Fig. 5(b) Data Structure

request

b Parent

Son l l l X Son
Y

Fig. 5(c) Control Structure To synchronize between the different copies of one

67

The control structure of the process is shown in
Figure 5c as a directed graph with two types of
nodes, named receiving and sending nodes (Gouda
77a, 77b). A receiving node has a circular shape,
and it represents a receiving operation in which
the process waits until some message is received
from another process. Similarly, a sending node
has a rectangular shape; and it represents a send-
ing operation in which the process sends some mes-
sage to another process. To specify the other pro-
cess and the message associated with each node, the
following notation is adopted. The other process
name is written as a label inside the node; and the
message name is written as a label on the node out-
put edge.

At the beginning, the control process waits to re-
ceive a request from its parent process. On re-
ceving the request, the process sends an ack to its
parent; then it sends simultaneously a number of
requests (denoted request,,..., and requesty) to
different son processes (denoted son,,..., and
Sony). Then, the process waits to receive ack's
from these sons. On receiving the ack's, thepro-
cess returns to its initial state waiting for an-
other request from its parent; and the sequence
repeats.

There are two apparent advantages to the above
access controller. First, the operation is dead-
lock-free since conflicting requests are handled
in a sequential order. This sequential order is
imposed by the sequential root process which can
only handle one request at a time. The following
theorem is straight forward using induction on the
number of levels in the controller tree.

Theorem 1:

Let rl and r2 be two incoming requests to the con-
toiler tree. If both r1 (or any request generated
from rl) , and r2 (or any request generated from
'2) reach a control process in the controller tree,
then they reach this process in the same order they
reach the root process in the tree.

The second advantage of the controller is its par-
allel operation. The parallelism is achieved by
pipelining. On the average, each level on the con-
troller tree has one request at a time. Thus, the
rate with which requests enter (or leave) the con-
troller equals to the rate with which one request
is processed in one level in the controller tree.

Despite the above advantages, the controller is not
robust against process failures. For example, if
the root process fails, the whole controller fails;
thus, the controller has a single failure point.
In the next section, we discuss how to modify the
controller architecture to increase its robustness.

3. A Robust, Deadlock-Free Controller

The above controller architecture is not robust
since there is only one copy of each process in it.
When one process fails, all its descendant proces-
ses in the controller tree become useless since
requests cannot reach any of them. Thus, one way
to increase the controller robustness is by adding
multiple copies of each process in the controller.

process, the ring mechanism of Lelann (Lelann 77)
can be used. The process copies are connected to a
virtual ring; and there is one token circulating
the ring in one direction from one process copy to
the next, as shown in Figure 6a. A process copy
performs its operation only when it has the ring
token. After the process finishes its operation ,
it sends the token to the next process copy on the
ring.

In this architecture, when one process copy fails,
the other process copies on the ring continue to
perform the same operations. The virtual ring is
reconfigured to exclude the failed process copy.
Some error-tolerant schemes (Lelann 77), (Chang 77),
and (Kain 78) can also be implemented to handle the
case when the ring token is lost due to some fail-
ures.

As duplicate copies of all control processes are
added to the controller, many virtual communication
lines are generated between them. As an example,
Figure 6b shows the generated communication lines
as duplicate copies of a process C, its parent pro-
cess, and its two son processes are added to the
system.

The above approach does not require that the number
of added copies be the same for all control pro-
cesses in the controller. This feature can be uti-
lized by adding more copies to the processes near
the tree root (where one process failure can lead
to a global system failure), and less copies to the
processes near the tree leaves (where process fail-
ures cause only local failures). As an example,
Figure 6c shows a controller tree with three con-
trol processes Cl, C2, and C3, and three data sets
Dl, Dp, and D3. Assume that all data sets are of
the same importance, then process Cl is more im-
portant than C3 which is more important than C2.
Therefore, the system is modified, as shown in
Figure 6c, to have three copies of Cl, two copies
of C3, and only one copy of C2.

(a)

SO”, son*

(b)

Fig. 6 Some Examples of Adding Redundancy to the
Tree Controller

The specification of a control process in this con-
troller is shown in Figure 7. The input/output
specification (Figure 7a) is exactly the same as in
Figure 5a except that now the process is connected
to two identical process copies, called side1 and
side2 in Figure 7a. The process receives the ring
token from side1 and sends it to side2. The pro-
cess data structure (Figure 7b) is self explanatory.
The process control structure (Figure 7c) is exact-
ly like before (Figure 5c) except of two extra
operations. After receiving a request from its
parent process, the process should wait to get the
token of its ring. The token is released only af-
ter handling the request and sending it to the son
process. This action ensures a sequential order in
handling conflicting requests.

This controller is robust and its operation is
deadlock-free. Freedom of deadlocks is achieved as
conflicting requests are handled by different pro-
cesses in the same sequential order. It is the
same order with which these requests "meet" the
token of the root process ring. Specifically, the
following theorem can be verified using induction
on the number of levels in the controller tree.

Parent

token
side, *

side
Control

Process

Fig. 7(a) Input/Output

Parent

Side,

Fig. 7(b) Data Structure

Fig. 7 The Specification of the Control Process

68

begin

I
I
I
I
I
I
I
I
I
I
I

A
requestx requesty

ack

Fig. 7(c) Control Structure

Theorem 2:

Let r1 and r2 be two imcoming requests to the con-
troller tree. If both rl (or any request genera-
ted from rl) and r2 (or any request generated from
r-2) reach a process ring in the controller tree,
then they meet the token of this process ring in
the same order they meet the token of the root
process ring.

The amount of parallelism in this controller
equals the amount of parallelism in the controller
of section 2. Thus, although the redundancy in
this controller serves to increase the controller
robustness against process failures, it does not
improve the throughput during the no-failure peri-
ods. A mechanism is needed to utilize the control-
ler redundancy during the no-failure conditions.
Such a mechanism is discussed in the next section.

4. A Parallel Robust Deadlock-Free Controller

Figure 8 shows the path of some request r in the
controller tree. The request is passed as a single

69

piece request via the control1 processes Cl, C2,

C3, and C4. But it is partitioned by process C5
into two smaller requests rl and r2 which are then
sent to the data sets Dl and D2 respectively.

So long as the request remains a one piece request,
it can never cause a deadlock situation with any
other set of requests. Therefore, it is not neces-
sary to order the handling of single piece requests
with respect to the handling of other conflicting
requests (in order to prevent deadlocks) since dead-
locks cannot be created anyway. In other words, if
a single piece request arrives to a control pro-
cess, and if this request does not require parti-
tioning at this process, then there is no need for
the process to wait for its token ring before it
sends the request to one of its son processes. In
the example of Figure 8, this can be done in Cl,
C2, C3, and C4, but not in C5, since C5 does parti-
tion the request into two requests.

To add this feature, the control structure of each
process should be modified to become as shown in
Figure 9. When the process receives a request, it
examines the request:

o Is the received request a part of some
bigger request?

I
o Does the received request require

partitioning?

Only if the answer to both questions is no is the
request sent to its destination son process with-
out waiting for the process ring token. Otherwise,
the process should wait to get the token before
sending the request.

By adding this feature, all the process copies on
a virtual ring can be operating at the same time
handling single piece requests, i.e., more paral-
lelism. Also, if the distributed database is struc-
tured such that the majority of requests are not
partitioned until they reach the bottom levels of
the controller tree (see Figure 8), then a large
amount of parallelism can be achieved by adding
more process copies on each virtual ring. Hence,
both robustness and parallelism can increase while
freedom of deadlocks is preserved at the same time.

/ / / / / / / /
L’_-----

Fig. 8 A Request Path in the Controller

Fig. 9 The Control Structure for a Process in a
Robust, Deadlock-free Controller

5. Conclusions

In this paper, three distributed architectures for
access controllers of databases are investigated.
The first architecture is free of deadlocks and
supports parallel handling of incoming requests,
however, it is very sensitive to the failure of
its processes. The second architecture has
evolved from the first by adding redundancy to
increase the system robustness such that freedom
of deadlocks and parallelism are preserved. Fi-
nally, the third architecture has evolved by modi-
fying the second architecture so that the added
redundancy can be used to increase the system par-
allelism during the no-failure periods.

References

(Chang 77)

(Gouda 77a)

(Gouda 77b)

E. Chang, et al. Unpublished Manu-
script. Computer Communications
Networks Group, University of Water-
loo, Ont., Canada, 1977

M.G. Gouda. Protocol Machines:
Towards a Logical Theory of Communi-
cation Protocols. Ph.D. Thesis,
Computer Science Dept., University
of Waterloo, Waterloo, Ont., Canada,
Oct. 1977

M.G. Gouda. Communicating Processes
as a Tool for Concurrent Programming.
SAI Technical Memo Z-77, Honeywell
Systems and Research Center, Minneapo-
lis, Dec. 1977

(Grapa) E. Grapa, et al. Techniques for Update
Synchronization in Distributed Data Bases.
Center for Advanced Computation

Overview. Computer, Vol. 11 No. 1,
Jan. 1978

(Kain 78) D. Kain. Private Communication.
Feb. 1978

(Lelann 77)

(Mullery 75)

(Peebles 77)

(Peebles 78)

(Thomas 76)

G. Lelann. Distributed Systems -
Towards a Formal Approach. Informa-
tion Processing 77, G. Gilchrist edr,
North - Holland Publishing Co.,
August 1977

A. Mullery. The Distributed Control
of Multiple Copies of Data. IBM
Tech. Rep. RC5782, Dec. 1975

R. Peebles. Concurrent Access Con-
trol in a Distributed Transaction
Processing System. Prepared for the
Brown University Workshop on Distri-
buted Processing, Aug. 1977

R. Peebles, et al. System Architec-
ture for Distributed Data Management.
Computer, Vol. 11 No. 1, Jan. 1978

R. Thomas. A Solution to the Update
Problem for Multiple Copy Data Bases
Which Uses Distributed Control. Pre-
pared for the Brown University Work-
shop on Distributed Processing, Aug.
1976

(Jensen 78) E.D. Jensen. The Honeywell Experi-
mental Distributed Processor - An

70

