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ABSTRACT: An access controller for a distributed 
database is a (central or distributed) structure 
which routes access requests to the different com- 
ponents of the database. Such a controller is 
also supposed to resolve the conflicts between con- 
current requests, if any, such-that deadlock situ- 
ations never arise. 

In this paper, some architectures for distributed 
access controllers of distributed databases are 
investigated. In particular, three controllers 
with hierarchical architectures are considered. 
The controllers are evaluated based on three cri- 
teria: (i) freedom of deadlocks, (ii) robustness, 
and (iii) parallelism. The third criterion implies 
that the added redundancy to increase the control- 
ler robustness against failure conditions should 
also contribute to the amount of achieved paral- 
lelism during the no-failure periods. We then 
define a controller architecture which satisfies 
all the three criteria. 

1. Introduction 

The problem of concurrent accessing of distributed 
databases has received much attention in recent 
years (Mullery 75), (Grapa 75), (Thomas 76), (Pee- 
bles 77), and (Peebles 78). The problem seems 
difficult since all the already known schemes to 
solve it require "too much" overhead in terms of 
additional memory, processing, and (unfortunately) 
communication. Neverthless, and regardless of its 
difficulty, it is a fundamental problem that has to 
be solved if truly distributed databases are to be 
realized in an efficient way. 

In this paper, we consider the problem for some 
distributed database system. The considered sys- 
tem is outlined in Figure 1. It has a number of 
user processes which access some data sets via an 
access controller. The user processes generate 
requests for some data sets in the system. It is 
the function of the access controller to route 
these requests to the appropriate data sets without 
causing a deadlock situation between any number of 
"conflicting" requests. 

When a data set D receives a request from some user 
process U, the data set D sends an acknowledgement 
to u. The acknowledgement serves as a permission 
for U to directly access the data set D. In this 
case, U is said to be holding the data set D. When 
the user process U finishes with the data set D, it 
releases D which then waits for the next request. 

If D receives the next request while it is being 
held by U, it stores the request in some back up 
store until it is released by U. 

A user process U can request, at any instant, to 
access any number of data sets in the system pro- 
vided that U is not holding any data sets at this 
instant. Thus, it is a one step allocation 
scheme; and user processes should be designed to 
request data sets assuming worst case conditions. 
In some cases, this may prove to be a severe as- 
sumption; and further research is still needed in 
such &&es. 
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it should wait to receive acknowledgements from all 
the requested data sets, before it can access any 
of them. When U finishes with one of the held 
data sets, it releases the set. Only when U re- 
leases all the held data sets that it can request 
another collection of data sets for the next access 
session. 

To improve the system robustiness and throughput, 
the access controller should be distributed (Jensen 
78); i.e., it should consist of a number of autono- 
mous communicating processes that do not share any 

common memory (Gouda 77a, 77b). This seems an at- 
tractive choice specially since new technologies 
have lowered the cost of hardware in recent years. 
A distributed controller should satisfy the follow- 
ing three requirements: 

(i) No deadlock situation can arise between any 
set of concurrent conflicting requests (dead- 
lock free controller). 

(ii) Proper operation should continue even if some 
processes in the controller fail (robust 
controller). 

(iii)Highly parallel operation is achieved (para- 
llel controller). 

In section 2, a hierarchical deadlock-free control- 
ler is specified. The specified controller is 
pipelined; thus its operation is reasonably paral- 
lel. However, this controller has a single failure 
point; i.e., it is not robust. In section 3, the 
controller architecture is modified to increase its 
robustness. The modification consists of adding 
extra processes to the controller without affecting 
its freedom of deadlocks. Unfortunately, the addi- 
tional processes do not improve the system paral- 
lelism. Therefore, in section 4, the architecture 
is modified such that the additional processes do 
improve the controller parallelism during the no- 
failure periods. 

2. A Deadlock-Free Controller 

Consider the distributed access controller in 
Figure 3. 

c2' 

It has four control processes C, Cl, 
and C which form a tree structure. 

processes3Ul, U 
The user 

and U are connected to the root 
process C. And'ihe datz sets D D2,..., 
are connected to the leaf proceiles C 

and D 

Since the control processes are seque!i;ia cj 1 TFdjk3. 

straight forward to show that any conflicting re- 
quests (i.e., requests directed to a common collec- 
tion of data sets) will flow within the controller 
tree in sequence. Thus, deadlock situations can 
never arise. 

The distributed database system shown in Figure 3 
represents a virtual system rather than a physical 
system. Actually, it can be mapped into many dif- 
ferent physical systems. For example, it can be 
mapped, as shown in Figure 4, into a distributed 
system of three processes p 
communication channels c 

1,2 

lin,,2f and p3 and two 

2,3' 

To explain the different interactions within the 
access controller, the structure and activities of 
a typical control process in the controller are 
specified. In the controller tree, each control 
process (except the root and the leaves) has one 
parent control process and some son control pro- 

cesses. A control process with one parent and r 
sons, denoted sonl, son*,..., and son,, is shown 
in Figure 5a. 

Also shown in Figure 5a is the different messages 
exchanged between the control process and its par- 
ent and sons. The control process receives a 
request from its parent; and answers by sending 
back an ack (for an acknowledgement). The received 
request is partitioned into a number (less than or 
equal to r) of requests. These requests are then 
sent to different sons and acknowledgements are 
received as an answer. 

The data structure of the control process is shown 
in Figure 5b. It consists of one input register, 
a "map" for the controller tree, and r output re- 
gisters. The input register is used to store the 
input request after receiving it from the parent 
process. The controller tree map is used in the 
partitioning of the input request into a number of 
output requests, and in the assignment of each out- 
put request to a different son process. The out- 
put registers are used to store the output requests 
prior to sending them to the corresponding son pro- 
cesses, 

Fig. 3 A Tree-like Distributed Access Controller 

Fig. 4 Mapping the Virtual Controller to a 
Physical Architecture 

66 



Parent 

request 

Control 

Process 

r 

Fig. 5(a) Input/Output 

Parent 

I 

r’ 
Son, L 

Son, 

Fig. 5(b) Data Structure 

request 

b Parent 

Son l l l X Son 
Y 

Fig. 5(c) Control Structure To synchronize between the different copies of one 

67 

The control structure of the process is shown in 
Figure 5c as a directed graph with two types of 
nodes, named receiving and sending nodes (Gouda 
77a, 77b). A receiving node has a circular shape, 
and it represents a receiving operation in which 
the process waits until some message is received 
from another process. Similarly, a sending node 
has a rectangular shape; and it represents a send- 
ing operation in which the process sends some mes- 
sage to another process. To specify the other pro- 
cess and the message associated with each node, the 
following notation is adopted. The other process 
name is written as a label inside the node; and the 
message name is written as a label on the node out- 
put edge. 

At the beginning, the control process waits to re- 
ceive a request from its parent process. On re- 
ceving the request, the process sends an ack to its 
parent; then it sends simultaneously a number of 
requests (denoted request,,..., and requesty) to 
different son processes (denoted son,,..., and 
Sony). Then, the process waits to receive ack's 
from these sons. On receiving the ack's, thepro- 
cess returns to its initial state waiting for an- 
other request from its parent; and the sequence 
repeats. 

There are two apparent advantages to the above 
access controller. First, the operation is dead- 
lock-free since conflicting requests are handled 
in a sequential order. This sequential order is 
imposed by the sequential root process which can 
only handle one request at a time. The following 
theorem is straight forward using induction on the 
number of levels in the controller tree. 

Theorem 1: 

Let rl and r2 be two incoming requests to the con- 
toiler tree. If both r1 (or any request generated 
from rl) , and r2 (or any request generated from 
'2) reach a control process in the controller tree, 
then they reach this process in the same order they 
reach the root process in the tree. 

The second advantage of the controller is its par- 
allel operation. The parallelism is achieved by 
pipelining. On the average, each level on the con- 
troller tree has one request at a time. Thus, the 
rate with which requests enter (or leave) the con- 
troller equals to the rate with which one request 
is processed in one level in the controller tree. 

Despite the above advantages, the controller is not 
robust against process failures. For example, if 
the root process fails, the whole controller fails; 
thus, the controller has a single failure point. 
In the next section, we discuss how to modify the 
controller architecture to increase its robustness. 

3. A Robust, Deadlock-Free Controller 

The above controller architecture is not robust 
since there is only one copy of each process in it. 
When one process fails, all its descendant proces- 
ses in the controller tree become useless since 
requests cannot reach any of them. Thus, one way 
to increase the controller robustness is by adding 
multiple copies of each process in the controller. 



process, the ring mechanism of Lelann (Lelann 77) 
can be used. The process copies are connected to a 
virtual ring; and there is one token circulating 
the ring in one direction from one process copy to 
the next, as shown in Figure 6a. A process copy 
performs its operation only when it has the ring 
token. After the process finishes its operation , 
it sends the token to the next process copy on the 
ring. 

In this architecture, when one process copy fails, 
the other process copies on the ring continue to 
perform the same operations. The virtual ring is 
reconfigured to exclude the failed process copy. 
Some error-tolerant schemes (Lelann 77), (Chang 77), 
and (Kain 78) can also be implemented to handle the 
case when the ring token is lost due to some fail- 
ures. 

As duplicate copies of all control processes are 
added to the controller, many virtual communication 
lines are generated between them. As an example, 
Figure 6b shows the generated communication lines 
as duplicate copies of a process C, its parent pro- 
cess, and its two son processes are added to the 
system. 

The above approach does not require that the number 
of added copies be the same for all control pro- 
cesses in the controller. This feature can be uti- 
lized by adding more copies to the processes near 
the tree root (where one process failure can lead 
to a global system failure), and less copies to the 
processes near the tree leaves (where process fail- 
ures cause only local failures). As an example, 
Figure 6c shows a controller tree with three con- 
trol processes Cl, C2, and C3, and three data sets 
Dl, Dp, and D3. Assume that all data sets are of 
the same importance, then process Cl is more im- 
portant than C3 which is more important than C2. 
Therefore, the system is modified, as shown in 
Figure 6c, to have three copies of Cl, two copies 
of C3, and only one copy of C2. 

(a) 

SO”, son* 

(b) 

Fig. 6 Some Examples of Adding Redundancy to the 
Tree Controller 

The specification of a control process in this con- 
troller is shown in Figure 7. The input/output 
specification (Figure 7a) is exactly the same as in 
Figure 5a except that now the process is connected 
to two identical process copies, called side1 and 
side2 in Figure 7a. The process receives the ring 
token from side1 and sends it to side2. The pro- 
cess data structure (Figure 7b) is self explanatory. 
The process control structure (Figure 7c) is exact- 
ly like before (Figure 5c) except of two extra 
operations. After receiving a request from its 
parent process, the process should wait to get the 
token of its ring. The token is released only af- 
ter handling the request and sending it to the son 
process. This action ensures a sequential order in 
handling conflicting requests. 

This controller is robust and its operation is 
deadlock-free. Freedom of deadlocks is achieved as 
conflicting requests are handled by different pro- 
cesses in the same sequential order. It is the 
same order with which these requests "meet" the 
token of the root process ring. Specifically, the 
following theorem can be verified using induction 
on the number of levels in the controller tree. 
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Control 

Process 

Fig. 7(a) Input/Output 
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Fig. 7(b) Data Structure 

Fig. 7 The Specification of the Control Process 
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Fig. 7(c) Control Structure 

Theorem 2: 

Let r1 and r2 be two imcoming requests to the con- 
troller tree. If both rl (or any request genera- 
ted from rl) and r2 (or any request generated from 
r-2) reach a process ring in the controller tree, 
then they meet the token of this process ring in 
the same order they meet the token of the root 
process ring. 

The amount of parallelism in this controller 
equals the amount of parallelism in the controller 
of section 2. Thus, although the redundancy in 
this controller serves to increase the controller 
robustness against process failures, it does not 
improve the throughput during the no-failure peri- 
ods. A mechanism is needed to utilize the control- 
ler redundancy during the no-failure conditions. 
Such a mechanism is discussed in the next section. 

4. A Parallel Robust Deadlock-Free Controller 

Figure 8 shows the path of some request r in the 
controller tree. The request is passed as a single 
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piece request via the control1 processes Cl, C2, 

C3, and C4. But it is partitioned by process C5 
into two smaller requests rl and r2 which are then 
sent to the data sets Dl and D2 respectively. 

So long as the request remains a one piece request, 
it can never cause a deadlock situation with any 
other set of requests. Therefore, it is not neces- 
sary to order the handling of single piece requests 
with respect to the handling of other conflicting 
requests (in order to prevent deadlocks) since dead- 
locks cannot be created anyway. In other words, if 
a single piece request arrives to a control pro- 
cess, and if this request does not require parti- 
tioning at this process, then there is no need for 
the process to wait for its token ring before it 
sends the request to one of its son processes. In 
the example of Figure 8, this can be done in Cl, 
C2, C3, and C4, but not in C5, since C5 does parti- 
tion the request into two requests. 

To add this feature, the control structure of each 
process should be modified to become as shown in 
Figure 9. When the process receives a request, it 
examines the request: 

o Is the received request a part of some 
bigger request? 

I 
o Does the received request require 

partitioning? 

Only if the answer to both questions is no is the 
request sent to its destination son process with- 
out waiting for the process ring token. Otherwise, 
the process should wait to get the token before 
sending the request. 

By adding this feature, all the process copies on 
a virtual ring can be operating at the same time 
handling single piece requests, i.e., more paral- 
lelism. Also, if the distributed database is struc- 
tured such that the majority of requests are not 
partitioned until they reach the bottom levels of 
the controller tree (see Figure 8), then a large 
amount of parallelism can be achieved by adding 
more process copies on each virtual ring. Hence, 
both robustness and parallelism can increase while 
freedom of deadlocks is preserved at the same time. 

/ / / / / / / / 
L’_----- 

Fig. 8 A Request Path in the Controller 



Fig. 9 The Control Structure for a Process in a 
Robust, Deadlock-free Controller 

5. Conclusions 

In this paper, three distributed architectures for 
access controllers of databases are investigated. 
The first architecture is free of deadlocks and 
supports parallel handling of incoming requests, 
however, it is very sensitive to the failure of 
its processes. The second architecture has 
evolved from the first by adding redundancy to 
increase the system robustness such that freedom 
of deadlocks and parallelism are preserved. Fi- 
nally, the third architecture has evolved by modi- 
fying the second architecture so that the added 
redundancy can be used to increase the system par- 
allelism during the no-failure periods. 
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