
Make More of Data Types

Heinrich C. Mayr

Institut f~r Informatik II
University of Karlsruhe

Western Germany

Introduction

This position paper refers to some observations I
made at the 'High Level Abstraction Workshop', and
it exhibits a way to attack abstraction and speci-
fication problems in the database field. Because
of the fixed page limit this will be done in a
more or less cursory collection of remarks.

The Problem

There is a wide-spread feeling that, beyond tech-
nical and implementation-oriented work, the
database field still suffers from a rather
nonuniform and unprecise terminology caused by
the lack of a fundamental database theory. This
deficiency may be one of the reasons why database
people have difficulties in making their problems
and issues clear to representatives of other,
more consolidated fields. The Pingree Park work-
shop confirmed me in that impression.

E.g., in databases we are using circumscriptions
like

'a type is a precise characterization of some
structural and behavioural properties common
to a set of objects'

as definitions although their constituents are
mostly undefined. So we need not be surprised if
this kind of ambiguity leads us often to give
the same concept different names in order to
catch the intended semantics as is done, e.g., in
the case of 'modelling concepts', 'abstraction
forms', 'relationship types'

On the other hand, we try to adopt notions and
techniques from other disciplines but do not do
so consequently. One of the most distinct examples
for this fact is the use of types. Types have a
sound mathematical foundation in the work of the
ADJ-group [2,4,5,6,q6] and are commonly accepted
to be advantageous for many purposes. However,
their full power is not yet exploited in data-
bases. Therefore, I will concentrate in this paper
on types, derive formal notions of 'data types'
and 'abstract data types', and point out some of
the advantages they have for the database field.

Note that I do not intend to run down the concep-
tual frameworks elaborated up to now, the more so
as formal rigour does not always fit into the world
of practical needs. I only think that time has come

Permission to copy without ~ e all or part of this material is granted
provided that the copies are not made or distributed ~ r direct
commercial advantage, the ACM copyright notice and the title of the

to bolster this framework by more and precise
fundamentals.

Types and Data Types

For the remainder, two (simplified and, by nature,
informal) premises are substantial:

Premise I:

Common to all disciplines dealing with informa-
tion processing is the manipulation of objects,
where

the objects, called data, represent models (in
the sense of 'human cognitive structures', i.e.
mental things [3]) of some part of the - as
such accepted - real world.

the manipulations, called operations, represent
processes thathave taken place, will take
place or might take place in the real world or
in the mental world of objects.

Premise 2:

Neither parts of the real world nor their repre-
senting data exist by themselves. Their existence
is due to the generation by processes and opera-
tions, respectively.

158

Accepting theses premises there is an immediate
consequence:

'Databases', 'Knowledge bases' and 'Data spaces'
of program systems have no fundamental differen-
ces. They differ at most in the concepts and
techniques, models are represented. Thus, what
we need, is to get a better grip on these con-
cepts and techniques.

It is a formal notion of data type drawn from the
type definition in [6,7,14] that may help us to
achieve this goal (if, without excluding the pos-
sibility of later extension, we assume operations
to be functions):

A type T is an algebra T=(~,~) of a set E of sets,
called carriers, and a set ~ of functions amongst
the carriers.

A data type DT is a triple DT=(T,S,O) where

(a) T=(~,~) is a type,
(b) S~ ~ is a distinguished carrier, called the

value set of DT,
(c) 0~ is a distinguished set of functions,

called type operations, having S in their

publication and i~ date appear, and notice is given that copying is by
permission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, requires a ~e and/or specific permi~ion.

© 1980AC~0-89791-031-I/80/0600-0158 $00.75

domain or range list,
(d) ~\~S~ is a set of value sets of other data

types,
(e) for each v~S there is a constant operation

v: ~ S and v() = v.

The elements of S are called values or instances
of data type DT. They may be used to represent
models.

(d) completes the data type definition in the sense
that if a set R is a carrier of data type DT then R
itself is the value set of a data type. More laxely,
data types may only be built up from data types.

Evidently now, the question arises how data types
may be specified and presented with respect to the
fact that 0 and S may be infinite.

To attack this question it is convenient to re-
strict oneself to data types having a finite
number of constants that cannot be generated by
non-constant operations. For, only such data types
are of interest in the finite world of computer
assisted information processing. They mostly pro-
vide operations that 'construct' type values
starting from a strongly limited number of initial
constants like, e.g., the empty set, the empty
database etc. In these cases we may associate to
each type value one or more operational expressions
of the form:

Expression is associated to Value

v() v

o 1 (o 2 (. . .) o n (. . .)) value r e s u l t i n g from
c a l c u l a t i n g (' p e r f o r -
ming ') the expression

Thus, on a more abs t rac t l e ve l , we need not cons i -
der S e x p l i c i t l y when dea l ing w i th the type opera-
t ions and the word a lgebra es tab l i shed by these
opera t ions . I t is convenient to speak, at t h i s
l eve l , of ' a b s t r a c t types ' and ' a b s t r a c t data types '
r espec t i ve l y .

Introducing these concepts formally in this paper
would mean to strike out other important aspects.
So I only indicate that the definitions are formu-
lated analogously to those of type and data type
using the framework of [6]. Note, however, that
both, abstract data types and data types abstract
from any kind of 'implementation'. They differ
only in that data types account also for some
common representation of type values. This view
is somewhat different from other conceptions but
it reflects the fact that, in practice, we do not
worry about implementation when using or speaking
of the data types of a certain system or module
interface.

On the other hand, this view does not impede us in
the desired distinction between, e.g., data types
'Arabic integer numbers' and 'Roman integer numbers'
but allows us to associate with them the same
abstract data type.

The operations of an abstract data type establish
a congruency relation C in the word algebra of
operator expressions. Thus, our initial question of
presenting data types is reduced (apart from syn-
tactics) to the specification of C and to the
association of semiotic signs to expressions.

A variety of techniques for the former purpose has
been proposed so far [e.g.,2,Si?,8,10,12,13,14,1~]
and the future will show which of them will survive
in practice.

The type framework receives its full power by the
concept of parameterization [16] leading to the
socalled 'parameterized types' ('type constructors'
'type concepts'). Adjusted to (abstract) data
types, parameterization allows the specification
of classes of (abstract) data types with different
carriers and even partly different operation
semantics. Consider, e.g., a parameterized (ab-
stract) data type a~ray[CARRIER, INDEX] that lets
open which and at which position elements may be
entered into an array. By determining these
parameters an (abstract) data type is gained.

Data Types in the.Database Field

A number of advantages like encapsulation, abstrac-
tion implementation independence etc. have been
stated concerning the use of types. The program-
ming language area tries to exploit these advanta-
ges more and more, e.g., by developping adequate
design and programming languages [9,10,15,183.

Against that, in databases there is a trend to
doubt types being powerful enough to capture all
important aspects. Cited examples are, among others

- constraints
- complexity of structures and operations
- live-span of data
- reliability in the case of harware malfunction
- exception handling
- concurrency.

Consequently, one asks for extensions improving the
'semantic capabilities' of types. Given the state
of the art in type specification and implemented
type support, this demand is legitimate from a
practical point of view. Theoretically, however,
it starts on a wrong assumption since - provided
that premises I and 2 are accepted - data types as
introduced before have the necessary capabilities.
E.g., alle the listed 'counterexamples' are ex-
pressible in terms of data and operations and thus
may be captured if appropriate data type specifi-
cation techniques are supplied.

What I want to propose is, therefore, to start
from data type as the basic and overall concept
and then

to derive formal and unambigous notions for
particular aspects and to develop techniques
for their specification,

to determine the 'typical ~ (!) differences
between databases and other research areas,

- to identify a set of fundamental (paramete-
rized) data types that may be used as a con-
structive [17]terminological basis.

A first step into this direction is made by viewing
databases as type values themselves, an approach
that has been sketched in [2,11]. A variety of
straightforward questions then arise:

Data models become normal parameterized ab-
stract data types and there is 'only' the
question of how to specify them.

159

- Database schemes become normal parameter as-
signments and there is the question of what
syntactical means are needed for their for-
mulation.

- Constraints become normal operation properties
and there is the question of how to formulate
the operation definitions comprehensibly and
completely. Different kinds of constraints
concerning interrelationships between diffe-
rent 'lower' types (like, e.g., sets, areas
and records in the DBTG network model) may
then be identified in a clear an straight-
forward manner [11].

Another advantage of referring to a precise type
framework is the fact that hitherto weak concepts
may be related and may be defined and studied more
formally. E.g., if we interprete ~conceptual model-
ling' as the execution of intellectual model buil-
ding and relating processes (generalization, aggre-
gation, classification etc.), then these processes
have counterparts on the type level in the form of
morphisms amongst data types. These morphisms do
not exceed the framework mentioned so far, since
they may be treated as operations of a data type
whose values are datatypes themselves. This concep-
tion is already indicated in [I].

There have been voices criticizing the strong asso-
ciation of operations with single types. I may not
follow these reproaches since just this sharp deli-
mitation is one of the big advantages of the type
framework and it does not prevent us from expressing
certain semantics by giving operations of different
types the same names (e.g., '+' for number and
string types). For, if we want to do so, we should
and must specify a data type that integrates the
intended ones. So we get a uniform treatment of
semantics.

Data Type Specification

The main obstacle in using types for database pur-
poses consists in the actual lack of universal,
formal, comprehensible and practice-oriented type
specification techniques. A variety of approaches
have been discussed in the literature but none of
them became widely accepted or used up to now.

Comprehensible techniques having a wide range of
applicability mostly are not formal enough in order
to allow for correctness and completeness proofs -
a demand that is made meanwhile in practice, too.
Against that, formal techniques sometimes are not
universal enough or lead to complex and unover-
lookable specifications. Mainly the actual favo-
rites, i.e., the algebraic technique and related
approaches based on rewrite systems [14] seem to
suffer from the purely recursive way of defining
operations: A number of concepts that are algorith-
mically rather easy to manage become unpleasant to
handle . Consider, e.g., the propagation of record
deletion in DBTG network databases.

Thus, still a lot of work will have to be done in
developping appropriate and perhaps special purpose
oriented techniques that together form a 'tool-kit'
for databases on the basis of a strongly type-
oriented discipline. A step into this direction is
presented in [13] by introducing a specification

technique that tries to overcome a number of prob-
lems in a straightforward and practice-oriented
fashion.

Literature

[I] Brodie,M.L.(1979): The Application of Data
Types to Database Semantic Integrity. Techn.
Report TR-833, Univ. of Maryland.

[2] Ehrig,H.;Kreowski,H.J.;Weber,H.(1978): Algebraic
Specification Schemes for Database Systems.
Proc 4th VLDB, Berlin 1978, pp. 427-44o.

[3] v. FSrster,H.(1969): Analysis and Synthesis of
Cognitive Processes. Rep. Biol. Comp. Lab.,
Univ. of Illinois, Urbana.

[4] Goguen,J.A.(1977): Abstract Errors for Abstract
Data types. Semantics and Theory of Compu-
tation Report 6, UCLA.

[5] Goguen,J.A.(1977): Algebraic Specification. Sem.
and Theory of Comp. Report 9, UCLA.

[6] Goguen,J.A.;Thatcher,J.W.;Wagner,E.G.;Wright,J.
B.(1975): Abstract Data Types as Initial Al-
gebras and Correctness of Data Representa-
tions. Proc. 'Comp. Graphics and Pattern
Recognition and Data Structures',pp.89-93.

[7] Guttag,J.(1979): Notes on Type Abstraction. In
Proc. 'Specification of Reliable Software',
IEEE 79 CH 14oi-9c, pp.36-46.

~8] Hoare,C.A.R.(1972): Proof of Correctness of
Data Representation. Acta Informatica I,
pp.271-281.

[9] Ichbiah,J. et ai(1979): Preliminary Ada Refe-
rence Manual. SIGPLAN Notices, Vol 14, Nr6.

[10] Liskov,B.H.;Snyder,A.;Atkinson,R.;Shaffert,C.
(1977): Abstraction Mechanisms in CLU. Comm.
ACM 2o, Nr. 8, pp. 564-576.

[11] Lockemann,P.C.;Mayr,H.C.;Weil,W.H.;Wohlleber,
W.H.(1979): Data Abstractions for Database
Systems. ACM TODS, Vol 4, Nr. I, pp.6o-75.

[12] Majster,M.E.(1977): Extended Directed Graphs,
a Formalism for Structured Data and Data
Structures. Acta Inform. 8, pp. 37-59.

[13] Mayr,H.C.;Lockemann,P.C.;Dittrich,K.R.(198o):
Operational Replacement Schemes. Int. Report
11/80, Univ. of Karlsruhe.

[14] Musser,D.R.(1979): Abstract Data Type Specifi-
cation in the AFFIRM System. Proc. 'Specif.
of Reliable Software',IEEE 79 CH 14oi-9c.

[15] Silverberg,B.A.;Robinson,L.;Levitt,K.N.(1979):
The HDM Handbook, Vol II. Report Aoo6, SRI
International.

6] Thatcher,J.W.;Wagner,E.G.;Wright,J.B.(1978):
Data Type Specification: Parameterization and
the Power of Specification Techniques. Proc.
SIGACT 1oth Symp. on 'Theory of Computation',
pp. 119-132.

[17] Wedekind,H.; Ortner,E.(1980): Systematisches
Konstruieren von Datenbankanwendungen. Carl
Hanser Verlag, M0nchen.

[18] Wulf,W.A.;London,R.L.;Shaw,M.(1976): An Intro-
duction to the Construction and Verification
of ALPHARD Programs. IEEE Trans. on Software
Eng. SE-2.4, pp. 253-256.

160

