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Introduction 

This position paper refers to some observations I 
made at the 'High Level Abstraction Workshop', and 
it exhibits a way to attack abstraction and speci- 
fication problems in the database field. Because 
of the fixed page limit this will be done in a 
more or less cursory collection of remarks. 

The Problem 

There is a wide-spread feeling that, beyond tech- 
nical and implementation-oriented work, the 
database field still suffers from a rather 
nonuniform and unprecise terminology caused by 
the lack of a fundamental database theory. This 
deficiency may be one of the reasons why database 
people have difficulties in making their problems 
and issues clear to representatives of other, 
more consolidated fields. The Pingree Park work- 
shop confirmed me in that impression. 

E.g., in databases we are using circumscriptions 
like 

'a type is a precise characterization of some 
structural and behavioural properties common 
to a set of objects' 

as definitions although their constituents are 
mostly undefined. So we need not be surprised if 
this kind of ambiguity leads us often to give 
the same concept different names in order to 
catch the intended semantics as is done, e.g., in 
the case of 'modelling concepts', 'abstraction 
forms', 'relationship types' 

On the other hand, we try to adopt notions and 
techniques from other disciplines but do not do 
so consequently. One of the most distinct examples 
for this fact is the use of types. Types have a 
sound mathematical foundation in the work of the 
ADJ-group [2,4,5,6,q6] and are commonly accepted 
to be advantageous for many purposes. However, 
their full power is not yet exploited in data- 
bases. Therefore, I will concentrate in this paper 
on types, derive formal notions of 'data types' 
and 'abstract data types', and point out some of 
the advantages they have for the database field. 

Note that I do not intend to run down the concep- 
tual frameworks elaborated up to now, the more so 
as formal rigour does not always fit into the world 
of practical needs. I only think that time has come 
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to bolster this framework by more and precise 
fundamentals. 

Types and Data Types 

For the remainder, two (simplified and, by nature, 
informal) premises are substantial: 

Premise I: 

Common to all disciplines dealing with informa- 
tion processing is the manipulation of objects, 
where 

the objects, called data, represent models (in 
the sense of 'human cognitive structures', i.e. 
mental things [3]) of some part of the - as 
such accepted - real world. 

the manipulations, called operations, represent 
processes thathave taken place, will take 
place or might take place in the real world or 
in the mental world of objects. 

Premise 2: 

Neither parts of the real world nor their repre- 
senting data exist by themselves. Their existence 
is due to the generation by processes and opera- 
tions, respectively. 
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Accepting theses premises there is an immediate 
consequence: 

'Databases', 'Knowledge bases' and 'Data spaces' 
of program systems have no fundamental differen- 
ces. They differ at most in the concepts and 
techniques, models are represented. Thus, what 
we need, is to get a better grip on these con- 
cepts and techniques. 

It is a formal notion of data type drawn from the 
type definition in [6,7,14] that may help us to 
achieve this goal (if, without excluding the pos- 
sibility of later extension, we assume operations 
to be functions): 

A type T is an algebra T=(~,~) of a set E of sets, 
called carriers, and a set ~ of functions amongst 
the carriers. 

A data type DT is a triple DT=(T,S,O) where 

(a) T=(~,~) is a type, 
(b) S~ ~ is a distinguished carrier, called the 

value set of DT, 
(c) 0~ is a distinguished set of functions, 

called type operations, having S in their 
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domain or range list, 
(d) ~\~S~ is a set of value sets of other data 

types, 
(e) for each v~S there is a constant operation 

v: ~ S and v() = v. 

The elements of S are called values or instances 
of data type DT. They may be used to represent 
models. 

(d) completes the data type definition in the sense 
that if a set R is a carrier of data type DT then R 
itself is the value set of a data type. More laxely, 
data types may only be built up from data types. 

Evidently now, the question arises how data types 
may be specified and presented with respect to the 
fact that 0 and S may be infinite. 

To attack this question it is convenient to re- 
strict oneself to data types having a finite 
number of constants that cannot be generated by 
non-constant operations. For, only such data types 
are of interest in the finite world of computer 
assisted information processing. They mostly pro- 
vide operations that 'construct' type values 
starting from a strongly limited number of initial 
constants like, e.g., the empty set, the empty 
database etc. In these cases we may associate to 
each type value one or more operational expressions 
of the form: 

Expression is associated to Value 

v( )  v 

o 1 ( o 2 ( . . . )  . . . .  o n ( . . . ) )  value r e s u l t i n g  from 
c a l c u l a t i n g  ( ' p e r f o r -  
ming ' )  the expression 

Thus, on a more abs t rac t  l e ve l ,  we need not cons i -  
der S e x p l i c i t l y  when dea l ing  w i th  the type opera- 
t ions and the word a lgebra es tab l i shed  by these 
opera t ions .  I t  is convenient to speak, at t h i s  
l eve l ,  of  ' a b s t r a c t  types '  and ' a b s t r a c t  data types '  
r espec t i ve l y .  

Introducing these concepts formally in this paper 
would mean to strike out other important aspects. 
So I only indicate that the definitions are formu- 
lated analogously to those of type and data type 
using the framework of [6]. Note, however, that 
both, abstract data types and data types abstract 
from any kind of 'implementation'. They differ 
only in that data types account also for some 
common representation of type values. This view 
is somewhat different from other conceptions but 
it reflects the fact that, in practice, we do not 
worry about implementation when using or speaking 
of the data types of a certain system or module 
interface. 

On the other hand, this view does not impede us in 
the desired distinction between, e.g., data types 
'Arabic integer numbers' and 'Roman integer numbers' 
but allows us to associate with them the same 
abstract data type. 

The operations of an abstract data type establish 
a congruency relation C in the word algebra of 
operator expressions. Thus, our initial question of 
presenting data types is reduced (apart from syn- 
tactics) to the specification of C and to the 
association of semiotic signs to expressions. 

A variety of techniques for the former purpose has 
been proposed so far [e.g.,2,Si?,8,10,12,13,14,1~] 
and the future will show which of them will survive 
in practice. 

The type framework receives its full power by the 
concept of parameterization [16] leading to the 
socalled 'parameterized types' ('type constructors' 
'type concepts'). Adjusted to (abstract) data 
types, parameterization allows the specification 
of classes of (abstract) data types with different 
carriers and even partly different operation 
semantics. Consider, e.g., a parameterized (ab- 
stract) data type a~ray[CARRIER, INDEX] that lets 
open which and at which position elements may be 
entered into an array. By determining these 
parameters an (abstract) data type is gained. 

Data Types in the.Database Field 

A number of advantages like encapsulation, abstrac- 
tion implementation independence etc. have been 
stated concerning the use of types. The program- 
ming language area tries to exploit these advanta- 
ges more and more, e.g., by developping adequate 
design and programming languages [9,10,15,183. 

Against that, in databases there is a trend to 
doubt types being powerful enough to capture all 
important aspects. Cited examples are, among others 

- constraints 
- complexity of structures and operations 
- live-span of data 
- reliability in the case of harware malfunction 
- exception handling 
- concurrency. 

Consequently, one asks for extensions improving the 
'semantic capabilities' of types. Given the state 
of the art in type specification and implemented 
type support, this demand is legitimate from a 
practical point of view. Theoretically, however, 
it starts on a wrong assumption since - provided 
that premises I and 2 are accepted - data types as 
introduced before have the necessary capabilities. 
E.g., alle the listed 'counterexamples' are ex- 
pressible in terms of data and operations and thus 
may be captured if appropriate data type specifi- 
cation techniques are supplied. 

What I want to propose is, therefore, to start 
from data type as the basic and overall concept 
and then 

to derive formal and unambigous notions for 
particular aspects and to develop techniques 
for their specification, 

to determine the 'typical ~ (!) differences 
between databases and other research areas, 

- to identify a set of fundamental (paramete- 
rized) data types that may be used as a con- 
structive [17]terminological basis. 

A first step into this direction is made by viewing 
databases as type values themselves, an approach 
that has been sketched in [2,11]. A variety of 
straightforward questions then arise: 

Data models become normal parameterized ab- 
stract data types and there is 'only' the 
question of how to specify them. 
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- Database schemes become normal parameter as- 
signments and there is the question of what 
syntactical means are needed for their for- 
mulation. 

- Constraints become normal operation properties 
and there is the question of how to formulate 
the operation definitions comprehensibly and 
completely. Different kinds of constraints 
concerning interrelationships between diffe- 
rent 'lower' types (like, e.g., sets, areas 
and records in the DBTG network model) may 
then be identified in a clear an straight- 
forward manner [11]. 

Another advantage of referring to a precise type 
framework is the fact that hitherto weak concepts 
may be related and may be defined and studied more 
formally. E.g., if we interprete ~conceptual model- 
ling' as the execution of intellectual model buil- 
ding and relating processes (generalization, aggre- 
gation, classification etc.), then these processes 
have counterparts on the type level in the form of 
morphisms amongst data types. These morphisms do 
not exceed the framework mentioned so far, since 
they may be treated as operations of a data type 
whose values are datatypes themselves. This concep- 
tion is already indicated in [I]. 

There have been voices criticizing the strong asso- 
ciation of operations with single types. I may not 
follow these reproaches since just this sharp deli- 
mitation is one of the big advantages of the type 
framework and it does not prevent us from expressing 
certain semantics by giving operations of different 
types the same names (e.g., '+' for number and 
string types). For, if we want to do so, we should 
and must specify a data type that integrates the 
intended ones. So we get a uniform treatment of 
semantics. 

Data Type Specification 

The main obstacle in using types for database pur- 
poses consists in the actual lack of universal, 
formal, comprehensible and practice-oriented type 
specification techniques. A variety of approaches 
have been discussed in the literature but none of 
them became widely accepted or used up to now. 

Comprehensible techniques having a wide range of 
applicability mostly are not formal enough in order 
to allow for correctness and completeness proofs - 
a demand that is made meanwhile in practice, too. 
Against that, formal techniques sometimes are not 
universal enough or lead to complex and unover- 
lookable specifications. Mainly the actual favo- 
rites, i.e., the algebraic technique and related 
approaches based on rewrite systems [14] seem to 
suffer from the purely recursive way of defining 
operations: A number of concepts that are algorith- 
mically rather easy to manage become unpleasant to 
handle . Consider, e.g., the propagation of record 
deletion in DBTG network databases. 

Thus, still a lot of work will have to be done in 
developping appropriate and perhaps special purpose 
oriented techniques that together form a 'tool-kit' 
for databases on the basis of a strongly type- 
oriented discipline. A step into this direction is 
presented in [13] by introducing a specification 

technique that tries to overcome a number of prob- 
lems in a straightforward and practice-oriented 
fashion. 
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