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ABSTRACT

This paper presents the characteristics of scientific remotely-sensed
databases that are relevant to -- and pose unique challenges for --
general-purpose database management systems (DBMSs). We
describe a prototype system that integrates geophysical data and its
metadata from both satellite and in situ sources, using a relational
general-purpose DBMS to manage the catalog and observational
data, and a video optical disk to archive images. Based upon our
experience with this application, we suggest augmentations to
DBMSs that would facilitate their use not only for scientific data-
bases, but also for engineering, document, and even commercial
database applications.

1. INTRODUCTION

General-purpose database management systems (DBMSs). have
found wide applicability to commercial enterprises such as banking,
inventory management, personne] information, etc. More recently,
the application horizons of GDBMSs have widened to include
geographical databases [MARB 771, [INAGY 79], [STON 80],
pictorial databases (often for geographical applications) [BRYN
76], [BLSR 80], [COX 80), [CHAN 81), [CHOC 81], [ZBRS 81},
engineering databases and CAD/CAM [LPTK 78], [BEET 82},
[GUTT 82], [HASK 82a], [JOHN 82], [KATZ 82], and office
documents [STON 8$2b]. Many of these novel applications have
suggested enhancements to DBMSs that are required to better
model those database types. This paper presents a similar analysis
for scientific data that is collected by scientists using both space-
craft and ground (in situ) sources to study geophysical phenomena
such as atmospheric and oceanographic processes
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Traditionally, DBMSs have not boen used for t.lme databases for a
variety of reasons, some of which we wiil beiow. Data
from each spacecraft have been stored chronologi_ctlly on magnetic
tape using basic file access methods, usually in customized systems.
Occasionally, DBMSs haye been used to catalog and cross-
referénce the tapes, but intégrity problems arisé when the DBMS

the ‘observitional data on the tapes: there is
no-clear boundary between the "meta-data" in the catalog and the
keys to the data on tapes. Users have requested
greater integration of data from multiple sources, data independ-
ence, concurrency and integrity control for simultaneous access by
mnlﬁplousen.andmoreﬂoxiblcaoequmecbmim:vhahiﬂ-
:;;;l‘s general-purpose query hnguqe all features provided by

8.

In section 2 we first describe the aspects that characterize
remotely-sensed geophysical databases and that pose unique chal-
lenges for DBMSs. Section 3 discusses the design. and

implementa-
. tion of a prototype database that uses a relational DBMS to inte-

grate oceanographic data and meta-data Irom and in situ

sources, as an enhancement to NASA’s Pilot Data System

(formerly cafled the Ocean Pilot System [BROW 82]). Section 4

suggests some augmentations to DBMSs that would e the

xplle:;ntauon and performaice of scientific.remotely-sensed
ta s, 1 i

2. THE NATURE OF REMOTELY-SENSED

GEOPHYSICAL DATA

In this section, we will characterize remotely-sensed geophysical
databases, emphasizing those coliscted from spacecraft, the major
source of our database. The most important of .these aspects that
pose unique challenges for DBMSs are: (1) the automatic, real-
time collection of very large volumes of data via remote lemin;
instruments, (2) the regularity and structure with which a single
spacecraft usually collects data, (3) the continuous domains and
granularity of the data mplod, (4) the difficulty in relating scien-
tific data from different sourdes, and (5) the stability of .this data
but dynamism of its structure.

2.1. Automatlc Collection

Unmanned spacecraft are essentially robots with sensors aboard
that are directed to measure some phenomenon such as the light
reflected off a small portion of the Earth, and to radio that obser-
vation to a receiving station. Because this process is totally auto-
mated, data can be collected at far greater rates and in much larger
volumes than in typical commercial applications where humans
must capture and introduce data. Spacecraft data collection rates
are limited only by the data rates of the sensors and the bandwidth
of the radio link to Earth. ’



The sensors having the greatest data rates are imaging sensors,
such as the Multi-Spectral Scanner (MSS) aboard Landsat 3 and
the soon-to-be-launched Landsat D. See Figure 1. This type of
sensor contains a row of photoelectric cells that convert light
intensities in a narrow band of the electromagnetic spectrum into a
vector of digital values called picture elements, or "pixels". Typi-
cally, the digital value is a byte (8 bits) that is capable of repre-
senting 256 distinct intensity values, but any number of bits may
be used depending upon the intensity resolution desired. Compli-
cated and very precise optics focus light onto the cells from a small
portion of the Earth (about 60 meters square for the MSS). As
the optics are moved mechanically or electrically, they sweep out a
"footprint” on the Earth that is converted into a sequence of
vectors, i.e. a two-dimensional array. This matrix of pixels is used
on the ground to re-create a raster image of that footprint. All
this tine, the spacecraft is of course moving relative to the Earth,
so the optics can sweep back to "observe" another footprint to be
radided in succession (see Figure 1).

A single image, and the ancillary information about that image that
is appended to it during processing, requires so much storage that
it must be stored in a series of files. As an example, the format
for the MSS is shown in Figure 2 [HLKN 79]. The tape directory
file contains attributes of the entire image, such as the spacecraft
and time of observation. For each spectral band (color of light),
there is a large image file surrounded by a scene attribytes file and
a trailer file. The scene attributes file has more detailed informa-
tion about that image, such as how it was geometrically or radiom-
- etrically corrected, formatted, or otherwise processed. All but the
image file are comprised of character, integer, real, or bit data
types; each record of the image file typically containg a row of the
picture that is stored as a record number followed by thousands of
byte-sized pixels (see Figure 2). Note that to treat the entire
image for one spectral band as a single entity would ideally require
a 3240 by 2430 array of bytes.

TAPE DIRECTORY FILE
1 1
| I

(" SCENE ATTRIBUTES FILE

LANDSAT-D
SATELLITE
ALTITUDE = 705 km

GROUND

WIDTH RESOLUTION:
=185 km ™ ~30m
o MSS ~60'm

Figure 1: Example of satellite remote sensing data acquisition
(Landsat D {NASA 81)). :
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REPEATING

GROUP: 2430 LINES
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BAND

AN

) \PICTURE ELEMENT (OR 'PIXEL")

TRAILER FILEL_C%

OF ONE BYTE, WHICH CAN
REPRESENT 256 (;‘RAY fﬁ/ﬂs

Figure 2: Example format of satellite image files (Landsat 3 Multi-Spectral Scanner [HLKN 79}]).
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The rates at which imaging sensors can generate bits is astoundipg.
For example, the Thematic Mapper (TM), a 30-meter resolut19n
imaging sensor also aboard Landsat D, will generate 85 xpegalgxts
per second [ENGL 82). Operating around the clock, imaging
sensors are currently capable of generating 1011 to 1012 bits per
year. Advances in.-sensor technology will make rates of 1015 bits
per year likely by 1990-FBRCK 80]. The implications for database
management are obvious and most thallenging.

2.2. Regularity. of Acquisition

The regularity with which automatic sensors can acquire data lends
to the resulting database a natural structure that ¢an be exploited
for conceptually and physically organizing it. The trajectory of the
spacecraft as a function of time is quite predictable, and the space-
craft attitude (orientation) and pointing angles of each sensor are
cither fixed or adjusted at known times by ground contollers. This
makes the location of a sensor’'s footprint functionally dependent

upon time in a calculable way. The calculation is geometrically .

non-trivial but accurate to a first level of approximation.

Most Earth-orbiting satellites are in either geosynchronous or
low-altitude .near-polar orbits. Geosynchronous satellites such as
the GOES weather satellites and communication satellites orbit the
Equator at altitudes high enough (25,000 miles) that their speed
matches that of the Earth’s rotation. Thus the satellite appears to
be in a fixed position relative to an observer on Earth. Low-
altitude near-polar satellites are more common for scientific obser-
vation, because their low altitude (typically about 700 km) permits
finer spatial resolution and eventual observation of the entire
Earth from the same viewing angle. The Landsat series of space-
craft, illustrated in Figure 1, have an orbit of this type.

Low-altitude orbits have a few disadvantages, however. Since only
small portions of the Earth’s surface are observed at any time, and
since footprints of successive orbits ("'swaths") are not adjacent, it
is difficult and sometimes impossible to construct synoptic views of
areas spanning more than one swath. For relatively stable phe-
nomena such as the Earth’s gravitational field, this presents no
problem, but transient phenomena such as weather and ocean state
change before the adjacent swath is gvailable (sometimes days
later). In addition, adjacent swaths may spatially overlap
(particularly at the poles) or suffer gaps between them (especially
near the Equator), as shown in Figure 3. Depending upon the
location of stations available at any time for receiving the
spacecraft’s telemetry, similar gaps and overlaps in time can also
occur. In addition, there is the usual problem in mapping geo-
graphical location to the database in a way that keeps adjacent
locations close to one another in the database [NAGY 79]. How-
ever, this latter problem is not unique to sateflite-acquired or even
geographical databases, as it is simply the problem of wishing

cluster data in storage based upon multiple keys. . :

The major implication of satellite data collection for database
management is that order of acquisition is a natural key because
there is an obvious and predictable relationship that permits us to
calculate the portion of the Earth’s surface that is under observa-
tion at any time: the satellite’s ephemeris. Visualize the swath
viewed by the satellite’s sensors as a continuous string, wrapped
around a ball that is revolving in a direction at right angles to the
direction of wrapping. Eventually the entire ball is covered by one
or more layers of string.. The function "

latitude, longitude = f ( time ) (1)

is of course continuous and well-defined according to the laws of
motion, so it can be mathematically inverted:

time = f-1 ( latitude,longitude ) (2)

. ship?

where the time may not be unique if the spacecraft is orbiting. It
is then easy to use time as the primary key for access, while ex-
ploiting equation (2). to calculate the time(s) a given spacecraft
passed over a given latitude and longitude. We call this special
case of functional dependency a "calculable functional dependen-
cy".

2.3. Continuous Domains

The domains from which science samples -- such as space, time,
frequency, temperature -- are generally continuous. Commerce, by
comparison, deals mostly with discrete objects such as people,
departments, part numbers, types, dollars, etc. Représenting

continuous domains digitally poses the same problém for DBMSs
that it does for other scientific programs: at what Tevel of resoly-

tion should the domain be discretized? Put another, way, at what
granularity should we sample the domain? The finer the granulari-
ty, the more distinct possible values. For an index, for example,
should the values 3.14159 and 3.1416 be treated as the same
value? What about 3.14159 and 3.14160? What meaning does,
equality have for discretized values that were sampled from ‘a,
continuous domain by differént observers (see section 2.4)? '

Similarly, we may wish fo vary the granularity of display to see
cither detailed or summary (synoptic) phenomena [SHOS 82]. .In
other words, we need to zoom in or out for a more-or less detailed_
view of the same data [STON 82c]. For example, to determine the
best route from Los Angeles to New York, one observes a small-
scale map that omits all but major highways. Such a map wouild b¥
useless, however, 1o an observer trying to locate La Cienaga Blyd.
in Los Angeles. The degree of detail must be determined by the
usér’s application. Since scientists are interested in exploring both
micro phenomena (e.g., wave formation in squalls, or coastal
upwelling) ds well as macro phemomena (e.g., major currents)
using the same data, scientific remotely-sensed databases must
Qrovide a hierarchy of resolution. Coarser resolutions can be
derived by aggregating the finer resolution values; however, the
reverse is not possible. Scientists therefore often wish to retain all
measured resolution. Not only does this increase the volume of
observations, but also in the absence of standardization it makes it
very difficult to compare data that has been collected at slightly
different resolutions, as discussed below.

2.4. Differing Data Sources

The unique way in which individual scientists and state-of-the-art
sensors collect data makes almost impossible the standardization
that we take for granted in commercial applicatidns. As a result, it
is very difficult to relate two observations, even if they were col-
lected at the same place at the same time. In such an environ-
ment, the importance of information about the data, or "meta-

"data", is increased [McCA 82]. The meaning and derivation (or

"pedigree") of individual fields in scientific databases must be
much more thoroughly documented. ‘
When an attribute called SALARY of entity EMPLOYEE is de-
fined in a commercial database, we expect from experience that
the item will express gross remuneration in dollars for an individu-
al. The only question is whether it is in dollars per year, per
month, or whatever. For the attribute WIND__SPEED, the mean-
ing is not s0 well-defined, even to a meteoroiogist! Is it instanta-
neous (to what accuracy?) or averaged over 1 second, 1 minute, or
1 hour? Is it measured at the surface (what is the meaning of
surface over the ocean -- Mean High Tide?) or at 10 meters or
19.5 meters or the height that an annemometer is mounted on a
With what kind of .instrument was it measured

(annemometer vs. wind balloon vs. microwave remote sensing)? Is
it the raw observation or processed, and if processed using what
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Figure 3: Gaps/overiaps in data from low-altitude satellites.
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Figure 4: Differing observational geometries, footprints, resolutions, and atmospheric paths for 2
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spacecraft viewing the same feature simultancously.



algorithms, corrections, models, assumed constants? Does
WIND__ SPEED include the direction the wind is blowing, or is
that WIND__ VELOCITY? The role of the data dictionary in
organizing this sort of information about the database must be
greatly expanded to incorporate this vital "pedigree" or "catalog"
or "meta-data" information that is so important to the scientist
(see also [McCA 82], [SHOS 82]).

Even when so documented, scientific data from different sources
may still be difficult to reconcile. As illustrated in Figure 4, im-
ages that are simultaneously taken of a common surface feature
may nonetheless suffer from differences in observational geometry
(viewing angle and spacecraft - altitude), sensor resolution and
"footprint" shape, and even different air columns through which
the light traveled from the feature to the sensor. The latter aspect
is important because moisture, particulates, and atmospheric thick-
ness all affect the transmission of different frequencies of light in
varying ways, acting as a filter or refractor. Scientists have de-
vised image processing techniques such as rubber sheeting, resam-
pling, and atmospheric modeling (respectively) to compensate for
these differences, but the costs of these techniques make them
prohibitive for ail but a few objects of high interest: they could
not, for example,;be applied to all candidates of a query. Hence,
even though data about a common feature on the surface of the
Earth may have been observed simultaneously by two spacecraft
and users wish to compare those observations, often that relation-
ship is not exploited in a highly related database because the
meaning of the comparison is questionable without at least know-
ing many other acquisition parameters and performing significant
additional processing.

2.5. Static Data, Dynamic Structure

Researchers are loath to alter or discard observations that were
acquired at great expense and whose value may increase with time
as historical data. Therefore, scientific databases -- as statistical
databases [SHOS 82] -- are altered over time almost exclusively by
inserts rather than updates or deletes. This stability is advanta-
geous in that it reduces the required concurrency control and
recovery mechanisms, as well as the performance penalty for
indexing many attributes [SHOS 82]. However, it poses significant
data retirement and archiving problems. "Old scientific data never
dies; it just gets *archived’ or reprocessed or restructured in new
ways'" (with apologies to Gen. MacArthur).

Often the relationships linking observed values cannot be com-
pletely defined a priori, and are very likely to change as analysis of
thé observations proceeds. In fact, determining the nature of such
relationships might well define science. This dynamic structuring
of observations argues strongly in favor of using relational DBMSs.

However, fairly static relationships exist between any observation
and six selection criteria that appear to be universally used by
scientists for database retrieval:

(1) Parameter (e.g., temperature or salinity)

(2) Methodology (i.e., the instrument, measurement techniques,
and processing to acquire the value recorded)

(3) Place (i.e., geographical location)

(4) Time

(5) Quality (an unquantifiable amalgamation of assumptions,
individual responsible, instrument calibration and malfunc-
tions, precautions taken, uncertainties, degree of
"cleaning" done, etc.)

(6) Groups or ranges of measured values [SHOS 82] (e.g.,
categories of values such as categories of wind-speed ob-
servations: "fresh breeze", 'gale", "whole gale",
"hurricane", etc.).

These latter, more static, relationships were the primary focus of
our database design, discussed below.
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3. PROTOTYPE DESIGN AND IMPLEMENTATION

A prototype database was implemented at JPL using data from the
Joint Air Sea INteraction (JASIN) Experiment, which included
measurements of meteorological and oceanographic parameters in a
small part of the Atlantic Ocean near Great Britain during a 3-
month period in 1978. Data from both in situ and satellite sources
was simultaneously and intensively collected for the same region,
and documentation of measurement methods and computer proc-
essing was readily available.

3.1. System Overview

A combination of DBMS software and custom application software
with video display and storage hardware was designed to integrate
image and non-image data. A simplified: diagram of the system
hardware and software is shown in Figure 5. The database and
the DBMS are installed on a DEC VAX 11/780 running under the
VMS operating system. A DEC VT100 terminal is the standard
user device for query input and data display. A Sony video disk
unit and a Sony video display monitor for storing and displaying
image data have been tested and can-be connected to the VAX by
a modem and standard RS-232 cables. Images are stored in video
(analog) format on the video disk unit; optical disks that store
digitally formatted data are not yet commercially available [SBS
80).

The INGRES relational DBMS [RTI 82] using the QUEL query
language provides access to the database. The INGRES Terminal
Monitor is the standard interactive user interface to QUEL. The
monitor allows entering, editing, saving, and executing queries, and
provides an interface to standard VMS system services. It is possi-
ble to leave the INGRES monitor to execute another program and
then return to INGRES with the context intact. A macro facility
permits addition of user-written extensions to the query language,
from abbreviations (e.g., DEFINE; ALG; algorithm; ) to lengthy
instructions with variable parameters defined at execution time.
Application programs are written in FORTRAN with embedded
QUEL statements. The QUEL statements can be tested interac-
tively before they are included in the application program.

The interface to the video disk and-display is still under develop-
ment. The video disk unit displays a particular image on the video
display in response to a character string input. The disk unit is
designed to accept data in a standard terminal protocol, and has a .
limited capability for returning status data (found/not found,
current track number) to the computer. A device handler program
will be written to manage communication with the video disk unit.
An application program whose query is satisfied by images in the
database will receive the appropriate image numbers from the
DBMS, which correspond to tracks on the video disk, and send
them to the device handler program.

3.2. Database Design

As discussed in section 2.5, science data is typically retrieved using
parameter, methodology, time, place, and/or range of measured
values as primary selection keys. An example query (in QUEL)
containing specifications of four of the keys (and abbreviating
OBSERVATIONS as OBS) is:

RETRIEVE (OBS.ALL)

WHERE OBS.DAY# = 78183

AND OBS.PARAMETER = "*TEMPERATURE"
AND OBS.SENSOR = 1023 o

AND OBS.LAT >=358.

AND OBS.LON < 63.
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Figure 5: Overview of prototype system configuration.
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Much effort was expended in developing a proper design for the
database, in order to facilitate both user understanding of the data
and efficient access and retrieval. For this we used the Entity-
Link-Key-Attribute (ELKA) model [RAMY 83], an extension of

Nhan’e Ontitv_Dalatinnchin madal [(VHEN 761 Tha madal nravad

SoAlViIL D uuul,-l\vmuvunmy MHAVUWA | WAERLLN VU] Alv LIVMWL IV YW
to be a very useful communications medium between users
(primarily oceanographers) and the system designers (database,
image processing, and data cataloging experts). After many itera-
tions, the design converged to that shown in Figure 6.

To aid the reader in understanding the design, let us review briefly
the ELKA database modeling conventions. Each entity in the
database is represented by a box in the ELKA diagram, with the
name of the entity in the small box at lower left. Attributes whose
values describe the entity are named in the:-box. Key attributes
sufficient to uniquely identify each instance of the entity are un-
derlined in the diagram. For example, in Figure 6, each instance
of the entity named SENSORS has a unique identifier
(SENSORS.SENSOR) and attributes- describing that instance’s
type (SENSOR.SENSOR__TYPE) and platform (or vehicle) on
which it is mounted (SENSOR.PLAT__NAME). The lines con-

. mecting the boxes are links representing one-to-many relationships
between the connected entities, with the diamonds indicating the
"many" end of those relationships. Open diamonds indicate that
"many" may be zero, and solid diamonds indicate that "many" is
at least one. Each instance of a "many” entity displays the key
attribute(s) of the "one" entity to which it is related. The name of
the relationship is written alongside the link. For example, in
Figure 6, each PLATFORM instance CARRIES zero or more
SENSORS instances, and each SENSORS instance is carried by a
single PLATFORM. However, a named REGIONS instance must
be DEFINED BY at least one instance within the
REGION__DEFINITIONS table.

The major selection criteria listed earlier can be recognized as
clusters of entities in the design:

The five entities at the uppet left of Figure 6 describe the parame-
ter and methodology, including sensor type, the particular sensor,
the platform (e.g., spacecraft, ship, or airplane) which carried the
sensor, and the parameter measured by that sensor.

The four entities at the lower left document the data quality par-
ameters such as the principal investigator(s) responsible for collec-
tion and processing of the data, including the algorithms used and
the degree (LEVEL) to which processing has progressed..

A single entity (OBSERVING__DAYS) was used to represent time
because meteorological data was most commonly requested by
integer days. The entity has attributes of both (1) year concaten-
ated with (Julian) day number and (2) the triple (year,month,day)
because both systems were in common use.

The three entities on the upper right permit describing geographi-
cal location either by name or by ranges of latitude and longitude.
The JASIN experiment included five overlapping named areas,
only one of which was rectangular and one of which was circular.
It was decided to describe arbitrary regions in terms of 1-degree
points (intersections of 1-degree lines of latitude and longitude)
that are within each named region, effectively "binning" the data
in 1-degree squares. The REGION__DEFINITIONS entity con-
tains instances of these points.

The OBSERVATIONS (or OBS) entity includes the actual meas-
urements, identified uniquely by time, place, sensor, parameter,
and processing history. Since inclusion of all possible parameters

_in a single table would result in many null values when only a few

parameters were measured, we elected to include only a single
measured parameter per OBSERVATION. This high degree of
normalization leads to much redundancy of key values for each
measurement (see also [SHOS 82]). The DATA__SETS entity

‘ was introduced to remove some of the redundancy in the OBSER-

VATIONS entity by combining day, sensor, and parameter into a
single short parameter, effectively forming a hierarchy (see section
4.3 below-for a discussion of our need for hierarchies).

’_I‘he IM.AGES entity, a yet-to-be-implemented entity for storing
images in digital form, is related to the same entities in the same
way as OBSERVATIONS, but has different attributes such as
SUN__ ELEVATION that are unique to images (see sections 4.1
and 4.3 below for a discussion of ways to handle digital image data
types and their treatment as a special case of OBSERVATIONS).

PLAT-NAME, SENSOR-TYPE, PARAMETER, DAY#, YEAR,
DESCRIPTION DESCRIPTION DEFINITION MONTH, DAY REGION-NAME
PIATFORMS | SENSOR-TYPES ] PARAMETERS | OBSERVING DAYS REGIONS ]
CARRIES <§ USED FOR $ MEASURED BY DEFINED BY
| USED
SENSOR, PLAT-NAME, SENSOR, PARAMETER, | DURING MEASURED
SENSOR - TYPE UNITS/PIXEL SIZE DURING
—SmvSoRs ] | MEASURES
SENSORS METHODS
CALCULATED BY | CONTAINED IN
PRINCIPAL-INVESTIGATOR, DAY#, SENSOR,
ADDRESS, INSTITUTION _ RESPONSIBLE FOR PARAMETER, LAT, LON
SRINCIPAT MODES/SPECTRAL-BAND
INVESTIGATOR I [ DATASETS ] BINS
DEFINES é SElF.CTSé &oasmvmou OBSERVED IN
ALGORITHM, SENSOR] [PROCESSING- DAYE. SENSOR. PARAMEIER DAYZ, SENSOR, PARAMETER
PARAMETER HISTORY, PRINCI- PROCESSED Froe 2 e . TIME, PROCESS ING-HISTORY,
PRINCIPAL - PALINVESTIGATOR, LEVEL O TIME. PROCESS ING HISTORY, 1, _IREV, LAT.,LON ., SUN-ELEVATION
INVESTIGATOR PROCESSING-] LAT, LON , MEASURED-VALUE(SI| ' """ " piYS1CAL-LOCATION
ALGORITHMS HISTORIES OBSERVATIONS | IMAGES
USED FOR | CONSISTS OF COMPRISED OF
PROCESSING - LINE NUMBER, LAT.,

HISTORY, ALGORITHM

PROCESS I
SPECIFICATIONS

LON ., #PIXELS,
PIXELS (#PIXELS}

IMAGE LINES

Figure 6: Map of in situ and image catalog data base, using ELKA model [RAMY 83].
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The reader should verify that the database design supports the
following typical queries that may be posed by different specialists:

e sensor scientist:
Retrieve all data measured by an
anemometer on the ship John Murray.

o discipline scientist:
Retrieve all wind vectors for the

Meteorological Triangle region.

» principal investigator:
Retrieve all data collected by Paulson.

o pedigree:
Retrieve the names of all principal investigators
whose algorithms have processed wind data.

o image analyst:
Retrieve all images in the JASIN area from July 22.

3.3. Implementation Experierice

The prototype database was implemented directly from the ELKA
mode! design, with each entity represented by a relational table.
In situ data from the JASIN experiment were loaded and tested
first because they are richer in structure and more manageable in
quantity than the satellite data. However, the database design
applies equally to both remotely-sensed and in situ data.

The OBSERVATIONS table is the largest in the database, and will -

become far larger (>100,000 records) when all the JASIN data are
loaded. The input data consisted of groups of observations from
different sources, with records containing from one to ten parame-
ters measured at a single time and place. Re-structuring these into
our normalized OBSERVATIONS table made the loading process
slow and complicated. Deterntining which instrument measured a
- given parameter required manual comparison of text files, file
names, published documeints, and labeled drawings. Determining

the processing history of the observations in terms of which algor-
ithms had been applied reqlured even more manual detective work.
These are typical problems in gathering scientific data for a data-
base.

Once loaded, retrieval of data by joining even three tables proved
to be limited primarily by CPU and/or page swaps. Performing
complicated multi-table joins in a step-by-stép manner, i.e., as a
series of two-table joins, proved easier for s number of reasons.
Two-table joins were faster, preserved joins for later use, and
provlded intermediate results to the user that made a complicated
“join easier to understand and that confirmed -correct progress.

However, the intermediate results required storing additional tables
that were both redundant and unnormalized, leaving the database
vulnerable to inconsistency and update, insert, and delete anoma-
lies.

Table proliferation was a problem when results were saved in
physical tables to avoid the delay of repeated RETRIEVEs. After
some weeks, the database became laced with forgotten tables,
which the users were reluctant to purge without examination but
which required too much time to examine. In a production envi-
ronment, this could not be tolerated. The use of views would save
the physical storage space, but at the expense of repeating expen-
sive joins whenever the view was used.
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The definition of regions in terms of 1-degree points is convenient
and easy to use, even for odd-shumd regions such as ocean coast-
lines. Although each region that is defined requires a detailed list
of points that it contains, this need be done only once to define 8 .
region, and combining multiple regions into a. single region only -
requires appending tables. ° Sineetheumereﬁonktypie‘llng
repeatedly and rarely -- if ever -- ¢ .defining new regions is
required infrequently. Selection of geographic data by region ‘
requires a join, for example (in QUEL): )

RETRIEVE ( OBS.ALL ) . ‘
'WHERE OBS.LAT = REGION__DEFINITIONS.LAT
'AND OBS.LON = REGION_"DEFINITIONS.LON
AND REGION_ DEFINITIONS.REGION NAME
= "HYDROGRAPHIC Y AREA"

As discussed above, for hrger regions, performarice is imptoved by,
creating a new table by saying:

RETRIEVE INTO HSA ( REGION. mapmmons ALL)
WHERE REGION ' DEFINITIONS
" = "HYDROGRAPHIC SURVEY AREA"

and thus simplifying the geographic selection to:

RETRIEVE ( OBS.ALL )
WHERE OBS.LAT = HSA.LAT
AND OBS.LON = HSA.LON

3.4. Future Plans

The two major extensions planned are. (1) the loading of satellite
dats and (2) the integration of the image catalog and display.

A large number of satellite. observations are available from the
Pilot Ocean Data System for the same time- period and regions as
the JASIN in situ data currently in our database. Loading the
satellite data is a straightforward process, but was postponed due
to disk space restrictions on the prototype. We anticipate no
fundamental changes to the database design, and achieving the
important scientific work of interco concurrent satellite
and in situ data of the same meteorological phenomena.

To demonstrate the video disk, 10 imagea from the Advanced Very.
High Resolution Radiometer (AVHRR) imager aboard Tiros-N and
approximately 400 images from the Synthetic Aperture Radar
(SAR) aboard Seasat, some of which coincide in time and region.
with the JASIN experiment, have been recorded on an analog laser
video disk, at an approximate.cost of $0.70 per image. Random
access to the 50,000 images storable on one side of the video disk,
which may be controlled like a terminal, has been demonstrated
under the control of an APPLE microcomputer. A stub program
has demonstrated access to the database and control of any
terminal-like device by an application program invoked from the
Terminal Monitor of INGRES. It remains only to link these two
portions by developing a device control program for: the optical
disk on the VAX, so that it may be invoked by our application
program, and to enter the approprinte image catalog data for uch
image on the video disk.-



4. DBMS REQUIREMENTS FOR
REMOTELY-SENSED DATA

The implementation of our application would have been simplified
and its power and performance considerably enhanced, with a
DBMS having the following capabilities. A more comprehensive
but less detailed discussion of requirements for this type of data-
base can be found in [LOHM 81]. Many of the requirements of
[McCA 82] for management of metadata are also relevant to our
application, because much of our database could be considered to
be metadata. In fact, a major motivation for our database was the
recognition that the boundary between data and its meta-data is so
fuzzy as to be undefinable.

We discuss below additional requirements upon DBMSs that are
implied by remotely-sensed data, and briefly introduce some possi-
ble solutions. The syntax of suggested commands is given as
variations of SQL only to lend some precision to the examples, in
a form familiar to most readers. . Prototypes of some of. these
capablilities are under development, but to our knowledge no com-
mercially available system lias them all.

4.1. Data Types

Additional data types have been suggested by numerous authors
for various reasons. Many of these are needed for remotely sensed
data bases as well. Any data base containing scientific observa-
tions will need REAL (or FLOAT) and BINARY (or HEX) data
types. Some combinations of bits that are generated by scientific
instruments are not valid characters, and thus must be manipulated
as binary values. Although many commmercially available systems
do support REAL, they seldom support the BINARY data type.
REAL and BINARY numbers stored as TEXT strings are inade-
quate because they cannot be used in arithmetic expressions such
as (in SQL):

SELECT MEASURED VALUE, GAIN
FROM OBSERVATIONS
WHERE MEASURED _VALUE**2

* BETWEEN 6.2E3 AND 7.9E8
AND GAIN BETWEEN ’A0’X AND °FFX;

Furthermore, the storage of one bit as a byte when storing it as a
character is unacceptable for large volumes of data.

ARRAY data types are required for any grouping of homogeneous
data elements, such as time series observations and raster images
[CHOC 81, SHOS 82]. Unstructured fields of arbitrary length
(not limited to 32K bytes as LONG VARCHAR fields are in
SQL/DS) are needed to store large objects such as images that
may-be treated by the DBMS as a single, unstructured object at
some times {HASK 82a]. For example, when browsing the catalog
for an item of interest, the user retrieves an entire image, graphics

file, or document into his own personal data base. There, howev-’

er, his processing applications require structuring of the object into
myssothnthecanacceumindividualpixel “curve, or line of
text. For example, caulog entries would be created (in SQL) as:

CREATE TABLE IMAGES(
DAY# INTEGER,
TIME "INTEGER,
'SENSOR INTEGER,
PHYSICAL__LOCATION CHAR(12),
IMAGLEN INTEGER,
IMAGE OBJECT(IMAGLEN) );

where PHYSICAL LOCATION contains the physical device and

IMAGLEN contains the length in bytes of the object called IM-

AGE. The user would MIGRATE (see [HASK 82b]) the tuple
containing the amorphous object IMAGE jnto a table declared in
his database space:

- CREATE TABLE MYIMAGS(
DAY# INTEGER,
TIME INTEGER,
SENSOR INTEGER,

PIXELS (2430,3240) BINARY(8) );

so that queries can place conditions on individual pixels in a predi-
cate without having to transfer the entire object to the application
program;

SELECT PIXELS(L,))
FROM MYIMAGS
. WHERE( PIXELS(I-1,J-1) + PIXELS(I-IJ) +
PIXELS(1-1,J+1) + PIXELS(I ,J-1) +
PIXELS(I ,J) + PIXELS(I J+1) +
PIXELS(1+1,J-1) + PIXELS(I+1,J) +
PIXELS(I+1,J+1) ) /9
BETWEEN 'A(0’X AND 'FF'X;

This query retrieves all pixels whose intensities, when averaged
with all neighboring pixels, are between A0’ hex and 'FF’ hex.

Extensible data types, popular in prognmmmg languages such as .
Pascal, would enhance the semantic meaning and integrity-
checking capabilities of DBMSs independent of application pro-
grams, and would obviate the need for adding application-specific
data types (such as the "geognphicdatatype suggested [neb-

80]) cluttering the syntax of thé DBMS. Overmyer and
raker [OVER 82] have implemented "time" data types using
"experts", user-defined functions that are invoked from the DBMS

“to encode, decode, compare, and perform arithmetic operations on

the appllution—smdﬁc data type using database tables to trans-
late. They have nllo generalized experts somewhat to so-called
"abstract data types", where one can "DEFINE ADT name" and
procedures to eonvert compare, and perform arithmetic operations
on these types [STON 82b] It is not clear how these mechanisms
differ from experts. And unlike extensible data types, they do not

‘appear to permit nesting of type definitions to build complex types.

For example, one would like to construct an application-specific
data type by combining elemental data types snd predicates:

CREATE DATATYPE LATITUDE

= INTEGER BETWEEN -90 AND +90;
CREATE DATATYPE LONGITUD

‘= INTEGER BETWEEN -180 AND +180;
CREATE DATATYPE LOCATION

= (LATITUDE,LONGITUD);

Not only would the database better reflect the application, it could
also better match the host application language, and could facili-
tate the addition of new object types when using the DBMS to
store meta-data [McCA 82].

4.2. Table Attributes

ables in the original relational model had no explicit or implicit

ring of either its columns or rows (tuples), and no attributes
than the columns it contained and authorization information -
utheownerantrpmword OnlyKEYcolumnsreeeived

treatment.

ga;z*
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Stonebraker et al. [STON 82b], [STON 82c] have noted the need
to order tuples in a relation, particularly those containing lines of

text. In [STON 82b], they propose ordering a table with a com-
mand (in QUEL):

ORDER table-name BY field-1
<WITH field-2 = ASCENDING field-3>
DESCENDING

where the optional portion in brackets is a secondary ordering.
Field-1 becomes a line identifier that the user can see and manipu-
late in queries. It is indexed by a-special B-tree having a line
count in all but the leaf nodes, which contain tuple identifiers.
This and other text manipulation commands proposed by [STON
82b] would prove useful in manipulating textual descriptions in our
meta-data concerning data collection techniques, processing per-
:l:!:in“;’ underlying assumptions, caveats, etc. (not shown in our
gn).

However, ordering, like indexing, is often known when the table is
created, and hence should be part of the schema for that table.
We therefore propose that tables, like columns, can have attributes
that differentiate how the system should treat them.

One such attribute would be ORDERED:

CREATE mydoc ( text=c132 ) ORDERED
<BY (field-1,<field-2>,...)>

Omitting the BY clause vfould signal the system to create and
maintain the ordering field in the relation automatically and totally
transparent to the user.

A table could also have the attribute VERSIONED, in order to
permit the user to retain complete and consistent earlier versions

of the same large table (e.g., a design or document), only a small .

proportion of which changes at a time [HASK 82b]. VERSIONED
tables would have the updates for each version stored in a differ-
ential file [SEVE 76] rather than updating the table in place, until
a SIGNOFF command indicates the version to be an official,
approved version. Until SIGNOFF, the last signed-off version
remains read-only. At SIGNOFF time, all of the updates since the
last SIGNOFF (or in designated differential files) would be applied
to the last signed-off version, creating a new, "clean", official
version to work from.

4.3. Hierarchies

Several authors have documented the need for -- and possible
- approaches to -- hierarchically structuring tables in other applica-
tions, particularly for CAD/CAM and statistical applications
[HASK 82a], [HASK 82b], [KATZ 82], [McCA 82], [SHOS 82],
[MEIE 83]. Hierarchies occur in several ways in our application:

4.3.1. Hierarchies of Resolution

Section 2.3 mentioned the hierarchy of increasing resolution, with
data at each level representing the aggregation of the next lower
level of the hierarchy. However, re-deriving the aggregations each
time they are needed may be preferable to storing them in a hier-
archy of resolution.

4.3.2. Partitioning Large Tables into Equivalence Classes

As noted in section 3.2 above, efficient implementation of hierar-
chies would also help reduce redundancy and permit partitioning of
very large tables. For example, the OBSERVATIONS table in our
prototype database is very large and has a good deal of redundant
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key values, notably DAY#, SENSOR, and PARAMETER (see
Figure 6). If a hierarchy were to be constructed by making the

OBSERVATIONS entity a child of the DATA__SETS entity, using
the COMP__OF construct of [HASK 82b], then OBSERVATIONS
would be partitioned into equivalence classes having a common
DAY#, SENSOR, and PARAMETER, which need be specified .
only once in the parent DATA__SETS instance (see Figure 7).

While this reduces the redundancy within OBSERVATIONS, we
still have not truly partitioned OBSERVATIONS, because a join
with DATASETS will involve gll instances of OBSERVATIONS
unless ‘we index both DATA_ SETS.DID and OBSERVA-

TIONS.DID and join them with a semi-join.

4.3.3. Different Tables with Common Columns

Hierarchies also arise in our application because tables having
slightly different schemas may have columns of interest in com-
mon. For example, in our prototype database, the OBSERVA-
TIONS and IMAGES tables differ only by a few columns, such as
SUN__ELEVATION. To retrieve the sensor and parameter infor-
mation for all IMAGES or OBSERVATIONS (in fact, for all
tables having those columns) in the database that were acquired on
a particular date, we wish to say (in SQL): - . )

SELECT *.SENSOR, *.PARAMETER
FROM *
WHERE *.DAY# = 78183,

Currently, the only alternative to this query would be for the user
to (1) submit a query to the data dictionary to find the names of
tables having attributes SENSOR, PARAMETER, and DAY#; (2)
write down the table names; and then (3) repeatedly submit the
query, each time using a different table name in the same query.
There is no way to do it from an application program, short of
sneaky uses of SYNONYMs. -

4.3.4. Table Names as Query Variables

The problems described in sections 4.3.2 and 4.3.3 can be solved
by permitting table names in a query to be variables to be deter-
mined by the result of another, earlier do-at-open (i.e., uncorrelat-
ed) query. That result must be a single-column table (i.e., a vec-
tor) of valid names of tables that that user is authorized to access,
which was either built as a temporary table by a nested query
[SELI 79],[KIM 82], or is currently displayed on the screen. This
differs from the "transitive closure” suggested by [GUTT 82] in
that it is not limited to all progeny of a tuple in a single, fixed
hierarchy. Rather, any table that can be the result of a query can
provide the names of the table (see example below). If no predi-
cate constrains the choice of a table name query variable (as in the
example in Section 4.3.3), then all tables in the data dictionary
having all the columns referenced in the query would be candi-
dates. It is left up to the user as to whether his query makes any
sense semantically; the system only checks at bind time that the
table name is a valid one.

In most current systems that pre-compile queries, the table names
cannot even be application program variables, because until they
are known the system cannot perform catalog lookup, authoriza-
tion, optimization, binding, etc. With table names being variables,
pre-run-time compilation of the query would not be possible, a
significant performance objection unless these extensions are used
primarily for interactive queries. However, they provide a power-
ful and elegant extension to the query language that:

(1) Permits queries of the type given above; '

(2) Permits partitioning very large tables into equivalence
classes that will be accessed only if they satisfy a query
that specifies those keys that define the equivalence class;
and

(3) Saves the occasional user from having to remember table

. names in a large database. .



* ELKA Model of Hierarchy:

DAY#% SENSOR, DAY#, SENSOR, PARAMETER,
PARAMETER, TIME, PROCESSING_HISTORY,
LAT, 1ON,
MODE I MEASURED_VALUE
DATASETS OBSERVATIONS

Haskin and Lorie schema [HASK 82b]:

DATASETS

DID DAY#£| SENSOR | PARAMETER | MODE
IDENTIFIER | INT INT CHAR(14) | CHAR(2)

~
\‘\ -~

OBSERVATIONS  ~~_

0ID DID TIME | PROCESSING| LAT | LON |MEASURED

_HISTORY _VALUE |

IDENTIFIER | COMP_OF(DATASETS) INT CHAR(12) INT | INT REAL

Lohman et al. schema:

DATASETS
DAY# | SENSOR | PARAMETER MODE OBS_TAB_NAME
INT INT CHAR(12) | CHAR(2) CHAR(8)

-t

OBS_TAB_NAME % ~ ~

TIME | PROCESSING| LAT | LON | MEASURED
_HISTORY _VALUE

INT CHAR(12) INT | INT REAL

Figure 7: Two approaches to Hierarchies: IDENTIFIERS vs. Variable Table Names.
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As an example of the second advantage, suppose we added to the
'DATASETS table (see Figure 6) a column called

OBS__ TAB__ NAME, which contained a table name for all OB-
SERVATIONS instances having the same DAY#, SENSOR, and

PADR AMETER Thnea snlnmnes snnld than ha aliminatad fena
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OBSERVATIONS (see Figure 7). Then the following query (in
SQL) would access only those OBSERVATIONS with the specified
DAY#, SENSOR, and PARAMETER: :

SELECT MEASURED__VALUE

FROM X -

WHERE X IN
(SELECT OBS__TAB_ NAME
FROM DATA_ SETS
WHERE DAY# = 78183

AN CRENCND = 1N0Q
FRINES DADANDNIIN = v

AND PARAMETER = '"WIND*’)
AND TIME = 140000;

We have desigred a true hierarchy in which parents point to child-
ren, whereas Haskin and Lorie effectively have children point to
parents. We are therefore vulnerable to the update, delete, and
insert anomalies of a true hierarchy, but as we noted in section
2.6, the database of this application is relatively static. - Which
approach is better will depend upon the application.

4.4. Storage Device Interfaces

DBMSs today assume that all the data they manage is on magnetic
disk. Data on tape or mass store is assumed to be transferred to
disk by the operating system before being accessed by the DBMS.
However, in our design for the prototype, the catalog contains
addresses of data that may be on media other than the traditional
magnetic disk. And as the database grows, lesser-used data will
have to be archived offline but retain its entries in the catalog.
Hence the physical device type on which the data reside must be
explicitly maintained by the DBMS, because access methods will
vary depending upon the storage medium. For example, catalog
entries for IMAGE entities in our database must note if the image
is in analog form on the video disk, or in digital form on magnetic
disk. If the former, our video disk device controller must be in-
voked and passed the desired track number; if the latter, the usual
magnetic disk interfaces through INGRES to the operating system
are invoked. However, such physical device considerations should
be transparent to the user, as data migrates from one device to
another. S .

DBMSs will in the future have to interface with an increasing
variety of storage media types, between which data may migrate
dynamically. While the operating system will have to provide
access primitives for each type, the DBMS will still be responsible
for formatting the data, providing concurrency control and re-
covery mechanisms, keeping track of what data is on what device
(or else DBMS catalog.entries will point to incorrect locations),
and invoking the proper primitives depending upon device type.
Even a single table may have its attributes partitioned among
devices, so file level migration is inadequate. For example, our
IMAGES table has the key attributes on magnetic disk but the
corresponding (analog) image is stored on optical disk, linked by
the device track number.

This argues for an expanded internal schema, or even another laygr
of schema that maps the internal schema (which presumably is
device-independent) to a device-dependent schema [CODA 78],
[LOOM 80]. Such a mechanism would also permit the database
administrator greater flexibility in specifying system storage format
and parameters such as page size, locking granularities, etc. to
facilitate tuning performance. Although this would significantly
change an existing storage subsystem such as System R’s RSS, new
systems could incorporate the multi-level schema concepts of IPIP
[JOHN 82] that permit mapping between any number of schemas
using explicit mapping schemas.
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4.5. Application-Specific "Hooks"

As Stonebraker has nointed out gemantic extansions to DRMSCs
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are needed to enable it to better model the application [STON
82a], yet not all applications want to be burdened with the com-
plexity of the additional syntax. For example, we needed to define
extensions of QUEL that would measure the distance between two
points or determine if two regipns intersect. While such functions
would also be useful in CAD/CAM, not all applications would
benefit by such an addition. )

As mentioned in section 4.1 above, Overmyer and Stonebraker
originally implemented "hooks" to user-specified functions, called
‘experts”, to implement additional data types such as "time"
[OVER 82]. However, the functions invoked could perform only
one of four specific tasks: encoding a new data type into an inter-
nally coded value, decoding that internal value,: comparison; and
arithmetic on these data types. More recently, Stonebraker [STON
82a] has proposed collapsing the encoding and decoding function
types into a singie conversion function type. He also added a
general-purpose user-defined function type that permits the user to
define any external function that is invoked by its appearance in
an expression in the query, much as can be done in NOMAD
[NCSS 77]. JEEIEE :

While the conversion, comparison, and arithmetic function types
permit a simple implementation of abstract data types, we feel that
Stonebraker’s syntax blurs unnecessarily the distinction between
user-defined routines and the definition of usér-specific data types.
Furthermore, it is not clear whether user-defined- functions:can
have abstract data types as parameters, as this would force nesting
of routines. The Pascal-like syntax for extensible data types pres-
ented in section 4.1 would permit this nesting and would .leave
only one function type: the general-purpose, user-defined function.

An example in our application will illustrate:the broad usefulness

~ of user-defined functions with the syntax we propose. For exam-

ple, if we have a FORTRAN subroutine called DISTANCE to
calculate the distance between two points X and Y, then invoking
that function directly from a query saves retrieving ali tuples to the
application program and invoking the function there:

/* a vector in 3-space is defined by its 3 coordinates. */

DEFINE DATATYPE COORDINATE = INTEGER;
DEFINE DATATYPE VECTOR = COORDINATE(3);

. /* create a table full of points, each point being a
3-tuple. table POINTS contains attribute POINT, */

CREATE TABLE POINTS (POINT OF TYPE VECTOR);

/* define a distance function whose paramte}s are points
having type "vector", i.e., are specified as 3-tuples. */

DEFINE FUNCTION DISTANCE(VECTOR,VECTOR)
( <filename of FORTRAN subroutine> ,
FORTRAN, <type returned> )

/* use function called DISTANCE to retrieve
all pairs of POINT instances in POINTS
that are within 5.3 units of each other,
using cursors Tl and T2 on table POINTS. */

SELECT T1.POINT, T2.POINT
FROM POINTS T1, POINTS T2
WHERE DISTANCE( T1.POINT,T2.POINT ) <= 5.3;

The DEFINE would bind the DBMS’s internal name DISTANCE
to the filename containing executable code for the function, and
would reserve space for the parameter list, if any. The language in-
which the function is defined must be specified because of vatying
parameter-passing conventions among languages. -



Hooks of this sort provide a powerful mechanism for tailoring the
query language to a particular application. For example, using
functions similar to but more complex than the DISTANCE func-
tion, we could expand the query language to include all basic
spatial relationships between geometric objects --
adjacency/connectivity, containment, intersection/overlap, dis-
tance, and direction -- where the function invoked would be differ-
ent for objects of different dimension (points vs. lines vs. areas)
[TSUR 80]

4.6. Browsing Capabilities

Several published ideas for browsing data. in other applications are
practically a necessity in browsing remotely sensed data. :

One such idea is binding a relation to a user-specified "window"
on the screen, and allowing the user to browse the relation by
moving the cursor up and down and zooming in or out [STON
82c]. A useful augmentation would be to allow the user to define
another "left or right" cursor on the same or another relation, so
that the user could see tuples keyed by two attributes (e.g., lati-
tude and longitude) specified by movement of the mouse. Another
enhancement would be to permit queries against only those tuples
that are designated with TIMBER’s PICK command, as can be
done. with the MARK command of NOMAD [NCSS 77], instead of
-- or in addition to -- a predieate'

SELECT SPECTRAL BAND, MEASURED__VALUE
FROM. PICKED OBS O, PICKED DATA__SETSD
WHERE O.DAY# = D. DAY#

AND TIME < 140000;

The keyword PICKED qualifies the table name that follows it, to
denote the subset of that table’s tuples that were designated with
the cursor while browsing.

To browse a large relation efficiently, the user should also be
permitted to specify-that he wishes to display only every nth tuple.
Though this does not limit the data retrieved from disk, sometimes
the user’s terminal is the limiting resource (e.g., over a low-speed
phone line).

Another idea useful to remotely-sensed databases is Haskin and
Lorie’s CHECKOUT/CHECKIN commands [HASK 82b], which
perform concurrency control at a very macro level and are analo-
gous to a librarian [KATZ 82]. As with Shoshani’s statistical users
[SHOS 82], our users typically browse the entire database interac-
tively looking for data of interest, then transfer that subset to a
personal database for intensive study and processing (which may
update the retrieved data) -over a period ranging from hours to
months. The CHECKOUT and CHECKIN capability is required
for these long-period transactions to prevent two researchers from
altering the same data simultaneously or using the data unaware
that another researcher is altering it simulaneously (but offline).

In browsing large remotely-sensed databases, the scientific user
typically adds predicates until a manageable but not too small set
of observations has been designated. Therefore, the first response
to any query, in browse mode only, ought -to be an estimate of how
many tuples satisfy the query, so the user can judge whether the
system should bother to retrieve them all or not [McCA 82). Ina
system such as System R, the optimizer estimates the size of the
result of a query for assessing costs, and could make that result
available to the user before executing it. For queries whose predi-
cates affect only indexed columns, the exact size of the result is
calculable by accessing only the indexes and applying the predi-
cates to their values, the result of which is a set of tuple identifiers
(TIDs) satisfying the query.
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To facilitate the narrowing of queries based upon the results of
earlier queries, the user could define each query as a view and then
pose his next query against the view, i.e. FROM <view-nameéd>.
However, this becomes awkward if repeated: either the views
become nested, or the user has to re-enter thé entire query for
each new view. While Interactive SQL (ISQL) permits the label-
ing of queries for recall of the text, nesting of the label within
another query is not permitted: the.user can STORE the query,
RECALL it later, and then edit it with the CHANGE command.

We propose a simpler mechanism whereby the system prompts the
user for a new query with a system-assigned query number:

<query number>: <query>;

as is done, for example, in CCA’s Model 204 [CCA 80]. The
system automatically stores the query syntax for the last N queries.

.Thenthequerynumberednbeusedtosubsﬁtmforthcqu

text anywhere in another query.  Thus, we could express (in SQL)
our nested query in section 4.3.4 as: .

1: SELECT OBS__TAB_ NAME
FROM DATA__ SETS '
WHERE DAY# = 78183
AND SENSOR =109
AND PARAMETER = 'WIND*’

to review the intermediate results (the table names), and then

2: SELECT MEASURED__VALUE
FROM X
WHERE XIN1
AND TIME = 140000;

to see the desired data.

4.7. Encoded Values and Value Synonyms

Because relational systems establish relationships on values. rather
than through explicit pointers, redundancy of values can become
troublésome. There is a trade-off between long values that the
user understands and an encoded value that conserves space inter-
nally [SHOS 82]. Also, we sometimes wish to ¢stablish a synonym
relationship between several . values. For example,

*CALIFORNIA’, 'CALIF’, and 'CAL’ -~ all meaning the same

~'thing to the user -- would be better represented internally as "CA’.

An encoding and decoding mechanism more similar to the EN-
CODE and DECODE constructs of NOMAD [NCSS 77] than the
conversion functions of Stonebraker would be very useful to most
applications. - This involves creating a conversion table having two
columns, one for full-length values and one for encoded values,
e.g.

STATES
SNAME CODE
CALIFORNIA CA
CALIF CA
CAL a CA
cA CA
MICHIGAN MI
MICH MI
NO STATE null
null
none of the above null




"ENCODE (table- ,value)" would scan table-1 for the first occur-

rence of "value'. and return its matching code., Conversely,
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"DECODE (table-l code)" would do the reverse. Thus, multiple
values could have the same code (or vice versa), with the first one
being the preferred conversion. A default "none of the above"
can be named in case the value or code does not occur in the
table. Thus, in the above example, a value of blank or

"FRANCE" will be ENCODEJ as null, and upon DECODE will
read "NO STATE".

Any appropriate column name can replace the value or code value
in queries:

SELECT REGION__ NAME,
DECODE(STATBS,REGIONS STATE__CODE)
FROM REGIONS;

would convert internally abbreviated state codes in the table RE-
GIONS to state names, using the table STATES. Note that this is
different than simply doing a join on the conversion table

STATES. Clearly the functions ENCODE and DECODE could be
nmplemenwd using functions (see section 4.5).

Such a table-dnven encoding mechanism is easy for the user to
define and maintain in table-oriented relational systems, and is
eagier for the user to understand than writing a special routine to
perform this common task. More complex conversions could,
however, be performed with a user-defined function.

5. CONCLUSIONS

Our prototype has demonstrated the feasibility of using a relational
general-purpose DBMS for integrating remotely-sensed geophysical
data and its meta-data in a database that includes digital data and
images stored on video optical disks. Spacecraft as well as in situ
data were combined into a unified database design. While the
DBMS met all our expectations, our experience has suggested some
enhancements to DBMSs that we feel will be applicable beyond
our immediate application. For example, all applications have
need for more semantically meaningful data types such as TIME,
DATE, or NAME, and ARRAY data types are common in engi-
neering and statistical databases, ORDERED tables are essential
to document databases, VERSIONED tables to design databases.
Hiorarchies occur naturally in commercial applications, e.g. in
organization charts, as well as in engineering and statistical ones.
User-defined functions, browsing features, and value

encoding/decoding add customizing power to any application.
These applications have many requirements in common with those
of rémotely-sensed databases that we highlighted, and, together,
represent a significant future market for DBMS technology w1th
the enhancements that we have suggested.
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