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ABSTRACT 

Thi8 baper prescnt8- the characteristiw of scientific remotely-sensed 
databMw that am relevant to -- and pose unique challengeri for - 
general-purpose database management ayetemtt (DBMSr). We 
dwcribe a prototype system that integrates geophysical data and its 
m&data from both satellite and in r&u sources, wing a refational 
general-purpom DBMS to manage the catalog and observational 
data, and a video optical disk to archive images. Based upon our 
experience with this application, we suggest augmentations to 
DBMSB that would facilitate their use not only for scientific data- 
batres, but also for engineering, document, and even commercial 
databane applications. 

1. INTRODUCTION 

General-purpose database management systema (DBMS@. have 
found wide applicability to commercial enterprkr such aa barking, 
inventory management, pemonnel information, etc. More recently, 
the application horizons of GDBhfSr have widened to include 
geographical databaaea WARB 771, [NAGY 791, [STON 801, 
pictorfal databanes (often for geographical applications) [BRYN 
761, [BLSR SO]. [COX SO], [C&IAN 811, [CHOC 811, [ZBRS 811. 
engineering databases and CAD/CAM [LPTK 781, [BEET 821, 
[GUI-T 821, [HASK 82a], [JOHN 821, [KATZ 821, and office 
document8 [STON 82b]. Many of these novel applications have 
suggested enhancements to DBMS8 that are required to better 
model thoee database types. This paper presents a similar analysis 
for scientific data that is collected by scientiata using both space- 
craft and ground (in situ) aourw~ to study geophysical phenomena 
such &II atmospheric and oceanographic proceams. 

l Portions of this research were carried out at the Jet Propubion 
Laboratory, California institute of Technology, under contract 
NAS 7-100 with the National Aeronautics and Space Admidtra- 

tion. sponsored by the Information Systems Office, Office of Space 
science and Application. 
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Traditionally, DBMSI have not been used for these m for a 
V&&J’ Of mWOM, 8OlM Of WhiCh MW nill dbCM# -W. htr 
from each spacecraft have been atored chronologically on magumic 
tapeWillgbMiCfilCllW8ll6lllOth~~lll~~ 
Occasionally, DBMS8 have been used to catalog and QOI- 
refe&nce the tape& but inte8rfty problema a&d when the DRMS 
downotal6ommagethi’~~‘dataoDthetapw:thewh 
llO0l8UbODll~bOtWWtth8”~t848t8”hthOCdOg8Ddtbe 
keya to the &t8 on tqm Usem have kuea&gQ reque&d 
greater integration of data from muftfple 8om data hubpeud- 
ence, concurrency and integrity control for dm&an@w w by 
multiplewem,andmoreflexible’~me@anWvlaihfgh- 
feveevral-purpose query +tguage: all features provlded by 

In section 2, we first describe the’ aqtect8 that chamcW&e 
remotely-sensed geophysical databawa and that poee unique chal- 
lengw for DBMSs. Section 3 discum~ tlw &8ign.and impbmentr- 
tion of a,.prototype databane that p a re&t@uLDBMS to iute- 
grate oceanographic data and metadata from aild IR rlhr 
murw~~, aa an enhancement to NASA’8 Pilot 
(formerly caped the Ocean PUot System @RGW 82]~LZZ 
suggests some augmeatationn.to DBMSa that would e 

it- implementation and performance of 8cfentiffc.,~~mo Iy-senaud 
databases. i 

2. THE NATURE OF REMOTEJ.,Y-SENSED 
GEOPHYSICAL DATA ’ 

In this section, we will characteriue ~mrirotely-mneed geophydcaf 
databases, empha&ing thute .&fDctedtram rl#cearlt, the major 
.#ourceofour.databaae. Themoet~ofthe8ea8pecuthat 
pose unique challengea for DBhfSa are: (1) the automatfc, real- 
time collection of very large volumes of data vfa remote ,aen&g 
instruments, (2) the regularity and n&u@ure wfth which a ain& 

Sfic data from different source&~&l (5)’ the &biKty of .&a data 
but dynamism of ita structum. 

2.1. Automatic,CoIledo~ 

Unmanned spacecraft am essentially robotn wfth sen8ors aboard 
thataredimctedtomeasuresomephenomenonsuchUtlWlight 
reflsctedoffasmPllportionoftheButh,mdtordlo~oka- 
vation to a receiving station. Recauae thhr procem i8 totally auto- 
mated, data can be collected at far greater rate6 and in much larger 
volumes than in typical commercial applicatfona where humam 
must capture and h~troduce data. Spacecraft data coktion’rat~ 
~~~OnlybythedP~rPtecloftheaensonmdths~ 
oftheradiolinhtoRarth. 
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The sensors having the greatest data rates are imagin8 sensors, 
such as the Multi-Spectral Smer (MSS) aboard Landsat 3 and 
the soon-to-be-launched Landsat D. See Figure 1. This type of 
sensor contains a row of photoelectric cells that convert fight 
intensities in a narrow band of the electromagnetic q&rum into a 
vector of digital values called picture elements, or “pixels”. Typi- 
cally, the digital value is a byte (8 bits) that is capable of repre- 
senting 256 distinct intensity values, but any number of bits may 
be used depending upon the intensity resolution desired. Compli- 
cated and very precise optics focus light onto the cells from a small 
portion of the Darth (about 60 meters square for the MSS). As 
the optics are moved mechanically or electrically, they sweep out a 
“footprint“ on the Earth that is converted into a sequence of 
vectom, i.e. a two-dimensional array. This matrix of pixels is used 
on the ground to re-create a raster image of that footprint. All 
thb thne; the 8pawcwft Is of coume,moving relative to the Darth, 
so the optiw cpn sweep bach’to “observe” another footprint to be 
radibed in swxessjon (see Figure 1). 

A shrgle image, and the ancillary information about that image that 
is appended to it during processing, requires so much storage that 
it must be stored ln a series of fifes. As an example, the format 
for the hfSS is shown in Figure 2 [Hwy 791. The tape directory 
flle contains attributes of the entire bnage, such as the spacecraft 
and time of observation. For each spectral band (color of light), 
there is a large image file surrounded by a scene attributes file and 
a trailer file. The scene attributes file has more detailed informa- 
tion about that image, such as how it was geometrically or radlom- 
et&ally corrected, formatted, or otherwise processed. All but the 
image file are comurised of character, integer, real, or bit data 
typee; each record of the image fife typically contains a row of the 
picture that is stored as a record number foilowedby thousands of 
bykiued pixels (see Figure 2). Note that to treat the entire 
image for one spectral band as a single entity would ideally require 
a 3240 by 2430 array of bytes. 

TAPE DIRECTORY FILE 
II . 8 

I IP I I I 
I - I -SCENE AlTRIBUTES FILE v , , I I '- 
HEADER RECORD I III 7 
(ANCILLARY RECORD) 
ANNOTATION RECORDS 

,,',.,, ' ' ' 1 I 

IMAGE RECORD ID 3240 BYTES 
FILE 

REPEATING 
GROUP: 
l/SPECTRAL 
BAND 

LANDSAT-D 
SATELLtTE 

’ SCAN’WIDTH 
5 =48Gm 

I/- --.! 
SWATH u GiOUNtl ’ 
WIDTH RESGLUTtGN: 
= 185 km TM -3G.m’, 

M88~8oi 

4 243D LINES 
(RECORDS) 

I 
F&m 3: Bxample format ef satelgte image ffles @au&at 3 Mdtl-Spwtrd Suuner [DUN 791). 
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where the time may not be unique if the spacecraft is orbiting. It 
is then easy to use time as the primary key for access, while 8x- 
ploiting equation (2). to calculate the time(s) a given spacec& 
passed over a given latitude and longitude. We call thls spedal 
cay of functional dependency a “calculable functional dependen- 
Cy. 

The rates at which imaging sensors can generate bits is astounding. 
For example, the Thematic Mapper (TM), a 3O-meter resolution 
lmaglng sensor also aboard Landsat D, will generate 85 megabits 
per-second. [ENGL 821. Operating around the clock, imaging 
sensom arc currentlv cauable of generating 1011 to 101s bits per 
year. Advances b&n&r technology will make rates of 101s bits 
per year likely by 19@&RCK 8t)]. The implications for database 
management are obvious and most ehallenglng. 

2.2. Regularity. of &quiskion 

The regularity with which automatic sensom can acquire data lends 
to the remking dat8bme a natural structme that can be exploited 
for conceptually and physically orgamxlng it. The trajectory of the 
spacecraft as a function of time is quite predictable, and the space- 
craft attitude (orientation) and pointlng angles of each sensor are 
either fixed or adjusted at known times by ground contollem. This 
makes the location of a sensor’s footprint functionally dependent 
upon time in a caldble way. The,calculation is geometrically. 
non-trlvial but accurate to a fii level of approximation. 

Moat Earth-orbiting satellites are in either geosynchronous or 
low-altltudenear-polar orbits. Geosynchronous satellites such as 
the GGES weather satellites and communication satellites orbit the 
Equgtor at altitudes hlgh enough (25,OOO miles) that their speed 
maths that of the Earth’s rotation. Thus the satellite appears to 
be in a fixed position relative to an observer on Earth. Low- 
altitude near-polar satellites are more common for scientific obser- 
vatlolt, because their low dtltude (typidy about :7OO km) permits 
fmer spatial resolution and eventual observation of the entire 
Esrth from the same viewing angle. The Landsat series of space- 
craft, ilhwtrated in Figure 1, have an orbit of this type. 

Low-altitude orbits have a few disadvantages, however. Since only 
small portion of the Earth’s surface are observed at any time, and 
since footprints of mmcesslve orbits (“swaths”) are not adjacent, it 
is difficult and sometimes impossible to construct synoptic views of 
areas spanning more than one swath For relatively stable phe- 
nomena such as the Earth’s gravitational field, this presents no 
problem, but transient phenomena such as weather and ocean state 
change before the adjacent swath is available (sometimes days 
later). In addition, adjacent swaths may sp&lally overlap 
(partic&rly at the poles) or suffer gaps between them (espe&lly 
near the Equator), aa #hewn in FQure 3. Depending upon the 
location of stations available at any time for receivin8 the 
spacecraft’s telemetry, similar gaps and overlaps ln time can also 
occur. In addition, there is the usual problem in mapping geo- 
graphical location to the database in a way that keeps adjacent 
locations close to one another in the database [NAGY 791. How- 
ever, tbis latter problem is not unique to sat@llte-acqulred,or even 
geographical databases, as it is simply the problem of wlehing to 
chwter data in storage based upon multiple keys. 

The major implication of satellite data collection for database 
management ls that order of acquisition is a natural key because 
there ls an obvious and predictable relationship that permits us to 
alcuhxte the portion of the Earth’s surface that is under observa- 
tion at any time: the satellite’s ephemeris. Visualixe the swath 
viewed by the satellite’s sensom aa a continuous string, wrapped 
around a ball that is revolving ln a direction at rlght angles to the 
direction of wrapping. Eventually the entire ball is covered by one 
or more layers of string. The function I 

latitude, longitude = f ( time ) (1) 

is of course continuous and well-defined according to the laws of 
motion, so it can be mathematically inverted: 

time I f-1 ( latitude,lOngltude ) (2) 

2.3. Continuous Domains 

*me domains from which science samples - such as space, time, 
frequency, temperature Li are generally continuous. Commerce,.by 
comparison, deals mostly with discrete objects such as people,’ 
departments, part numbem, types, dollars, etc. Repr&mlng 
contlnuoits domains digitally poses the same prob. m for, DBMSs 
that it does for other scientific programs: at what %I pel of re?‘d\i, 
bon should the domain be discretised? Put anotheqway, at what 
granularity should we sample the domain? The finer the gram&t& 
ty, the more distinct possible’valws. For an index, for example,: 
should the vahms 3.14139 and 3.1416 be treated as the suns, 
v&e? What about 3.14839 and 3.141607 What meanlug .&es, 
equality have for discretixed valws that were sampled from ‘a 
continuous domaln by different obgervem (see section 2.4)? 

Similarly, we may wisli ,iq vary the gmmdarity of display to see 
either detailed or summary (synoptic) phenomena [SHGS 82). In 
other words, we needto xoom in or oat for a more-or lw do 
vkw of the same data [STGN 82c]. For example, to determine Y?t “ 
best rout8 from Los 

2 
@II t6 New York, one obeerves a small-’ 

scale map that omits all ut maior hlshwavs. Such a man would bii 
ugdess. however, to an observer try&g 6 locate La Cl&&a I&& 
in Los Angeles. The’ de,grce”sf, detail muit be .&tee by ‘the 
user’s application. Since scientistsXr% i&rested in exploring both 
micro phenomena (e.g., wave formation in squalls, or coastal 
upwelling) ale well as macro phenomena (e.g., major currents) 
using the same data, scientific remotely-sensed databases must 
provide a hierarchy of resolution. Coarser resolutions can be 
derived by aggregating the imer resohuion vahses; however, the 
reverse is not possible. Scientists therefore often wish to retain all 
measured resolution. Not only does this increase the vohune of 
observations, but also in the absence of standardixation it makes it 
very difficult to compare data that has been collected at slightly 
different resohttions, as discus& below. 

2.4. Differing Data !!huces 

The uniqiw way in which individual scientists and state-of&+ut 
sensors wllect data makes almost impossible the standardixation 
that we take for granted in commercial applicati&s. As a result, it 
is very difficult to relate two observations, even lf they were col- 
lected at the same place at the same time. In such an environ- 
ment, the ,importance of information about the data, or “meta- 
data”, is ii~creased [McCA 821. The meaning and derivation (or 
!‘pedigree”) of individual fields in scientific databases must be 
much more thoroughly documented. 

When an attribute called SALARY of entity EMPLOYEE is de- 
fined in a commercial database, we expect from experience that 
the item will express gross remuneration ln dollars for an individu- 
al. The only question ls whether it ls in dollars per year, pet 
month, or whatever. For the attribute WIND SPEED, the mean- 
ing ls not so well-defined. even to a meteorol~t! Is it lnstanta- 
&us (to what accuracy’?) or averaged over 1 s&md. 1 minute, or 
1 hour7 Is it measured at the surface (what is the meaning of 
surface over the ocean -- Mean High Tide?) or at 10 meters or 
19.5 metem or the height that an annemometer is mounted on a 
ship? With what kind of instrument was it measured 
(annemometer vs. wind balloon vs. microwave remote sensing)? Is 
it the raw observation or processed, and if processed using what 
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algorithms, corrections, models, assumed constants? Does 
WIND-SPEED include the direction the wind is blowing, or is 
that WIND VELOCITY? The role of the data dictionary in 
organizing txs sort of information about the database must be 
greatly expanded to incorporate this vital “pedigree” or “catalog” 
or “meta-data” information that is so important to the scientist 
(see also [l&CA 821, [SHOS 821). 

Even when so documented, scientific data from different sources 
may still be difficult to reconcile. As illustrated in Figure 4, im- 
ages that are shnultaneously taken of a common surface feature 
may nonetheless suffer from differences ln observational geometry 
(viewing angle and spacecraft altitude), sensor resolution and 
“footprint” shape, and even different air columns through which 
the light traveled from the feature to the sensor. The latter aspect 
is important because moisture, particulates, and atmospheric thick- 
ness all affect the transmission of different frequencies of light in 
vvg ways, acting as a filter or refractor. Scientists have de- 
vised image processing te&iques such as rubber sheeting, resam- 
pling, and atmospheric modeling (respectively) to compensate for 
these differences, but the costs of these techniques make them 
prohibitive for all but a few objects of high interest: they could 
not, for example&e applied to all candidates of a query. Hence, 
even though data about a common feature on the surface of the 
Barth may have been observ4 simultaneously by two spacecraft 
and users wish to compare those observations, often that relation- 
ship is not exploited in a highly related database because the 
meaning of the comparison is questionable without at least know- 
ing many other acquisition parameters and performing significant 
additional processing. 

2.5. Static Data, Dynamic Structure 

Researchers are loath to alter or discard observations that were 
acquired at great expense and whose value may increase with time 
as historical data. Therefore, scientific databases -- as statistical 
databases [SHOS 821 -- are altered over time almost exclusively by 
inserts rather than updates or deletes. This stability is advanta- 
geous in that it reduces the required concurrency control and 
recovery mechanisms, as well as the performance penalty for 
indexing many attributes [SHOS 821. However, it poses significant 
data retirement ahd archiving problems. “Old scientific data neve’r 
dies; it just gets ‘archived’ or reprocessed or restructured in new 
ways” (with apologies to Gen. MacArthur). 

Often the relationships linking observed values cannot be com- 
pletely defined u priori, and are very likely to change as analysis of 
the observations proceeds. In fact, determining the nature of such 
relationships might well define science. This dynamic structuring 
of observations argues strongly in favor of using relational DBMS. 

However, fairly static relationships exist between any observation 
and six selection criteria that appear to be universally used by 
scientists for database retrieval: 

(1) Parameter (e.g., temperature or salinity) 
(2) Methodology (i.e., the instrument, measurement techniques, 

and processing to acquire the value recorded) 
(3) Place (i.e., geographical location) 
(4) Time 
(5) Quality (an unquantifiable amalgamation of assumptions, 

individual responsible, instrument calibration and malfunc- 
tions, precautions taken, uncertainties, degiee of 
“cleaning” done, etc.) 

(6) Groups or ranges of measured values [SHOS 821 (e.g.. 
categories of values such as categories of wind-speed ob- 
servations: “fresh breeze”, “gale”, “whole gale”, 
“hurricane”, etc.). 

These latter, more static, relationships were the primary focus of 
our database design, discussed below. 

3. PROTOTYPE DESIGN AND IMPLEMENTATION 

A prototype database was implemented at JPL using data from the 
Joint Air Sea INteraction (JASIN) Experiment, which included 
measurements of meteorological and oceanographic parameters in a 
small part of the Atlantic Ocean near Great Britain during a 3- 
month period in 1978. Data from both in situ and satelIi@ sources 
was simultaneously and intensively collected for the same region, 
and documentation of measurement methods and computer proc- 
essing was readily available. 

3.1. System Overview 

A combination of DBMS software and custom application software 
with video display and storage hardware was designed to integrate 
image and non-image data. A shnplified diagram of the system 
hardware and software ls shown in Figure 5. The database and 
the DBMS are in&&d on a DEC VAX 1 l/780 running under the 
VMS operating system. A DEC VT100 terminal is the standard 
user device for query input and data display. A Sony video disk 
unit and a Sony video display monitor f&r storing and displaying 
image data have been tested and can.be connected to the VAX by 
a modem and standard RS-232 cables. Images are stored in video 
(analog) format on the video disk unit; optical disks that store 
digitally formatted data are not yet commercially available [SBS 
801. 

The INGRES relational DBMS [RTI 821 using the QUEL query 
lamuage orovides access to the database. The INGRES Terminal 
M&it& i the standard interactive user interface to QUEL. The 
monitor allows entering, editing, saving, and executing querles, and 
provides an interface to standard VMS system services. It is possi- 
ble to leave the INGRBS monitor to execute another program and 
then return to INGRBS with the context intact. A macro facility 
permits addition of user-written extensions to the query 6, 
from abbreviations (e.g.. DEFINE: ALG: altzorithm~ ) to lenathv 
instructions with variable parameters de&e2 at execution t&n& 
Application programs are written in FORTRAN with embedded 
QUEL statements. The QUBL statement4 can be tested interac- 
tively before they are included in the application program. 

The interface to the video disk and&splay is still under develop- 
ment. The video disk unit displays a particular image on the video 
display in response to a character string input. The disk unit is 
designed to accept data in a standard teq protocol, and has a 
limited capability for returning status data (found/not found, 
current track number) to the computer. A device handler program 
will be written to manage communication with the video disk unit. 
An application program whose query is satisfied by images in the 
database will receive the appropriate image numbers from the 
DBMS, which correspond to tracks on the video disk, and send 
them to the device handler program. 

3.2. Database Design 

As discussed in section 2.5, science data is typically retrieved using 
parameter, methodology, time, place, and/or range of measured 
values as primary selection keys. An example query (in QUIZ) 
containing specifications of four of the keys (and abbreviating 
OBSERVATIONS as OBS) is: 

RETRIEVE (OBSALL) 
WHERE OBS.DAY# = 78183 
AND OBSPARAMBTER - “+TB~ERATURB” 
AND OBS.SENSOR - 1023 
AND &.LAT >- 58. 
AND OBS.LON < 63. 
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Much effort was expended in developing a proper design for the 
database, in order to facilitate both user understanding of the data 
and efficient access and retrieval. For this we used the Entity- 
Lii-Key-Attribute (ELKA) model [RAMY 831, an extension of 
Chen’s Entity-Relationship model [CIIEN 761. The model proved 
to be a very useful communications medium between users 
(primarily oceanographers) and the system designers (database, 
hnage processing, and data cataloging experts). After many itera- 
tions, the design converged to that shown in Figure 6. 

To aid the reader in understanding the design, let us review briefly 
the ELKA database modeling conventions. Each entity in the 
database is represented by a box ln the ELKA diagram. with the 
name of the entity in the small box at lower left. Attributes whose 
values describe the entity are named in the box. Key attributes 
sufficient to uniquely identify each instance of the entity are un- 
derlined in the diagram. For example, in Figure 6, each instance 
of the entity named SENSORS has a unique identifier 
(SENSORSSENSOR) and attributes describing that instance’s 
type (SENSOR.SENSOR-TYPE) and platform (or vehicle) on 
which it is mounted (SENSOR.PLAT-NAME). The lines con- 
necting the boxes are links representing one-to-many relationships 
between the connected entities, with the diamonds indicating the 
“many” end of those relationships. Open diamonds indicate that 
“many” may be zero, and solid diamonds indicate that “many” is 
at least one. Each instance of a “many” entity displays the key 
attribute(s) of the “one” entity to which it is related. The name of 
the relationship ls written alongside the link. For example, in 
Figure 6, each PLATFORM instance CARRIES zero or more 
SENSORS instances, and each SENSORS htstance is carried by a 
sh@e PLATFORM. However, a named REGIONS instance must 
be DEFINED BY at least one instance within the 
REGION_DEFINITIONS table. 

The major selection criteria listed earlier can be recognized as 
clusters of entities in the design: 

The five entities at the upper left of Figure 6 describe the parame- 
ter and methodology, including sensor type, the particular sensor, 
the platform (e.g., spacecraft, ship, or airplane) which carried the 
sensor, and the parameter measured by that sensor. 

The four entities at the lower left document the data quality par- 
ameters such as the principal investigator(s) responsible for co+ 
tion and processing of the data, including the algorithms used and 
the degree (LEVEL) to which processing has progressed.. 

A single entity (OBSERVING DAYS) was used to represent time 
because meteorological data was most commonly requested by 
integer days. The entity has attributes of both (1) year concaten- 
ated with (Julian) day number and (2) the triple (year,month,day) 
because both systems were ln common use. 

The three entities on the upper right permit describing geographi- 
cal location either by name or by ranges of latitude and longltude. 
The JASIN experiment included five overlapplng named areas, 
only one of which was rectangular and one of which was ckcular. 
It was decided to describe arbitrary mglons in terms of l-degree 
points (intersections of l-degree lines of latitude and longitude) _ 
that are within each named mglon, effectively “blnnlng” the data 
in l-degree squares. The REGiON~DEFINITIONS entity con- 
tains instances of these points. 

The OBSERVATIONS (or OBS) entity inchtdes the actual meas- 
urements, identified uniquely by time, place, sensor, parameter, 
and processing history. Since inclusion of all possible parameters 
in a single table would result ln many mtll vahtes when only a few 
parameters were measured, we elected to include only a single 
measured parameter per OBSERVATION. This hlgh degree of 
normalixation leads to much redundancy of key vahtes for each 
measurement (see also [SHOS 821). The DATA SETS entity 
was introduced to remove some of the mdundancy Gthe OBSER- 
VATIONS entity by combining day, sensor, and parameter into a 
single short parameter, effectively forming a hierarchy (see section 
4.3 below*for a discussion of our need for hierarchies). 

The IMAGES entity, a yet-to-be-implemented entity for storing 
hnages. in digital form, is related tv the same entities ln the same 
way as OBSERVATIONS, but has different attributes such as 
SUN_ELEVATION that are unique to images (see sections 4.1 
and 4.3 below for a discussion of ways to handle dlgltal hnage data 
types and their treatment as a special case of OBSERVATIONS). 

1 SENSORS I ] 
..I._"..__ 

1 METHODS 1 I 
CALCULATED BY I y 1 1 '-DIN 

PRINCIPAL-INVESTICAlOR, 
ADDRESS, INSTITUTION RESPONSIBLEFOR 1 

PRINCIPAL 
INVESTt~AT~R -. -. , 

m Ei 

DEFINES __-_._ CFIFCT< I 1. OBSERVEDON 
<> 

I, OBSERVED IN 

ALGORITHM SENSOR, 
PARAMETER: 

PROCESSING- DAYI SENSOR PARAkER 
HISTORY, PRINCI- PROCESSED 

_. -. -* 

PRINCIPAL- PAL-INVESTIGATOR.LEVEL 
w, PROCESSING-HISTORY, 

INVESTIGATOR PROCESSING- 
-LAT,LON , MEASURED-VALUE(S) 

REV,LAT..LON ..SuN-ElEVAlIC+4, 
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LON . #PIXELS. 

t 
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F&m 6: Map of in sita and hnage catalog data base, uslug KLRA model [RAMY 831. 

152 



The defhdtion of mglons in terms of l-degree points ls convenient 
and easy to use. even for odd-shaped mglon& such as dcsrn coast- 
lines. Although each mglon that is defll mqulms a detailed lirt 
ofpoiets~titcon~thirneedbsdo~onlyonoeto~~a, 
mglon, and combining muIt@& mglons i@o a. dngle mglon onI9 
mquims appelsding’tab@ “S&e the wmS.r+n .tiQpM& *: 
mpea~ymdnrslyIifever-C~definlngneWrssioqrc 
required lnfmquently. Splectlon of ged&aphlc data by mgioti 
m@res a join, for example (In QUEL): 

The mader should verity that the database design supports the 
following typical queries that may be posed by different spe&llsts: 

Retrieve all data measured by an 
anemometer on the ship John Murray. 

l discipline scienfiat: 
Retrieve all wind vectors for the 
Meteorological Trh@e region. 

. principal invrstigator: 
Retrleve all data collected by Paulson. 

l pedigree: 
Retrleve the names of all prlnclpol investigators 
whose algorithms have proc8ssed wind data. 

l image analy,st: 
Retrleve all lmagea in the JASIN ama from July 22. 

3.3. Implementation Experieice 

The prototype database was imljlemented directly from the BLKA 
model design, with each entity mpmsented by a mlatlonal table. 
In situ data from the JASIN experiment wem loaded and tested 
first because they arq richer in stmctum and mom manageable in 
quantity than the satelllte data. However, the database design 
applies equally to both remotely-sensed and in situ data 

The OBSERVATIONS table is the largest ln the database, and will 
beume far larger (>lOO,OOO records) when all the JASIN data am 
loaded. The input data ax&ted of ,grollpll of 0bservatIons from 
dlffemnt sources, with mco& containing from one ‘0 ten parame- 
t8rsme~asumdatasingletimeandplacc. ‘RbsWMurmgtheselnto 
our nornUxed OBSRRVAlloNS table made the loading process 
slow and cvmplicated. Deternkhdng whkh instrument measumd a 
given parameler requimd mual Oomparison of text flies, file 
names. tmbllshed documetits. and labeled dram. DetermlnhU 
thep&&s&tghistoryofthe&seMionsinterGofwhichalgoG 
ithms had been app@d requimd even mom manual detective work. 
The-se are typical problems in gathew scientific data for a data- 
base. 

Once loaded, mtrleval of data by joining even thme tables proved 
to be limited prim&y by CPU and/or page ,ewqw. performing 
complicated multi-table joins ln a step-by-step manner, .i.e., as a 
series of two-table joins, proved eader for a number of mssons. 
Two-table j&s were faster, preserved joins for later use, and 
provided intmmedlate results to the user that made a compllcatod 
‘join easier to understand and that confirmed .cormct progmss. 
However, the lntermedjate results mqulmd storing additional tables 
that were both redundant and unnorma&d leaving the database 
vulnerable to inconsistency and update, in&t, and delete anoma- 
liea. 

Table prollferatlon was a problem when malts wem saved in 
physical tables to avoid the delay of mpeated RETRIJWBs. After 
some weeks, the database became laced wlth forgotten tables, 
which the users were mluctant to purge without examlnatlon but 
which required too much time to exandne. In a production envl- 
ronment, this could not be tolerated. The use of views would save 
the physical storage space, but at the expense of mpeatlng expen- 
sive joins whenever the view was used. 

RETRIEVE ( oBs.ALL ) 

‘AND OBS.LON -RB@X’J bEWIWU0 
WHERE QBS.LAT - REGIQN Dyg;Sti%T 

AND RBc3ION DBFINITI6%.REGION ‘. I&U& 
-=HYDROGRAPHIC -Y ARE$@ 

As discwed above, for larger mglom performaM ls hnpro&l by 
creating a new table by saying: 

Rrn’RIEVE INTO I&A ( REGION I?BFINITIONS.AU ) 
WHERE RBGION ’ DEPINlTIONr 

I -ROGmC SURVRY AREA” 

and thus slmpllfying the geographic selection to: 

RETRIEVE ( OBSALL ) 
WHERE ORSLAT = IiSA.LAT 
AND OBS.LON - HSA.LON 

3.4. FutarePlaos 

The two major extensions planned are (1) the loading of satellite 
data and (2) the integration of ti hnage catalog and display. 

A large number of satellite obaerva&s am available from the 
Pllot Ocean Df&n System for the luaps time.period rnrt mglons as 
the JASIN in situ data curmntIy in our database. Loading the 
satellltedata&3astm@htforwardproceu,butwas~&e 
to disk space mstrlctio~ on the prototypo. We anti- W 
fundamental changes to the database design, tid achieving the 
h@ortant scieutific work, of lntercomp+lng,concurmnt satoWa 
and fn ritu data of the same meteorological phenomena, 

To demonstrate the video disk, 10 images from the Advanced Very 
High Resoltin ftadiometer (AVHRR) imager aboard Thus-N Idd 
app&mlmatdy 400 hnagep [ram tike Synthetic Apertum R&r 
@AR) aboard Seasat, some of which colac+le in time and regknt. 
wlththeJASINe xperimsllt,havebeenmcordedonanan&bg~ 
vldaodi&atanapproxlmate.costofSO.7Operlmage. Random 
accesstothe5O#Oohnagesstor@eoslonesldeofthev&ieodl4 
which may bo controlled like a tandnd,,,.b~bwn demonamted 
under the control of an APPLE micrqwqut#r. A stub progra@ 
has demonstrated access to the database and control of any 
terminal-like device by ap application program invoked from the 
Tennhml Monitor of INURES. It mmalns only to link theso two 
portions by developing a devicu control pro&m fog. the ,optical 
disk on the VAX, so that it may be lnvoked by our appllcatlon 
program, and to enter thn appropriate treage catalog data for each 
image on the video disk. 
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4. DBMSRE 
REMOTEL 8 

WREMENTS FOR 
-SENSED DATA 

The implementation of our applicatio@ would have been almplified, 
and its power and porf&mance coneiderably enhanced. with a 
DBMS having the follow@ capabllltles. A more comprehenklve 
butkdaailedd&a&ll df re@rementa for this type of data- 
base can be fbund in WHIM 811. Mar19 of the requirementn of 
[McCA 821 for management of metadata are also relevant to otir 
application, because much of our databane could be cons&red to 
be metadata. In fm a major motivation for our database wan the 
rcoognitionthotebpboundprybsnpeen&toondits~~~ie~ 
fuzzy BLI to be undefhtable. 

We dkcum below additlonal requlremente’upon DBMSe that are 
lmplled by remotely-eenaed data, and briefly introduce some possi- 
ble ~4utione. The syntax of mgsested commands b given aa 
varlatio~ of SQL only to lend some pke&on to the oxauiples, in 
a foe familiar to most readers. Prototypea of nome of,those 
capabllitier aro under development, but to our knowledge no com- 
mercially avallable ayeem hlsr thorn all. 

4.1. Data Types 

Additional data type8 have been suggested by numoroua authors 
for various reasons. Many of thee0 are needed for remotely sensed 
data bases as wall. Any data bane contain@ sdsntific obaerva- 
tiona will need REAL (or FLOAT) and BINARY (or HEX) date 
types. Some combinationa of blta that are generated by 8cientific 
lnarument8 aro not valid &aractem, and thus must be‘manipulaw 
aa binary values. Although many cotiercially available systems 
do support REAL, they seldom support the BlNARY data type. 
REAL and BINARY numbers stored an TEXT. etringa are inade- 
quate because they cannot be used ln arithmetic oxpremlo~ such 
a8 (ill SQL): 

SELECT IklJZASURED VALUE, GAIN 
FROM OElSERVATIbNS 
WHERE MBASURBI) VALUlF2 

BE-N 6.2B3 AND 7.9E8 
AND GAIN BElWBBN ‘AO’X AND ‘PPX; 

Furthermore, the storage of ono bit aa a byte whon storing it a~ a 
&racter icl unacceptable for lugo volume8 of data. 

ARkAY data typea are requimd for any group@ of homogeneous 
data elements, tmch aa thne eeriea ~obaer&lon8 and raster imryrss 
[CHOC 81, SHOS 821. Unsm~%~4 fiildrl of arbitrary length 
(aibt lhuited to 32K byter an LONG VARC- flelda are in 
SQL/DS) are Weded to store large objeota soctr aa imyrw that 
may~.bo treated by the DBMS aa a single, W object at 
some timea [IUSR 82a]. For example, when browelng tho crte@ 
for an item of Intersrt, the user retrlevea in entireimage, gnpm 
file, or dacument into hla own pemonal data baee. There, hopv-’ 
er, hi8 proc888ing applicationa require Hructk@ of the obW into 
arraya so that he can acceaa an lndlvidual pixel,‘curve. or line of 
tort. For oximple, atelog entrkl would be CreWd (in SQL) 88: 

CIU3Ayy TABLB IMAGES( 

,EOR 
i%tEET 

INTEGER, 
PHYsIcALJOCATIo~~iAR(l2), 
IMAGLEN 
IMAGE OBJECT(IIiAGLBN) ); 

whore PHYSICAL~LOCATION contains the physical device and 
IMAGLEN contains tho length ln bytes of the object called I&4- 
AGE. Tho user would MIGRATE (see W 82bl) the tuple 
containing the amorphous object IMAGE ;mto a table decked in 
his database space: 

CREATE TABLE MYIMAGS( 
DAY# INTEGER, 

INTEGER, 
SENSOR 
PIXELS (2430,3MzzY(8) ); 

80 that quorio8 can place condltlom on lndlvidual pixels in a predl- 
ate without having to transfer tho entire object to the application 
program: 

wHERE( PDu3LS(I-1J~1) + PIXFLS(I-1J) + 
PIXBLS(I-lJ+l) + PIXELS(1 J-1) + 
PIXELS(1 J) + PIXELS0 J+l) + 
PIXELS(I+lJ-1) + PIXELS(I+lJ) + 
PIXELS(I+lJ+l) ) / 9 

BETWEEN ‘AO’X AND ‘FFX; 

This query retriovoa all pixels who& intensities, when averaged 
vi&h all neighbor@ pixels. are between ‘AO’ hex and ‘IW hex. 

Extenslblo data types, popular in prom lan8uagen euch as 
Pascal, would enhanti tho aemantlc mea&g and ‘lntegrity- 
checking capabilities of DBMSI lndeper@ent of appllcatl& pro- 
gram, and wotid obviate the need for q appliution-qecifk 
data typos (euch aa tho “geographic data type su@ee&d 
801) cluttering the syntax -of & DBMS. Overmyer and x0 

[COX 
nsb- 

r&or [OVRR 821 havo implemented “time” data *typea udng 
“oxports”, werdefined functiona that are invoked from the DBMS 
to encode, decode, compuc, and pe+rm arithmetic oper8tlon8 on 
tho appllcation+eclfic data type udn8 datrbue tablea to &a~- 
Irre. They have ah0 gone+ oxpoH.8 8omoWhat to ao-aSed 
“ab8tract data types”. whoio ono can “DBPINE ADT MI&I” @I 
promdun to convert, compare, and pertotm arithmptic opomtih8 
on them types ISTON 82b]. It la not clear hok’ thm me&a&nu 
differ from experts. A&d unlike oxMslbl0 date typer, they do not 
rppeutoI#rmit~oftypedsfio~~tobnlld~~~tglibi. 
For example, one would like to constr0ct en @lcatlon-spedfk 
data typo by combiniq olemontal data type8 ind predicates: 

CREATE DATATYPB LATITUDE 
- INTBGBR BETWEEN -90 AND +90; 

CREATE DATATYPE LON@TUD 
I INTBGBR BETWEEN -180 AND +180; 

CREAm DATATYP$ LOCATION 
- (LATITUDE,LONGITUD); 

Not only would the @tabswe better reflect the application, it could 
al80 bettor nptch the host applkdtion laquage, and could fadli- 
tatstherdditionofnewobjecttypeanhsnlyins~DBMsto 
store mota-data [&CA 821. 

4.2. Table Attributes 

Tablea in the original relational model had no explicit or implicit 
ordering of either its columna or rowa (tuple~), end no atMbater 
otherthanthecolumnsitcont8b&andauthorkationinform8tion~ 
auchIstheownerandpassword. QnlyKBYcolum~reWv&l 
ape&l treatment. 



Stonobrakor et al. [STON 82b], [STON 82~1 have noted the need 
t0 order tuples in a relation, particularly those containing lines of 
text. In [STON 82b], they propose ordering a table wlth a corn- 
mand (in QUEL): 

ORDER table-name BY field-l 
<WITH field-2 - ASCENDING field-3> 

DESCENDING 

where the optional portion ln brackets ls a secondary ordering. 
Meld-1 becomes a lino ldentifior that the user can see and manipu- 
late in queries. it is lndoxed by a special B-tree having a line 
count ln all but tho loaf nodes, which contain tuplo identifiers. 
This and other text manipulation commands proposed by [STON 
82b] would prove useful ln manipulathrg textual deserlptions in our 
mota-data concerning data collection techniques, processing per- 
formed, underlying assumptions, caveats, etc. (not shown in our 
de&Q). 

However, ordering, liko indexing, is often known when the table is 
created, and hence should be part of the schema for that table. 
We therefore propose that tables, like cohunns, can have attributes 
that differentlate how the system should treat thorn. 

One such attribute would be ORDERED: 

CREATE mydoc ( text=c132 ) ORDERED 
<BY (field-l,<field-2>,...)> 

Omitdug the BY clause would signal the system to create and 
maintain tho ordering field in the relation automatically and totally 
transparent to the user. 

A table could also have the attribute VERSIONED, in or&r to 
permit the user to retein complete and consistent oarlior versions 
of the same large table (e.g., a design or document), only a small 
proportion of which changes at a timo [HASK 82b]. VERSIONED 
tr&,a would have the updates for each version stored in a diffor- 
ential file [SEVE 761 rather than updating the table in place, until 
a SIGNOFF command indicates the version to be an official. 
approved vorslon. Until SIGNOFF, the last @nod-off version 
remains read-only. At SIGNOFF thne, all of tho updates since the 
last SIGNOFF (or in designated differential files) would be applied 
to the htst signed-off version, creating a new, “clean”, official 
version to work from. 

4.3. Hierarcllies 

Several authors havo documented the need for -- and possible 
approaches to - hiorarchlcally strncturing tables ln other applica- 
tions, particularly for CAD/CAM and statistical applications 
PIASK 82a], [HASK 82b], [KATZ 821, [McCA 821, [SHOS 821, 
[MEIE 831. Hierarchies occur in several ways in our application: 

4.3.1. Hierarchies of Resolution 

Section 2.3 mentioned the hierarchy of increasing resolution, with 
data at each level representing the aggregation of the next lower 
level of the hierarchy. However, ro-deriving the aggregations each 
thne they aro needed may be preferable to star@ them in a .hier- 
archy of resolution. 

4.3.2. Partitioning Large Tables into Equivalence Classes 

As noted in section 3.2 above, efficient implementation of hierar- 
chles would also help reduce redundancy and permit partitioning of 
very large tables. For example, the OBSERVATIONS table in our 
prototype database ls very large and has a good deal of redundant 

key values, notably DAY#, SENSOR, and PARAMETER (see 
Figure 6). If a hierarchy were to be constructed by making the 
OBSERVATIONS entity a child of the DATA-SETS entity, using 
the COMP-OF construct of [HASK 82b1, then OBSERVATIONS 
would be partitioned into equivalence classes having a common 
DAY#, SENSOR, and PARAMETER, which need -be specified 
only once in the parent DATA-SETS instance (see Figure 7). 
Whilo thls reduces tho redundancy w&h& ?ESmVATIONS, we 
still have not truly partitioned OBSERVATIONS, because a join 
wlth DATASETS will involve all instances of OBSERVATIONS 
unless we lnde: both DATA_SETS.DlD and OBSERVA- 
TIONS.DID and join them with a semi-join. 

4.3.3. Different Tables with Common Columns 

Hierarchies also arise ln our application because tablos having 
slightly different schomas may have. colt of interest in com- 
mon. For example, ln our prototype database, the OBSERVA- 
TIONS and IMAGES tables differ only by a few columns, such as 
SUN ELEVATION. To retrieve tho sensor and parameter infor- 
mation for all IMAGES or OBSERVATIONS (in fact, for all 
tables having those columns) ln the database that wore acquired on 
a particular date, we wish to say’ (in SQL): 

SELECT *.SENSOR, *.PARAMETER 
FROM l 

WHERE l .DAY# - 78183; 

Currently, the only alternative to this query would be for the user 
to (1) submit a query to the data dictionary to. find the names of 
tablos having attributes SENSOR. PARAMETER, and DAY& (2) 
write down the table names; and then (3) repeatedly submit the 
query, each time using a different table name in the samo query. 
There is no way to do it from an application program, short of 
sneaky uses of SYNONYMs. 

4.3.4. Table Names as Query Variables 

The problems described ln sections 4.3.2 and 4.3.3 can be solved 
by permitting table names in a query to be variables to be deter- 
mined by the result of another, earlier do-at-open (i.e., uncorrelat- 
ed) query. That result must be a slnglo-column table (i.e., a vec- 
tor) of valid names of tables that that user ls authorlsed to access, 
which was either built as a temporary table by a nested query 
[SELI 79],[KIM 821, or is currently displayed on the screen. This 
differs from the “transitive &suro” suggested by [GUTT 821 in 
that it ls not limited to all progeny of a tuplo in a slnglo, flied 
hierarchy. Rather, any table that can be the result of a query can 
provide the names of the table (see example below). If no predl- 
cate constrains the choice of a table name query variable (as in the 
example in Section 4.3.3), thon all tables hr the data dictionary 
hav@ all the cohmms referenced in tho query would be candi- 
dates. It is left up to the usor as to whether his query makes any 
sense semantically; the system only checks at bind tlmo that the 
table name is a valid one. 

In most current systems that pre-compile queries, the table names 
cannot even be application program variables, because Until they 
are known the system cannot perform catalog lookup, anthorlxa- 
tion, optimization, binding, etc. With table names behtg variables, 
pre-run-time compilation of the query would not be pOSSible, a 
significant performance objection unless these extonsions are used 
primarily for interactive queries. However, they provide a powor- 
ful and elegant extension to the query language that: 

(1) Permits queries of the type given above; 
(2) Permits partitioning very large tables into equivalence 

classes that will be accessed only lf they satlsfy a quory 
that specifies those keys that dofiie the equivalence class; 
and 

(3) Saves the occasional user from having to remember table 
names in a large database. 
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ELKA Model of Hierarchy: 

DAY* SENSOR, DA*, SENSOR, PARAMETER, 
PARAMETER, TIME, PROCESSING-HISTORY, 

LAT, LON, 
MODE -e- MEASURED-VALUE 

DATASETS OBSERVATIONS 
> 

Haskht and Lorle schema [HASK 82bl: 

DATASETS 

DID DAYS SENSOR PARAMETER MODE 

IDENTIFIER INT INT CHAR(14) CHAR(2) 

. . . 
OBSERVATIONS -.. 

. 

. 

OID DID TIME PROCESSING LAT LON MEASURED 
-HISTORY -VALUE ‘ 

IDENTIFIER COMP-OF(DATASETS) INT CHAR(12) INT INT REAL 

Lohmm et al. schema: 

DATASETS \ 

DAY# SENSOR PARAMETER MODE OBS-TAB-NAME 

INT INT CHAR(12) CHAR(2) CHAR(8) 

#CC- d- 

OBS-TAB-NAMEe @ c 
&d-C 

TIME PROCESSING LAT LON MEASURED 
-HISTORY -VALUE 

INT CHAR(12) INT INT REAL 

Figam 7: Two approaches to Hierarchies: IDENTIFIERS vs. Variable Table Names. 
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As an example of the second advantage, suppose we added to the 
DATASETS table (BOO Figure 6) a column called 
OBS-TAB-NAME, which contained a table namo for all OB- 
SERVATIONS instances having the samo DAY& SENSOR, and 
PARAMETER. Those columns could thon be eliminated from 
OBSERVATIONS (see Figure 7). Thon the following query (in 
SQL) would access only those OBSERVATIONS with tho specified 
DAY#, SENSOR, and PARAMETERz 

SELECT MEASURED~VALUE 
FROM X 
WHERE XIN 

(SEKECTOBS TAB NAME 
FROM DATK SE% 
WHERE DAY#- - 78183 
AND SENSOR - 109 
AND PARAMETER=wIND+‘) 

ANDTIME- 14oooo; 

We have designed a true hierarchy in which parents point to child- 
ren, whereas Haskin and Lorio effectively have children point to 
parents. We sro therefore vulnerable to tho update, delote, and 
insort anomaiios of a true hierarchy, but as we noted in section 
2.6, the database of this application is relatively static. Which 
approach is better wig depend upon the application. 

4.4. Storage Device Interfaces 

DBMS8 today assumo that all the data they manage is on magnetic 
disk. Data on tape or mass store is assumed to be transferred to 
disk by tho operatin system before be48 accessed by the DBMS. 
However, in our design for tho prototype, the catalog contains 
addresses of data that may be on media other than tho traditional 
magnetic disk. And as the database grows, lesser-used data wig 
have to be archived offlino but retain its ontries in tho catalog. 
Hence tho physical device type on which tbo data reside must be 
exolicitlv maintained bv the DBMS, because access methods will 
v& depending upon the storage medium. For example, catalog 
entries for IMAGE entitios in our database must note if the image 
isinanalogfonnonthevideodislr,orindigItalformonm~tic 
disk. If tho formor, our video disk device controller must be in- 
voked and passed tho desired track number; if the latter, the usual 
magnetic disk interfaces through INGRES to the operating system 
are invoked. However, such physical device considerations should 
Lzarent to the user, as data migrates from one device to 

DBMSs will in the future have to interface with an increasing 
variety of storage media types, between which data may migrate 
dynamically. Whilo the operating system will have .to provido 
access primitives for each type, the DBMS will still be responsible 
for formatting -the data, providing concurrency control and ro- 
covey me&amsms keeping track of what data is on what dovice 
(or else DBMS &alog entries will point to incorrect locations), 
and invokiug the proper primitives depending upon device type. 
Even a single table may have its attributes partitioned among 
devices, so filo level migration is inadequate. For example, our 
IMAGES table has the key attributes on magnetic disk but the 
corresponding (analog) image is stored on optical disk, linked by 
the device track number. 

This argues for an expanded internal schema, or oven another layer 
of schema ‘that maps the internal schema (which presumably is 
device-independent) to a device-dependent schema [CODA 781, 
[LOOM 801. Such a mechanism would also permit the database 
administrator greater flexibility in specifying system storage format 
and parameters such as page size, locking granularities, etc. to 
facilitate tuning performance. Although this would significantly 
change an existing storage subsystem such as System R’s RSS, new 
systems could incorporate the multi-level schema concepts of IPIP 
[JOHN 821 that permit mapping between any number of schemas 
using explicit mapping schomas. 

4.5. Application-Specific “Hooks” 

As Stonebraker has pointed out, semantic extensions to DBMS8 
are needed to enable it to bettor model the application [STON 
82a], yet not all applieations want to.bs burden&l with the com- 
ploxity of the additiona? syntax. For oxamnlo. we needed to defhte 
extensions of QUEL that-would measure the distance between tie 
points or determine if two regipns intersect. While such funoWns 
would also be useful in CAD/CAM, not all applications would 
benefit by such an addition. 

As mentioned in section 4.1 above, Overmyor and Stonebrakor 
originally implemented “hooks” to user-specified functions, called 
“experts”, to implement additional data types such as “time” 
[OVER 821. However, the functions invoked could perform only 
one of four specific tasks: oncoding a now data type into an inter- 
nally coded vahle, decoding that hltersld vidue,. oompribon) iad 
arithmetic on these data types. More recently, Stonobrakor [STON 
82a] has proposed collapsing the oncoding and decoding function 
types into a single conversion function type. Ho also added a 
general-purpose user-defiid function type that permits the w to 
define any external function that is invoked by its appeamnce in 
an expression in the query, much as can be done in NOMAD 
[Ness 771. 

Whilo the conversion, comparison and arithmetic function types 
permit a simple huplomontation of abstract data types, wo feel that 
Stonobraker’s syntax blurs unnecessarily the distinction between 
user-dofiid routines and the defihdtioaof user-specific data types. 
Furthermore, it is not clear whother nmer-defined-functiona ‘can 
have abstract data types as parameters,~ this would force neuthtg 
of routines. The Pascal-like syntax for extensibla data types pses- 
entod in section 4.1 would permit this nesting and would .leavo 
only one function type: the general-purpose, user-defined function. 

An example in our application will illustrat8~the broad usefulness 
of user-defined functions with the syntax WC propose. For exam- 
ple, if we have a FORTRAN subroutine called DISTANCE to 
calculate the distance between two points X and Y, thon invokbrg 
that function directly from a query saves retrieving sJi tuples to the 
application program and hrvokin8 the function there: * 

. 
/ * a vector in 3-space is &fined by its 3 coordinates. l / 

DEFINE DATATYPE COORDINATE = INTEGER; 
DEFINE DATATYPE VECTOR - COORDINATE(J); 

/* create a table full of points, each point being a 
3-tuple. table POINTS contains attribute POINT. l / 

CREATE TABLE POJNTS (POINT OF TYPE VECTOR); 

/ + &fine a distance function whose parameters am points 
having tvpr “vector”, i.e., are specified pd 3-tuples. +/ 

DEFINE FUNCTION DBTANCE(VECTOR,VECTOR) 
( diionamo of FORTRAN subrouthm> , 

FORTRAN, <type returned> ); 

/ l use function called DISTANCE to re:rieve 
alipairs of POINTinstances in POINTS 
that are within 5.3 units of each other, 
using cursors Tl and T2 on mble POIIYTS. */ 

SELECT TlPOINT, TZ.POlNT 
FROM POINTS Tl, POINTS T2 
WHERE DISTANCE( TlFOINT,T2.POINT ) <I g3; 

The DEFINE would bid the DBMS’s internal name DISTANCE 
to the filename containin executable code for the fun&on, and 
would reserve space for tho parameter list, if any. The Bnguage in 
which the function is defined must be specifii because of v&ying 
parameter-passing conventions among languages. 
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Hooks of this sort provide a powerful mechanism for tailorinn the 
query language to a particular application. For example, Using 
functions similar to but more comulex than the DISTANCE func- 
tion, we could expand the query language to include all basic 
spatial relationships between geometric objects - 
adjacency/connectivity, containment, intersection/overlap, dis- 
tance, and direction - where the function invoked would be differ- 
ent for objects of different dimension (points vs. lines vs. areas) 
m 801. 

To facilitate the narrowing of queries based upon the results of 
earlier queries, the user could defme each query as a vlew and then 
pose his next query a- the view, i.e; PROM Mew-name& 
However, this becomes awkward if repeated: either the views 
become nested, or the user has to re-enter the entire query for 
each new view. While Interactive SQL (ISQL) permlta the label- 
ing of queries for recall of the text, nesting of the label wlthln 
another query is not permitti the. user can STORK the query, 
RECALL it later, and then edit it with the CHANGE command 

4.6. Browsing Capabilities 

Several published ideas for browsing data in other applications are 
practically a necessity in browsing remotely sensed data. 

One such i&a is binding a relation to a user-specified “window” 
on the screen, and allowing the user to browse the relation by 
moving the cursor up and down and zooming in or out [STON 
82c]. A uaeful augmentation would be to allow the user to define 
another “left or right” cursor on the 8ame or another relation, so 
that the user could see tuples keyed by two attributes (e.g., lati- 
tude and longitude) speclfled by movement of the mouse. Another 
enhancement would be to permit queries against only those tuples 
that are designated with TIMBER’s PICK command, as can be 
doue with the MARK command of NOMAD [NCSS 771, instead of 
- or in addition to - a predicate: 

SELECT SPECTRAL BAND, hfEASURED VALUE 
PROM PICKED OBTO, PICKED DATA-STS D 
WHERE O.DAY# I D.DAY# 
AND TIMR ~140000; 

The keyword PICKED qualifies the table name that follows it, to 
denote the subset of that table’s tuples that were deslgnated wlth 
the cursor while browsing. 

To browse a large relation efficiently, the user should also be 
permitted to specify that he wishes to display only every nth tuple. 
Though this does not limit the data retrieved from disk, sometimes 
the user’s terminal is the lhniting resource (e.g., over a low-speed 
phone line). 

Another idea useful to remotely-sensed databases is Haskin and 
L&e’s CHECKOUT/CHECKIN commands [HASK 82b], which 
perform concurrency control at a very macro level and are analo- 
g&s to a librarian [KATZ 821. As with Shoshani% statistical users 
[SHOS 821, our users typically browse the entire database lnterac- 
tively looking for data of interest, then transfer that subset to a 
personal database for lnteirsive study and processing (which may 
update the retrieved data) .over a period ranging from hours to 
months. The CHECKOUT and CHECKIN capability is required 
for these long-period transactions to prevent two researchers from 
altering the same data simultaneously or using the data unaware 
that another researcher is altering it shnulaneously (but offline). 

In browsing large remotely-sensed databases, the scientific user 
typically adds predicates until a manageable but not too small set 
of observations has been designated. Therefore, the first response 
to any query, in brow~c mode only, ought to be an estimate of how 
many tuples satisfy the query, so the user can judge whether the 
system should bother to retrieve them all or not [&CA 821. In a 
system such as System R, the optimizer estimates the size of the 
result of a query for assessing costs, and could make that result 
available to the user before executing it. For queries whose predi- 
cates affect only indexed columns, the exact size of the result is 
calculable by accessing only the indexes and applying the predi- 
cates to their values, the result of which is a set of tuple identifiers 
(TIDs) satisfying the query. 

We propose a simpler mechanism whereby the system prompta the 
user for a new query wlth a system-assigned query number: 

<query number>: <query>; 

as is done, for example, in CCA’s Model 204 [CCA 801. The 
system automatically stores the query syntax for the last N qpsrbr. 
Thenthequerynumbercanbc~to~~farthe~ 
tat anywhere in another query. Thus, we could express -(in SQL) 
our nested query in section 4.3.4 as: 

1: SELECT OBS TAB NAME 
FROM DATT SE% 
WHERE DAY#- - 78183 
AND SENSOR = 109 
AND PARAMETER - WIND+’ 

to review the intermediate results (the table names), and then 

2: SELECT MEASURRDJWLUII 
FROM X 
WHERE XINl 
AND TIME-140000; 

to see the desired data. 

4.7. Enmded Values and Value Synonyms 

Because relational systems establish rehulonships on vahtes rather 
than through explicit pointers, redundancy of v8hlea can Bsc#ne 
troublesome. There is a trade-off between long valpes that the 
user understands and an encoded vahre that conserves space War- 
nally [SHOS 821. Also, we sometimes wish to establish a synouym 
relationship between several values. For example, 
‘CALIFORNIA’, ‘CALIP’, and ‘CAL’ - all mctanlng. the auue 
thing to the user - would be better represented internally as ‘CA’. 

An encoding and decoding mechanism more similar to the BN- 
CODE and DECODE c&~tructa of NOMAD [NCSS 771 thanthe 
conversion functions of Stonebraker wouldbe very useful to most 
applications. This involves creating a conversion table having two 
c&mns, one for full-length values and one for enuuM vahms, 
e.g.: 

STATES 

SNAME I CODE 

CALIFORNIA CA 
CALIF CA 

2 2 
MICHIGAN 
HICH M”f 
NO STATS 

I 

null 
null 

none of the above null 
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“ENCODE (table-1,value)” would scan table-l for the first occur- 
rence of “value”, and return its matching code. Conversely, 
“DECODE (table-1,code)” would do the reverse. Thus, multiple 
values could have the same code (or vice versa), with the first one 
behg the preferred conversion. A default “none of the above” 
conbenamcdincastthevalueor~doesnotoccurinthe 
table. Thus, in the above example, a value of blank or 
“FRANCE” wili be ENCODEd as null, and upon DECODE wiil 
read “NO STATE”. 

Any appropriate cobunn name can replace the value or code value 
in queries: 

SELECT REGION NAME, 
DECODE(STA~REGIONS.STATE-CODE) 

FROM REGIONS; 

would convert internally abbreviated state codes in the table RE- 
GIONS to state names, ushrg the table STATES Note that this is 
different than simply doing a join on the conversion table 
STATES. Clearly the functions ENCODE and DECODE could be 
hnplemeated using functions (see section 4.5). 

Such a table-driven encoding mechanism is easy for the user to 
define and maintain in table-oriented relational systems, and is 
easier for tbe user to understand than wrltlug a special routine to 
perform this common task. More complex conversions could, 
however, be performed with a user-defined function. 

5. CONCLUSIONS 

Our prototype has demonstrated the feasibiity of using a relational 
general-purpose DBMS for integrating remotely+ensed geophysical 
data and its meta-data in a database that htcludes digital data and 
images stored on video optical *. Spacecraft as well as in situ 
data were combhted into a unifii database design While the 
DBMS met all our expectations, our experience hat-suggested some 
enhancements to DBMSs that we feel will be aDDlicable beyond 
our immediate application. ..For example, all $plications have 
need for more semantically meaningful~data types-such as TIME, 
DATE. or NAME. and ARRAY data tvues are common in en& 
nee& and statist&l databases,. ORDERED tables are esse&l 
to document databases, VERSIONED tables to dedgn databases. 
Hierarchies occur naturally in commercial appRcations, e.g. in 
organixation Char& as well as in erbglneering and statistical ones. 
User-defied functions, browsing features, and value 
encoding/decoding add customixing power to any application. 
These applications have many requirements in common with those 
of remotely-sensed databases that we highhghted, and, together, 
repment a significant future market for DBMS technology with 
the enhancements that we <have suggested. 
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