
An Abstract Model of Database Concurrency Control Algo&hms

Midtael J. Carey

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

ABsrRAcr
An abstract model of concurrency control algo-

rithms is presented. The model facilitates
implementation-independent descriptions of various
algorithms, allowing them to be specified in terms
of the information that they require, the conditions
under which blocking or restarts are called for, and
the manner in which requests are. processed. The
model also facilitates comparisons of the relative
storage and CPU overheads of various algorithms
based on their descriptions. Results are given for
single-site versions of two-phase locking, basic
timestamp ordering, and serial validation. Exten-
sions which will allow comparisons of multiple ver-
sion and distributed algorithms are discussed as
well.

Considerable algorithm development has
occurred in the area of concurrency control for
both single-site and distributed database systems.
The vast majority of the proposed algorithms are’
based on one of three mechanisms: loc&g [Mena78,
Rose78, Gray79, Lind79, Ston79], thestamps

I [Reed78, Thom79, Bern80, BernBl], or commit-time
Vtll- (or certification). [Bada79, Casa79,
Baye80, Kung81, Ceri82j. It is also possible to form
a large number of algorithms by combining these
mechanisms [BernBO, BernelI. Thus, there are a
large number algorithms to choose from. Unfor-

This work was suppcrkd by the Air Force O&e of Soiantiflc Research
Grant MOSR-7M5W and the Naval Ekctmnic Systems Command Con-
tract NBC-N0003+81-C-0560.

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commmial advantage. the ACM copyright notice and the titk of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
othorwi~~ or to republish, require3 a fee and/or spccifii @ion.

CJ 1983 ACM -o-89791-104-O/83/005/0097 $00.75

tunately, little is known that would assist an imple-
mentor in making this choice.

Several recent studies have addressed the
problem of evaluating the performance of alterna-
tive concurrency control algorithms. These include
qualitative, analytical, and simulation studies.
Bernstein and Goodman performed a comprehen-
sive qualitative study which discussed performance
issues for a number of distributed locking and
timestamp algorithms [BernBO]. Results of analyti-
cal studies of locking performance have been
reported by Irani and Lin [Iran791 and Potier and
Leblanc [PotiBO]. Simulation studies of locking
done by Ries and Stonebraker provide insiiht into
granularity versus concurrency tradeoffs [Ries77,
Ries79a, Ries79b]. Analytical and simulation studies
by Garcia-Molma [Garc79] provide some insight into
the relative performance of several variants of lock-
ing as well as a voting algorithm [Thom79] and a
ring algorithm [Elli77]. Simulation studies by Lin
and Nolte [Lin82] provide some comparative perfor-
mance results for locking and several timestamp
algorithms. A recent thesis by Galler [Gall821 pro-
vides a combination of a new analytical technique
for locking, some qualitative techniques for compar-
ing algorithms, and some simulation results for
locking versus timestamps which contradict those
of Lin and Nolte.

While certainly interesting, these performance
studies fall to offer definitive results regarding the
selection of a concurrency control algorithm. The
analytical and simulation studies examine transao-
tion throughput and response tii characteristics
under various workloads and system parameter set-
tings, assuming a flxed cost (sometimes zero) for
processing each concurrency control request. Lit-
tle or no consideration has been given to the rela-

97

tive storage and CPU overheads required by the
various algorithms. The studies involve lengthy ana-
lyses, large simulation programs, or both, with the
underlying system models and assumptions varying
from study to study. As a result, no single
comprehensive analytical or simulation study of the
many proposed algorithms has been undertaken,
and cross-comparisons of different studies are
difficult or impossible. Only Bernstein and Good-
man [Bern801 and Galler [Gall821 have attempted
comprehensive comparative studies, and their work
thus far has been too qualitative to be conclusive.

In this paper we report on a current effort to
provide a uniform model of concurrency control
algorithms. The model is designed to facilitate a
comprehensive comparative study,. providing a uni-
form framework for describing and evaluating alter-
native concurrency control algorithms [Care83].
Here we describe our model and techniques for
analyzing the relative storage and CPU overheads of
various concurrency control algorithms. Section 2
presents our model, and section 3 explains how
algorithms are described under the model, present-
ing descriptions of single-site versions of two-phase
locking, basic timestamp ordering, and serial vali-
dation. Section 4 shows how the model may be used
to analyze relative storage and CPU overheads for
algorithms, giving results for the algorithms
described in section 3. In section 5, we describe
extensions to the model and analysis techniques for
multiple version and, distributed concurrency con-
trol algorithms. Section 6 presents our conclusions
thus far and describes our intended future work.

2 TheBasicModel

The concurrency control subsystem of most
database management systems can be thought of as
a special-purpose scheduler [Casa79, Papa79,
Bern60, Bern82al. It accepts begin, data access,
and commit requests from transactions, and
decides whether to allow, postpone, or reject these
requests. Concurrency control schemes of this sort
are called +.amti and syhtactic schemes, as they
make decisions based on information as it becomes
available, and the information used does not involve
knowledge about the semantics of the transactions
or the semantics or structure of the database. We
restrict our .attention to this class of concurrency
control algorithms.

Our model of single-site concurrency control
algorithms contains a single concurrency ctmtrol
schotisr , This scheduler keeps information about
the history of requests received to date. We refer to
this information as the conc~ncy control &~~JMXU,
and we will treat it conceptually as a simple, rela-
tional database, ignoring the multitude of data
structures which might be used in its implementa-
tion. For a particular concurrency control algo-
rithm, the scheduler obeys a well-defined set of
rules which tell it how to respond to incoming
requests, based both on the requests themselves
and on the contents of the concurrency control
database. For reasons of simplicity, conciseness,
and implementation independence, we formulate
these rules as relational database queries. Our
model is summarized in Figure 1.

CC DATABASE

Figure 1: Concurrency control model.

21. Transaction F&quests

Our model allows three types of requests from
transactions: BEGIN, END, and ACCESS. The first
two mark the beginning and the end of transaction
execution, and the latter indicates that the request-
ing transaction wishes to access one or more
objects. .A given transaction may make a number of
ACCESS requests in the course of its execution.
When the scheduler receives a request, it also
receives a collection of (obj -id, mode) pairs indicat-
ing the objects and access modes, (read or write), if
any, associated with the current request. We refer
to this collection as a relation, the REQ relation, for
the purpose of formulating concurrency control
algorithms as queries. It is assumed in our model

98

that transactions abide by the responses received
from the scheduler, accessing data objects
accordingly. It is also assumed that writes are writ-
ten to a deferred update list [Gray79], and that they
are installed as new data values at transaction com-
mit time, so that concurrency control algorithm
descriptions need not be concerned with such
details.

22. The Ooncurrency Control Database

The concurrency control database, shown in
Figure 2, consists of four relations. The XACT rela-
tion contains transaction state information, specify-
ing the transaction identifler, state (ready, blocked,
committed, aborted), and timestamp of each
current or recent transaction. The ACC relation
contains information about accesses to objects,
specifying the object identifier, access mode (read
or write), transaction identifier, and timestamp for
each current or recent access. This relation plays
the role of a concurrency control table, such as a
lock table or a timestamp table, in algorithm
descriptions. The BLKD relation contains informa-
tion about any blocked transactions, containing the
transaction identifiers of these transactions and of
the transactions which they are waiting for. It is
assumed that the deletion of an entry from the
BLKD relation unblocks the corresponding transac-
tion implicitly, allowing it’ to begin where it previ-
ously left off. The HIST relation stores histories of
ACCESS requests which are conditionally granted,
where the concurrency control decision is to be
deferred until transaction commit time (such as in
optimistic concurrency control algorithms).
Entries in this relation specify the transaction
identifiers, object identifiers, and access modes
associated with such requests.

Not all concurrency control algorithms use all
of the relations in the concurrency control data-
base, as this set of relations is intended to
represent the collection of all possible information
which algorithms might choose to make use of. For
the same reason, not all concurrency control algo-
rithms use all of the fields of these relations. Thus,
the portion of the concurrency control database
used by an algorithm is specified as part of its
description.

XACT(xact-id,state,ts)

ACC(obj-id,mode,xact-id,ts)
BLKD(blocked-id, cause-id)
HIST(xact-id,obj-id,mode)

Figure 2: Concurrency control database.

23. Algorithm Descriptions

Concurrency control algorithms are described
in three parts under our model. These are:

(1) A list of the concurrency control database rela-
tions and flelds used by the algorithm.

(2) A pair of views,‘ BWCCFL ‘and RSTCFL, which
define the situations where block,ing or restart-
ing are called for, respectively.

(3) Three query sets, describing the actions to be
taken on receipt of BEGIN, ACCESS, and EN6

requests. These query sets access the con-
currency control database and REQ relation
associated with the current request and are
presumed to execute atomically when invoked.
We, borrow from the QUEL query language
[Ston76] for our query syntax, deviating or
adding high-level macro-oRerations where QUEL
fails to fulffll our needs. .

3. Using The Model

In this section, we demonstrate the descriptive
use of our single-site model by showing how two-
phase locking [Gray79], basic timestamp ordering
[BBrnBi], and serial validation [Kung81] may be
described under the model. In d&g so, we take
several liberties with the QUEL syntax. First, we
omit range statements. Second, we define the
macro-operations shown in Figures 3 through 5.
The BLOCK operation blocks a specified transaction,
recording its transaction identifier and the
identifier of the transaction which it is waiting for in
the BLED relation. The EXPUNGE operation deletes
all of the information associated with a specified ’
transaction, and is used at transaction commit or
restart time. The RESTART operation restarts a
specified transaction. We assume the existence of a
fourth macro-operation, CYCLE(zacf id), which
searches for cycles of blocked transactions in the
BMD relation involving a specified transaction and
returns true if and only if a cycle is found. (This
last operation cannot be specified in QUEL in a con-
venient manner.) Finally, we assume the existence

99

of several convenient global variables, such as
wq -zact -id, the transaction identifier for the
current requestor. Other such variables will be
assumed and commented upon as they seem rea-
sonable and convenient.

3.1. Tud'hase Iacking

In fum-phuse lockhg (2PL) [Grayi’g], the con-

currency control scheduler maintains a lock table.
Transactions set read and write locks on objects
before accessing them, and they release their locks

BLOCK(xact-idl,xact;id2) =
1

raplsa, xAC’l’(state = “blocked”)
where XAcP.xact-id = xact-id1

j
append to BLKD(xact-idl,xact-id2)

Figure 3: Definition of BLOCK macro-operation.

EXFWNGE(xact-id) =
1

Wetme XACT
rhese XACl’.xact-id = xact-id

dole&a ACC
where ACC.ract-id = xact-id

cm&e BLW
where BLKB.blocked-id = xact-id
oc BLKD.cause-id = xact-id

delete HIST
where HlST.xact-id = req-xact-id

1

Figure 4: Definition of EXPUNGE macro-operation.

RESTART(xact-id) =
‘t

replma KACT(state = “aborted”)
lrhare KAChact-id = xact-id

EXPUNGE(xact-id)
1

Figure 5: Definition of RESTART macro-operation.

at commit time. A transaction may set a read lock
on an object as long as no other transaction has a
&te lock set on the object, and a transaction may
set a write lock an object if no other transaction has
a read or write lock set on the object. When a tran-
saction tries to set a lock and fails, it must wait
until the lock is released and then try again.
Deadlocks are a possil$lity, and must either be.
prevented or detected and broken by restarting one
of the transactions involved.

We will use the the lineti-time deadlock
da&n algorith+ of Agrawal, Carey, and Dewitt
[Aera for this example. In this algorithm, when a

transaction T, is forced to wait for a lock on some
object X, it blocks on exactly one of the transac-
tions Tj which hold locks on X. If there are more
than one, it picks one arbitrarily. As shown in
[Agra62], if deadlocks are checked each time. a
transaction must wait, the CYCZE(xact id) opera-
tion (ie., the deadlock detector) can operate in a
very efficient manner. Figures 6 through 8 give a
description of 2PL using our model.

The subset of the concurrency control database
needed for 2PL is specified in Figure 6. In Figure 7,
the conditions under which blocking and restarts
are required are defined as views. The BLKCFL view
says that a block conflict has occurred if there is an
ACC relation entry for one of the current requests,
and either the cufrent request is a read request and
the ACC entry is a write entry, or else the current
request is a write request (in which case the mode
of the ACC entry .does not matter). In other words,
the ACC relation serves as a lock table, and a tran-
saction must block if an incompatible lock is
already set on an object that it wants to access.
The RSTCFL view says that a restart conflict has
occurred if there is a cycle in the BLM) relation
involving the current requesting transaction. In
other words, a transaction must restart if it is the
cause of a deadlock.

Figure 8 gives the query sets for processing
requests under 2PL. When a BEGIN request arrives,
the state of the requesting transaction is set to indi-.
cate that it is ready to run. When an ACCESS

request arrives, the BLKCFL view is materialized. If
no block- conflicts exist, then the ACC relation is
updated to indicate that locks have been granted on

XACT(xact-id.state)
ACC(xact-id,mode.obj-id)
BLKD(blocked-id,cause-id)

Figure 6: Concurrency control database for 2PL.

&We view BhKCF’L(xact-id = ACC.xact.-id)
where REQobj-id = ACCobj-id
andACC.xact-id != req-xact-id
and ((REQ.mode = “read”

and ACC.mode = “write)
ar (REQ.mode = “write”))

&iIue.riar RSTCF’L(xact-id = BLKD.xact-id)
where CYCLE(BLKD.blocked-id)
and BLKblocked-id = req-xact-id

Figure 7: Block and restart conflict views for 2PL.

LOO

on BEGIN:
append to XACT(req-xact-id,“ready”)

on ACCESS:
replace ACC(mode = REQ.mode)

whew not an9(BLKCFL)
and ACC.obj-id = REQ.obj-id
and ACC.xact-id = req-xact-id

ndtmACC - T reo-xact-id.REX&mode,REQ.obj-id)
kk+notr&@.mmj - -
¬ aay(ACC.obj-id

*hca, ACC.obj-id = REQ.obj-id
andAw.xact-id = repxact-id)

BLOCK(req-xact-id,BLKCFL.xact-id)
whew e.dBLKCn)
and BLKCFLxact-id =

IPbfn(BLKCFLxact-id)
RESTART(re -xact-id)

where en 4 BLKCFL) EmrlMyw~FL)

on END:
r@&zeXACT(state = “committed”)

where XAfX.xact-id = req-xact-id
FXFWNGE(req-xact-id)

mure 8: Request processing queries for 2%

all.requested objects. If a block conflict does exist,
the requesting transaction is blocked on one of the
confiicting transactions (the one with the smallest
transaction identifier is arbitrarily picked here),
and the RSTCFL view is materialized. If a restart 1
Conilict exists, the requesting transaction is res-
tarted. This corresponds to granting requests if no
bcks interfere, blocking a transaction if one or
more locks are unobtainable! and restarting a tran-
saction if it becomes the cause of a deadlock condi-
tion.

2.2. Ba8icTimestam~ord~

In be&c timestasnp oTae?+rg (BTO) [BernBl], the
concurrency control scheduler assigns time&s

to transactions according to their startup order. It
maintains a table of read and write time&s for
objects, recording the timestamps of the latest
reader’ and writer for each object. (Entries with
t&e&s older than the oldest active transaction
need not be kept in the table.) A read request for
an object. is granted as long as no newer write
timestamp exists for the object, and a write request
is granted as long as no newer read or write times-
tamp exists for the object. If a request is rejected,
the requesting transaction is restarted. Deadlock is
impossible, although cyclic restarts are a possibility
[Date82].

For the purpose of this example, read requests
will be processed as they arrive, and ‘all write

requests will be processed together just prior to
transaction commit time. This simplifies the con-
siderations involved in making EST0 work with two-
phase commit, as otherwise some scheduling would
be required to prevent transactions from reading
objects for which a write request has been

processed but the associated deferred update has
not yet taken place. Figures 9 through 11 give a
description of BTO using our model. The global vari-
able wq-ts is assumed tocontain the timestamp of
the current requestor. The macro-operation
CURRENT-TS() is assumed to return the current
timestamp value, implicitly increasing its value for
the next time around and setting the global variable
nurent -ts to the value of the, current timestamp.
The global variable oidest -ts is assumed to contain
the timestamp of the oldest active transaction. The
global variable Teq-type is assumed to indicate the
type of the current request.

XACT(xact-id.state,ts)
ACC(ts,mode,obj-id) -
HIm(xact-id,obj-id)

Figure 9: Concurrency control database for BTO.

dallne vi&w RSTCFL(obj-id = ACC.obj-id)
where (REQ.obj-id = ACC.obj-id

and ACC.ts > req;ts
and (REQ.mode = %a@’

andACC.mode = “write))
or (HIST.obj-id * ACC.&j-id~

and HIST.xiict-id‘ = ‘ha-xact-id
and ACC.ts > r&q&h >-
andreq-type = $VD)

Figure 10: Restart conflict view for BTO.
i

While,this description appears a bit lengthy, its
semantics are actually relatively simple: The ACE

relation plays the role of the timestamp table for
BTO. The “append to ACC...” portion of the ACCESS

request query set in Figure 11 handles the case
where there is no current timestamp for a
requested object, recording a new one, and the
“mplace ACC...” portion of the ACCESS request
query set handles the case where there is a current
timestamp for the object, updating it as called for
by the BTO algorithm. The HIST relation is used to
defer write timestamp checking until commit tie,
with similar timestamp checking : and updating
involving the HIST relation ocourring in the I$ND
request portion of the description.

101

on BEGIN:

on ACCESS:
replace ACC(ts = max(ACC.ts.req-ts)

tilCz;obgd = REQ. obj-id

T req-ts,REIQ.mode.~Q.obj-id)

where ACC.obj-id = REQ.obj-id
and ACC.mode = “read”)

append ta HISf(reqxact-d,RJilQ.obj-id)
where REQ.mode = “write”

RE?START(XACT.xact-id)
where XACl’xact-id = REQ.xact-id
and any(RSTCFL)
and REQ.mode = “read”

onEND:
replsMI XACT(state = “committed”)

where XACI’xact-id = req-xact-id
- andnot an RWCFL)

repke ACC .ts = max(ACC.ts,req-ts) t
where not any(RsTcFL)
au13 ACC.mode = “write”
and ACC.obj-id = HIST.obj-id
and HIST.xact-id = req-xact-id

append to ACC(req-ts,HIST.obj-id,“write”)
where not any(RSTCFL)
and HIST.xact-id = req-xact-id
and not any(ACC.obj-id

where ACC.obj-id = HIST.obj-id
and ACCmode = “write”)

RFSTART(XACT.xact-id)
rhereXACZ.xact-id = req-xact-id
~ang(==lQ

delete HIST
rhere HIST.xact-id = req-xact-id

delete XACT
where XAcP.xact-id = req-xact-id

delete ACC
where ACC.ts < oldest-ts

Figure 11: Request prgcessing queries for BTO.

3.9. serial validation

In aerial ~al&&&wz (SV) [Kung81], the con-
currency control scheduler keeps track of the wri-
tesets of recently committed transactions. Tran-
sactions run freely until commit-time, at which
point each transaction is submitted to a validity
test to see if committing it will leave the database
in a consistent state. For a committing transaction
fi, the test considers all recently committed tran-
sactions Tr., where a recently committed transac-
tion is one that committed since T< started running.
The test results in F, being committed iff
rrcdsst(Tt) n witasd(T,) = # for all Tm, and being
restarted otherwise.

Rather than write a description of serial valida-
tion as it was presented in [Kung8.1], we will
describe a more efficient version with different but
provably equivalent semantics. In our version, tran-
sactions will be assigned a startup timestamp and a
commit timestamp (though only their startup
time&s will be stored). Write timestamps’ will
be maintained for all data objects, and the write
timestamp for an object X will be the commit
timestamp of its most recent (su&essfuUy Commit-

ted) writer. A transaction will be allowed to commit
if and only if the write timestamp of each object X
in its readset is smaller than its startup timestamp.
It is fairly easy to show that this test is equivalent
to the original readsetjwriteset test of [Kung81],
and it is clearly more efficient. A formal
equivalence proof is presented in [CareB3]. Figures
12 through 14 give a description, somewhat simpler
than the previous descriptions, of BV using our
model.

4. Algorithm Overhesd Compariwns

In this section, we present techniques for com-
paring the relative overhead characteristics of, var&
ous concurrency control algorithms. The storage
and CPU overheads are compared via a simple com-
plexity analysis, based on implementation-
independent units of CPU and storage cost and
influenced to some extent by ideas presented in
[BerMO]. We illustrate the use of our techniques by
using them to analyze and compare the three algo-
rithms described in the previous section.

To facilitate these cost analyses, we will use a
performance model based on a set of simple param-
eters. Let R be the average readset size for, tran-
sactions, and let Fw be the average fraction of the
readset also included in the writeset. Each transac-
tion thus makes an average of R(l+F,) data access
requests. (We assume the writeset to be a subset of
the readset for each transaction, and we assume’
that transactions do not make the same request
twice.) Let F,, be the average number of transac-
tions in the system. Let Fb be the average fraction
of blocked transactions, and let Fm be-the factor
which, when multiplied by T,, yields the average
number of recently committed transactions. (A
recently committed transaction is one which com-
mitted since the startup time of the oldest transac-
tion still

102

l

The blocking and restart characteristics of
algorithms will influence the parameters Fb and Fm,

so they will vary from algorithm to algorithm. ‘ihe
parameter F, is determined solely by the transac-
tion mix. To bound these parameters, note that
04 Fb S 1 and 0 5 FW L 1. For the parameter F=,

however, all that is certain is that Fm k 0, as FtG is
determined by the variance in running times for
transactions in the transaction mix. For example, a
very long transaction mixed with a collection of
shart transactions wouJd result in a large value for
Fk.

4.1. stomge (keTilead

We analyze the sizes of the relations in the con-
currency control database for various algorithms in
order to compare their storage overheads. We take
one field of one tuple of one relation as the .unit of
storage cost for this analysis.. Given an algorithm,
the tuple widths of the relations in the concurrency
control database are explicit in the description, and
the cardinalities of the relations are determined by
the nature of the query sets in the description. The
overall database size is simply the sum of the
width-cardinal&y products for the relations in the
database. Both upper and lower bounds on the
storage overhead of ,algorithms are quite easily
determined in our model.

We consider the 2PL algorithm first. ‘The XX7
relation .represents a storage cost of 2T,, and the
BJXZI relation represents a cast ‘of 2Fb To. For the
ACC relation, a storage cost of’ 3T,,(l-F,)R is
incurred for storing read locks (note that only one
lock is set on objects that are to be written). For
storing write locks, the cost can vary from as low as
3F,R, in the case where all Ta transactions write

XACT(xact-id,state,ts)
ACC(ts,obj-id)
HIST(xact-id.mode.obj-id)

Figure 12: Concurrency control database for SV.

&Urn? vtew RSTCF’L(obj-id = HIST.obj-id)
where HIST.obj-id = ACC.obj-id
w&m HIST.xact-id = req-xact-id
where HIST.mode = “read”
andACC.ts > req-ts

Fiiure 13: Restart conflict view for SV.

on BEGIN:
nd to XACT

‘“9p” req-xact-id.“ready”.CURRENT-TS())

on ACCESS:.
ndtoHIST

“9p” raq-xact-id.RRQ.mode.REQ.obj-id)

on END:
leplaoe XACT(state = “committed’)

where XACT.xact-id = req-xact-id
mldnotany(RsTcFL

~~AKPO(ACT.xac!t-id 1
share X&Cl’.xact-id = req-xact-id
and an9(YTCFL)

m?plsei ACC(ts = current-ts)
where not &u&c3TcFL)
and HIST.mode = “write”
and ACC.obj-id = HIST.obj-id
end HIST.xact-id = req-xact-id

ndtoACC
“9p” obj-id = HISTobj-id&s = ,current-ts)

wherendtany(RsTcFL)
and HISKmode = “write”

andHIST.xact-id = req-xact-id
and not any(ACC

w ACC.obj-id = HIST.obj-id)
delete HIsr

where HHT.xact-id = req-xactiid .
delete XACT I

where XAcT.xa&id = req-xact-id
delet&ACC

w ACC.ts < oldest-b

Figure 14: Request processing queries for Sv.

the same objects, to as high as ST,F,R,, in the case
where no two transactions write the same object.
bus, we have:

ST% I; 2T,(l+Fb)+3T,R (14

STOWL 2 2Ta(1+F,)+3T,R(l-F,)+3F,R (lb)

Similar reasoning yields the following results for
BTOfUXisv: * ‘,

STOmo g 3T.(l+F,)R(l+F,,,)+T.(3+2&R) (2a)

STbo z 3R(l+F,)+T,(3+2F,R) (2b)

STOsys 2T,(l+F,)R&+3T,(l+R(l+F,)) (3aj

STOm 2 2RFW+3T,(l+R(l+Fw)) W

Given the. bounds ,on Fb and F,, we can draw.
some conclusions about the relative storage over-
heads of the algorithms. From equations (la), .(2a),
and @a), one can conclude that 2RL has the srr&
lest worst-case storage overhead of the three algo-.
rithms, which is (4+3R)T,. The worst-case storage
overheads of the other two algorithms are depen-
dent on the parameter F,, which is unbounded. A
more detailed analysis of these equations reveals

103

that the worst-case storage overhead of SV is
strictly smaller than that of BTO (assuming compar-
able Fro values for the two algorithms), and that, if
F, 5 l/2, 2PL is certain to have a smaller WOrSt-CaSe

storage overhead than both SV and BTO. The
worst-case storage overhead occurs when transac-
tions do not compete for the same data items,
which is likely to be the case for real mixes of tran-
sactions [Grayal]. Thus, Fb is likely to be small for
2PL, leading to the conclusion that 2PL dominates
SV, and SV in turn dominates BTO, with respect fo

worst-case storage overhead.

A comparison of equations (2b) and (3b) reveals
that, with respect to best-case storage overhead,
BTO dominates SV for T. t 3. Comparing equations
(lb) and (3b), we find that, if Fb sz l/2, 2PL is cer-
tam to dominate SV as welL, Finally, a comparison
of equations (lb) and (2b) indicates that BTO dom-
inates 2PL unless FW 5 3/5 and Fb d l/2. Since the
best-case overheads apply when transactions tend
to conflict (access the same objects), this combina-
tion of FW and Fb is impossible; if FW is large, tran-
sactions will be competing for write locks on these
shared objects, and lots of blocking will occur.
Hence, BTO dominates 2PL with respect to best-case
storage overhead. To summarize the overall
storage overhead resuits, then, SV is the worst of
the three algorithms. 2PL is best in terms of
worst-case storage overhead, indicating’ that it is
superior under low-conflict transaction mixes. BTO
is best in terms of best-case storage overhead,
meaning that it is best under high-conflict transac-
tion mixes.

4.2 CPUOverhead

We analyze the number of operations involved
in executing the query sets for various algorithms in
order to compare their CPU overheads. We take
one tuple access, insertion, or replacement in one
relation as the unit of CPU cost for this analysis,
assuming that the CPU time required is propor-
tional to the number of table lookups, as proposed
(in different terms) by Bernstein and Goodman
[Bern50]. We do not assess CPU cost for accesses to
the REQ relation, as this is simply our model of the
way transactions pass requests to the scheduler.

Unfortunately, analyzing the CPU overhead of a
given concurrency control algorithm is, in the

general case, considerably more complex than
analyzing the storage overhead of the algorithm. In
this paper we consider only the no-conflict CPU
overhead [BadaBl], the CPU overhead experfenced
by a transaction which does not conflict in any way
with other concurrent transactions. Since actual
conflicts are reported to be rare [GrayelI. the no-
cost CPU overhead should be a reasonable “float-
order” metric. We leave for future work the prob-
lem of generalizing the analysis to include the addi-
tional sources of CPU overhead associated with
transactions which must restart or repeat requests
due to blocking.

We again consider 2PL fist. The cost of pro-
cessing a BEGIN request is 1. The cost of material-
i&g the BLKCFL view is 1, so the cost of processing
R(l+F,) data access (ACCESS) requests is 2R(l+F,)

if no blocking occurs. The cost of processing an
END request is 3+R (assuming .me BLKD access to
determine the lack of blocked transactions).
Hence, we have:

CPL& ‘= 4+R(3+2FW)

Similar analyses can be performed forBT0 and
SV. The cost of processing an END request for ET0
and SV depends on the number of timestamps
deleted at that time; in the no-conflict case, we
assume that all transactions access different ‘data
items, meaning that all timestamps associa4,ed with
a given transaction must eventually be eliplicitly.
deleted. We charge this timestamp deletion over-
head to the transaction creating the t&restamp,
even though deletion may occur at some later point
in time. Other details of the CPU analysis for BTO
and SV are quite similar to locking, so we do not
present them here. We And that:

cpbjj, = 3+R(3+7FW) (5)

CPUm = 3+R(4+5FW) (6)

Comparing equation (4) with equation (5), we
find that 2PL has a smaller no-conflict CPU over-
head than ST0 unless FW is extremely small. in
which case 2PL and EITO are comparable. Compar-
fng equation (4) with equation (5), we And that 2PL
also has a smaller no-conflict CPU overhead than
SV. Comparing equations (5) and (6), we And that
BTO has a smaller no-conflict CPU overhead than SV

104

if F’ < l/2, and that SV has a smaller no-conflict
CPU overhead if Fw > 1/ 2. Thus, with respect to this
CPU overhead metric, 2PL is dominant, BTO is
second-best if writing is infrequent, and SV is
second-best if writing is frequent.

4.9. Overhead Comparison Summ~

In the previous sections, we compared the
storage and CPU overheads of 2PL, BTO, and SV. We
found 2PL to be the algorithm involving the least
storage overhead under low-conflict transaction
mixes, with BTO being the best under high-conflict
mixes. SV was the,worst algorithm with respect to
storage overhead. We found 2PL to be the algorithm
with the smallest no-conflict CPU overhead. BTO
turned out to be second-best with respect to no-
conflict CPU overhead if writing is infrequent, with
SV being second-best if writing is frequent. These
results are summarized in Figure 15. We will pursue
these comparisons and investigate tradeoff points in
a more rigorous fashion in [Care83]. In particular,
we intend to use the storage and CPU results to par-
tition the parameter space into regions where vari-
ous algorithms are elearly’domlnant.

I Results of Overhea&C

Algorithm

2PL

E
BTO

sv

Storage
Overhead

-z

CPU
Overhead

best under best no-conflict
low conflicts overhead

best under second best under
high conflicts infrequent writing

worst of second best under
the three frequent writing

F’igure 15: Summary of algorithm overhead results.

a HodelExtensions

In our ongoing study of concurrency control
algorithm performance, we are studying multiple
version and distributed algorithms .as well as
single-site algorithms. In this section we briefly
describe the extensions required to our model
which facilitate these studies.

5.1. HuItipIe Versians

Several recent concurrency control algorithm

proposals involve maintaining multiple versions of
data objects [Reed78, Baye89, Stea81, Chan82,
BernBBb]. In order to describe such algorithms
within our model, we introduce a new concurrency
control database relation, the OBJ relation, with’
obj-id, version-id, and obj-value fields. Each ver-
sion of each object in the database has a
corresponding tuple in this relation. In places
where an obj-id was called for in single-site algo-
rithms, we use an (obj-id, ver&n-id) pair in our
multiple version, model. The analysis techniques I
can be applied to thii extended model in the same
manner as for the single-site model, except that cl,
units of storage cost are assessed for obj-value

flelds of OBJ tuples (to reflect the fact that objects
require much more storage, than typical con-
currency control information).

5.2 Distributed Databases

Many recent concurrency control algorithm
proposals are intended for use in distributed data-
base systems [R0se78, Mena78, Ston79, Lind79,
Bern80, Bernal. Bern82a, Thom79, Ceri82]. In order
to describe distributed concurrency’ oontrol algo-
rithms within our model, we assume that each site
has a concurrency control scheduler with an associ-
ated concurrency control database, and that the
schedulers interact via messages. To model. this
interaction, we introduce some new notation for use
in writing algorithm descriptions for distributed
systems. Queries of the form +ommond> where
<predicate> AT&VTES-OF(obj-id) will be used to
indicate that the predicate must be true at.all sites
where the specified object resides, ,ir&oating the
need for a round-trip message exchange to evaluate
the predicate. In cases where the AT-SITES-OF

clause is left out, just the local site will be involved
in evaluating the predicate.

With this extension, algorithm descriptions will
be formulated as before, except that the
AT-SITES-OF(X) set must’ be described for all
objects X. It is this set description which will serve
to differentiate primary site, primary copy, and
decentralized concurrency control schemes
[Bernal, BernBZa] from one another, for example.
The overhead analysis techniques carry through,
though is necessary to account for the additional
overhead when the AT-SITES-OF set contains more

than a single site. Also, a new type of overhead,.

105

message overhead, arises in distributed systems.
This overhead may be characterized, by analyzing
the number of messages required when executing
the new query sets on behalf of transactions.

We have presented a new model of concurrency
control algorithms, one which provides. a unified
framework for describing and comparing the many
algorithm proposals. We have given several sample
descriptions, and we have shown how our model
facilitates analyses of the relative storage and CPU
overheads of algorithms. Cur model differs from
those of other researchers fBern89, BernBia,
Gall821 ln this respect, as other attempte at uni-
form concurrency control frameworks have not
been able to support both algorithm descriptions
and quantitative algorithm comparisons. Finally, we
have indicated how we are extending our model to
include the domains of multiple version and distri-
buted concurrency control algorithms.

We intend to use this model to perform a
comprehensive study of the overheads of various
concurrency control aIgorithms, describing them
and comparing their storage, CPU, and message
overheads. We have also .written a falrIy general
simulation program, allowing a concurrency control
algorithm to be described in terms of a small col-
lection of Pascal routines (called by the simulator
as needed), and we will use this simulator to vali-
date our overhead bounds and to study the con-
currency properties of algorithms as well.

The author wishes to thank Mike Stonebraker
for his helpful comments. suggestions, and support.

Rderences

[Bada70] Badal, D., ‘Correctness of Concurrency
Control and Implications ln Distributed
Databases”, Proceedings of the COMPSAC
‘70 Conference. Chicago; Illinois,
November 1070.

IBada81] Badal, D., “Concurrency Control Qver-
head or Closer hook at’Blocking vs. Non-
blocking Concurrency Control Mechan-
isms”, Proceedings of the Fifth Berkeley
Workshop on Distributed Data Manage-.
ment and Computer Networks, Emery-
ville, CA, February 1081.

[BayeeO] Bayer, R., Heller, H., and Reiser, A.,
“Parallelism and Recovery in Database
Systems”, ACM Transactions on Database
Systems 5(2), June 1980.

[BernBO] Bernstein, P., and Goodman, N., “Funda-
mental Algorithms for Concurrency Con-
trol in Distributed Database Systems”,
Technical Report, Computer Corporation
of America, 1980.

[Bern811 Bernstein, P., and Goodman, N., “Con-
currency Control in Distributed Data-
base Systems”, ACM Computing Surveys
13(2), June 1081.

[Bern82a] Bernstein, P., and Goodman, N., “A
Sophisticate’s Introduction to Distri-
buted Database Concurrency Control”,
Proceedings of the Eighth international
Conference on Very barge Data Bases,
September 1082.

[Bern82b] Bernstein, P., and Goodman, N., “Mul-
tiversion Concurrency Control Theory
and Algorithms”, Technical Report No.
TR-20-82, AikenComputation Laboratory,
Harvard University, June 1082.

[Care831

[Casa79]

[Ceri82]

[Chan82]

[Date821

[Elli77]

[Gall821

[Garc70]

106

Carey, M., ‘Modeling and Evaluation of
Database Concurrency Control Algo-
rithms”, Ph.D. Thesis, Computer Science
Division, EECS Department, University of
California, Berkeley, (in preparation).
Casanova, M., “The Concurrency Control
Problem for Database Systems”, Ph.D.
Thesis, Computer. Science Department,
Harvard University, 1070.
Ceri, S., and Owicki, S., “On the Use ,of
Optimistic Methods for Concurrency
Control in Distributed Databases”,
Proceedings of the Sixth Berkeley
Workshop on Distributed Data Manage-
ment and Computer Networks, February,
1082.
Chan, A., Fox, S., fin, W., Nori, A., and
Ries, D., ‘The Implementation of An
Integrated Concurrency Control and
Recovery Scheme”, Proceedings of the
ACM-SIGMOD International Conference
on Management of Data, March 1082.
Date, C., “An Introduction to Database
Systems (Volume II)“, Addison-Wesley
Publishing Company, 1082.
Ellis, C., “A Robust Algorithm for Updat-
lng Duplicate Databases”, Proceedings of
the 2nd Berkeley Workshop on Dirt@-
buted Databases and Computer Net-
works, May 1077.
Galler, B., “Concurrency Control Perfor-
mance Issues” Ph.D. Thesis, Computer
Science Department, University of
Toronto, September, 1082.
Garcia-Molina, H., “Performance of
Update Algorithms for Replicated Data in

[Gray791

[Gray811

[Iran701

[Lln82]

[Lind70]

[Mena78]

[Papa701

[Pot&O]

[Reed781

[Ries77]

a Distributed Database”, Ph.D. Thesis,
Computer Science Department, Stanford
University, June 1079.
Gray, J., “Notes On Database Operating
Systems”, in “Operating Systems: An
Advanced Course”, Springer-Verlag,
1070.

Gray, J., Homan, P., Korth, H., and Ober-
marck, R., “A Straw Man Analysis of the
Probability of Waiting and Deadlock in a
Database System”, Report No. RJ3066,
IBM San Jose Research Laboratory,
February 1081.
Irani, K., and Lln, H., “Queueing Network
Models for Concurrent Transaction Pro-
cessing in a Database,System, Proceed-
ings of the ACM-SIGMOD International
Symposium on Management of. Data,
1070.
Kung, H., and Robinson, J., “On Optimis-
tic Methods for Concurrency Control”,
ACM Transactions on Database Systems
6(2), June 1981.
Lin, W., and Nolte, J., “Distributed Date-
base Control and Allocation: Semi-Annual
Report”, Technical Report, Computer
Corporation of America, Cambridge, Mas-
sachusetts, January 1982.
Lindsay, B., Selinger, P., Galtieri, C.,
Gray, J., Lorie, R., Price, T., Putzolu, F.,
Traiger, I., and Wade, B., “Notes on Dis-
tributed Databases”, Research Report,
IBM San Jose Research Center, 1979.
Menasde, D., and Muntz, R., “Locking and
Deadlock Detection in Distributed Data-
bases”, Proceedings of the Third Berke-
ley Workshop on Distributed Data
Management and Computer Networks,
August 1078.
Papadimitriou, C., “Serializability of Con-
current Updates”, Journal of the ACM
28(4)‘, October 1070.
Potler, D., and LeBlanc, P., “Analysis of
Locking Policies ln Database Manage-
ment Systems”, Proceedings of the Per-
formance ‘80 Conference, 7th IFIP
W.G.7.3 International Symposium an
Computer Performance Modeling, Meas-
urement, and Evaluation, Toronto, May
1080.

Reed, D., “Naming and Synchronization
in a Decentralized Computer System”,
PhD Thesis, Department of Electrical
Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1978.
Ries, D., and Stonebraker, M., “Effects of
Locking Granularity on Database
Management System Performance”, ACM
Transactions on Database Systems 2(3).
September 1977.

[Ries79a] Ries, D., “The Effects of Concurrency
Control on Database Management Sys-
tem Performance”, PhD Thesis, Depart-
ment of Electrical Engineering and Com-
puter Science, University of California at
Berkeley, 1979.

[Ries79b] Ries, D., and.Stonebraker, M., “Locking
Granularity Revisited’, ACM Transactions
on Database Systems 4(2), June 1979.

[Rose781 Rosenkrantz, D., Stearns, k.. and Lewis,
P., “System Level Concurrency Control
for Distributed Database Systems”. ACM
Transactions on Database Systems. 3(2),
June 1978.

[SteaBl] Stearns, .R., and Rosenkrantz, D., “Distri-
buted Database Concurrency Controls
Using Before-Values”, Technical Report,
SUNY Albany, February 1981.

ESton78] Stonebraker, M., Wong, E., Kreps, P. and
Held, G., “The Design and Implementa-
tion of INGRES”, ACM Transactions on
Database Systems l(3), September 1976.

[Ston79] Stonebraker, M., “Concurrency Control
and Consistency of Multiple Copies of
Data in Distributed INGRES”, IEEE Tran-
sactions on Software Engineering 5(3),
May 1979.

[Thorn791 Thomas, R., ‘A Majority Consensus
Approach to Concurrency Control for
Multiple Copy Databases”, ACM Transac-
tions on Database Systems 4(2), June
1979.

107

