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ABsrRAcr 
An abstract model of concurrency control algo- 

rithms is presented. The model facilitates 
implementation-independent descriptions of various 
algorithms, allowing them to be specified in terms 
of the information that they require, the conditions 
under which blocking or restarts are called for, and 
the manner in which requests are. processed. The 
model also facilitates comparisons of the relative 
storage and CPU overheads of various algorithms 
based on their descriptions. Results are given for 
single-site versions of two-phase locking, basic 
timestamp ordering, and serial validation. Exten- 
sions which will allow comparisons of multiple ver- 
sion and distributed algorithms are discussed as 
well. 

Considerable algorithm development has 
occurred in the area of concurrency control for 
both single-site and distributed database systems. 
The vast majority of the proposed algorithms are’ 
based on one of three mechanisms: loc&g [Mena78, 
Rose78, Gray79, Lind79, Ston79], thestamps 

I [Reed78, Thom79, Bern80, BernBl], or commit-time 
Vtll- (or certification). [Bada79, Casa79, 
Baye80, Kung81, Ceri82j. It is also possible to form 
a large number of algorithms by combining these 
mechanisms [BernBO, BernelI. Thus, there are a 
large number algorithms to choose from. Unfor- 
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tunately, little is known that would assist an imple- 
mentor in making this choice. 

Several recent studies have addressed the 
problem of evaluating the performance of alterna- 
tive concurrency control algorithms. These include 
qualitative, analytical, and simulation studies. 
Bernstein and Goodman performed a comprehen- 
sive qualitative study which discussed performance 
issues for a number of distributed locking and 
timestamp algorithms [BernBO]. Results of analyti- 
cal studies of locking performance have been 
reported by Irani and Lin [Iran791 and Potier and 
Leblanc [PotiBO]. Simulation studies of locking 
done by Ries and Stonebraker provide insiiht into 
granularity versus concurrency tradeoffs [Ries77, 
Ries79a, Ries79b]. Analytical and simulation studies 
by Garcia-Molma [Garc79] provide some insight into 
the relative performance of several variants of lock- 
ing as well as a voting algorithm [Thom79] and a 
ring algorithm [Elli77]. Simulation studies by Lin 
and Nolte [Lin82] provide some comparative perfor- 
mance results for locking and several timestamp 
algorithms. A recent thesis by Galler [Gall821 pro- 
vides a combination of a new analytical technique 
for locking, some qualitative techniques for compar- 
ing algorithms, and some simulation results for 
locking versus timestamps which contradict those 
of Lin and Nolte. 

While certainly interesting, these performance 
studies fall to offer definitive results regarding the 
selection of a concurrency control algorithm. The 
analytical and simulation studies examine transao- 
tion throughput and response tii characteristics 
under various workloads and system parameter set- 
tings, assuming a flxed cost (sometimes zero) for 
processing each concurrency control request. Lit- 
tle or no consideration has been given to the rela- 
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tive storage and CPU overheads required by the 
various algorithms. The studies involve lengthy ana- 
lyses, large simulation programs, or both, with the 
underlying system models and assumptions varying 
from study to study. As a result, no single 
comprehensive analytical or simulation study of the 
many proposed algorithms has been undertaken, 
and cross-comparisons of different studies are 
difficult or impossible. Only Bernstein and Good- 
man [Bern801 and Galler [Gall821 have attempted 
comprehensive comparative studies, and their work 
thus far has been too qualitative to be conclusive. 

In this paper we report on a current effort to 
provide a uniform model of concurrency control 
algorithms. The model is designed to facilitate a 
comprehensive comparative study,. providing a uni- 
form framework for describing and evaluating alter- 
native concurrency control algorithms [Care83]. 
Here we describe our model and techniques for 
analyzing the relative storage and CPU overheads of 
various concurrency control algorithms. Section 2 
presents our model, and section 3 explains how 
algorithms are described under the model, present- 
ing descriptions of single-site versions of two-phase 
locking, basic timestamp ordering, and serial vali- 
dation. Section 4 shows how the model may be used 
to analyze relative storage and CPU overheads for 
algorithms, giving results for the algorithms 
described in section 3. In section 5, we describe 
extensions to the model and analysis techniques for 
multiple version and, distributed concurrency con- 
trol algorithms. Section 6 presents our conclusions 
thus far and describes our intended future work. 

2 TheBasicModel 

The concurrency control subsystem of most 
database management systems can be thought of as 
a special-purpose scheduler [Casa79, Papa79, 
Bern60, Bern82al. It accepts begin, data access, 
and commit requests from transactions, and 
decides whether to allow, postpone, or reject these 
requests. Concurrency control schemes of this sort 
are called +.amti and syhtactic schemes, as they 
make decisions based on information as it becomes 
available, and the information used does not involve 
knowledge about the semantics of the transactions 
or the semantics or structure of the database. We 
restrict our .attention to this class of concurrency 
control algorithms. 

Our model of single-site concurrency control 
algorithms contains a single concurrency ctmtrol 
schotisr , This scheduler keeps information about 
the history of requests received to date. We refer to 
this information as the conc~ncy control &~~JMXU, 
and we will treat it conceptually as a simple, rela- 
tional database, ignoring the multitude of data 
structures which might be used in its implementa- 
tion. For a particular concurrency control algo- 
rithm, the scheduler obeys a well-defined set of 
rules which tell it how to respond to incoming 
requests, based both on the requests themselves 
and on the contents of the concurrency control 
database. For reasons of simplicity, conciseness, 
and implementation independence, we formulate 
these rules as relational database queries. Our 
model is summarized in Figure 1. 

CC DATABASE 

Figure 1: Concurrency control model. 

21. Transaction F&quests 

Our model allows three types of requests from 
transactions: BEGIN, END, and ACCESS. The first 
two mark the beginning and the end of transaction 
execution, and the latter indicates that the request- 
ing transaction wishes to access one or more 
objects. .A given transaction may make a number of 
ACCESS requests in the course of its execution. 
When the scheduler receives a request, it also 
receives a collection of (obj -id, mode) pairs indicat- 
ing the objects and access modes, (read or write), if 
any, associated with the current request. We refer 
to this collection as a relation, the REQ relation, for 
the purpose of formulating concurrency control 
algorithms as queries. It is assumed in our model 
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that transactions abide by the responses received 
from the scheduler, accessing data objects 
accordingly. It is also assumed that writes are writ- 
ten to a deferred update list [Gray79], and that they 
are installed as new data values at transaction com- 
mit time, so that concurrency control algorithm 
descriptions need not be concerned with such 
details. 

22. The Ooncurrency Control Database 

The concurrency control database, shown in 
Figure 2, consists of four relations. The XACT rela- 
tion contains transaction state information, specify- 
ing the transaction identifler, state (ready, blocked, 
committed, aborted), and timestamp of each 
current or recent transaction. The ACC relation 
contains information about accesses to objects, 
specifying the object identifier, access mode (read 
or write), transaction identifier, and timestamp for 
each current or recent access. This relation plays 
the role of a concurrency control table, such as a 
lock table or a timestamp table, in algorithm 
descriptions. The BLKD relation contains informa- 
tion about any blocked transactions, containing the 
transaction identifiers of these transactions and of 
the transactions which they are waiting for. It is 
assumed that the deletion of an entry from the 
BLKD relation unblocks the corresponding transac- 
tion implicitly, allowing it’ to begin where it previ- 
ously left off. The HIST relation stores histories of 
ACCESS requests which are conditionally granted, 
where the concurrency control decision is to be 
deferred until transaction commit time (such as in 
optimistic concurrency control algorithms). 
Entries in this relation specify the transaction 
identifiers, object identifiers, and access modes 
associated with such requests. 

Not all concurrency control algorithms use all 
of the relations in the concurrency control data- 
base, as this set of relations is intended to 
represent the collection of all possible information 
which algorithms might choose to make use of. For 
the same reason, not all concurrency control algo- 
rithms use all of the fields of these relations. Thus, 
the portion of the concurrency control database 
used by an algorithm is specified as part of its 
description. 

XACT(xact-id,state,ts) 

ACC(obj-id,mode,xact-id,ts) 
BLKD(blocked-id, cause-id) 
HIST(xact-id,obj-id,mode) 

Figure 2: Concurrency control database. 

23. Algorithm Descriptions 

Concurrency control algorithms are described 
in three parts under our model. These are: 

(1) A list of the concurrency control database rela- 
tions and flelds used by the algorithm. 

(2) A pair of views,‘ BWCCFL ‘and RSTCFL, which 
define the situations where block,ing or restart- 
ing are called for, respectively. 

(3) Three query sets, describing the actions to be 
taken on receipt of BEGIN, ACCESS, and EN6 

requests. These query sets access the con- 
currency control database and REQ relation 
associated with the current request and are 
presumed to execute atomically when invoked. 
We, borrow from the QUEL query language 
[Ston76] for our query syntax, deviating or 
adding high-level macro-oRerations where QUEL 
fails to fulffll our needs. . 

3. Using The Model 

In this section, we demonstrate the descriptive 
use of our single-site model by showing how two- 
phase locking [Gray79], basic timestamp ordering 
[BBrnBi], and serial validation [Kung81] may be 
described under the model. In d&g so, we take 
several liberties with the QUEL syntax. First, we 
omit range statements. Second, we define the 
macro-operations shown in Figures 3 through 5. 
The BLOCK operation blocks a specified transaction, 
recording its transaction identifier and the 
identifier of the transaction which it is waiting for in 
the BLED relation. The EXPUNGE operation deletes 
all of the information associated with a specified ’ 
transaction, and is used at transaction commit or 
restart time. The RESTART operation restarts a 
specified transaction. We assume the existence of a 
fourth macro-operation, CYCLE(zacf id), which 
searches for cycles of blocked transactions in the 
BMD relation involving a specified transaction and 
returns true if and only if a cycle is found. (This 
last operation cannot be specified in QUEL in a con- 
venient manner.) Finally, we assume the existence 
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of several convenient global variables, such as 
wq -zact -id, the transaction identifier for the 
current requestor. Other such variables will be 
assumed and commented upon as they seem rea- 
sonable and convenient. 

3.1. Tud'hase Iacking 

In fum-phuse lockhg (2PL) [Grayi’g], the con- 

currency control scheduler maintains a lock table. 
Transactions set read and write locks on objects 
before accessing them, and they release their locks 

BLOCK(xact-idl,xact;id2) = 
1 

raplsa, xAC’l’(state = “blocked”) 
where XAcP.xact-id = xact-id1 

j 
append to BLKD(xact-idl,xact-id2) 

Figure 3: Definition of BLOCK macro-operation. 

EXFWNGE(xact-id) = 
1 

Wetme XACT 
rhese XACl’.xact-id = xact-id 

dole&a ACC 
where ACC.ract-id = xact-id 

cm&e BLW 
where BLKB.blocked-id = xact-id 
oc BLKD.cause-id = xact-id 

delete HIST 
where HlST.xact-id = req-xact-id 

1 

Figure 4: Definition of EXPUNGE macro-operation. 

RESTART(xact-id) = 
‘t 

replma KACT(state = “aborted”) 
lrhare KAChact-id = xact-id 

EXPUNGE(xact-id) 
1 

Figure 5: Definition of RESTART macro-operation. 

at commit time. A transaction may set a read lock 
on an object as long as no other transaction has a 
&te lock set on the object, and a transaction may 
set a write lock an object if no other transaction has 
a read or write lock set on the object. When a tran- 
saction tries to set a lock and fails, it must wait 
until the lock is released and then try again. 
Deadlocks are a possil$lity, and must either be. 
prevented or detected and broken by restarting one 
of the transactions involved. 

We will use the the lineti-time deadlock 
da&n algorith+ of Agrawal, Carey, and Dewitt 
[Aera for this example. In this algorithm, when a 

transaction T, is forced to wait for a lock on some 
object X, it blocks on exactly one of the transac- 
tions Tj which hold locks on X. If there are more 
than one, it picks one arbitrarily. As shown in 
[Agra62], if deadlocks are checked each time. a 
transaction must wait, the CYCZE(xact id) opera- 
tion (ie., the deadlock detector) can operate in a 
very efficient manner. Figures 6 through 8 give a 
description of 2PL using our model. 

The subset of the concurrency control database 
needed for 2PL is specified in Figure 6. In Figure 7, 
the conditions under which blocking and restarts 
are required are defined as views. The BLKCFL view 
says that a block conflict has occurred if there is an 
ACC relation entry for one of the current requests, 
and either the cufrent request is a read request and 
the ACC entry is a write entry, or else the current 
request is a write request (in which case the mode 
of the ACC entry .does not matter). In other words, 
the ACC relation serves as a lock table, and a tran- 
saction must block if an incompatible lock is 
already set on an object that it wants to access. 
The RSTCFL view says that a restart conflict has 
occurred if there is a cycle in the BLM) relation 
involving the current requesting transaction. In 
other words, a transaction must restart if it is the 
cause of a deadlock. 

Figure 8 gives the query sets for processing 
requests under 2PL. When a BEGIN request arrives, 
the state of the requesting transaction is set to indi-. 
cate that it is ready to run. When an ACCESS 

request arrives, the BLKCFL view is materialized. If 
no block- conflicts exist, then the ACC relation is 
updated to indicate that locks have been granted on 

XACT(xact-id.state) 
ACC(xact-id,mode.obj-id) 
BLKD(blocked-id,cause-id) 

Figure 6: Concurrency control database for 2PL. 

&We view BhKCF’L(xact-id = ACC.xact.-id) 
where REQobj-id = ACCobj-id 
andACC.xact-id != req-xact-id 
and ((REQ.mode = “read” 

and ACC.mode = “write) 
ar (REQ.mode = “write”)) 

&iIue.riar RSTCF’L(xact-id = BLKD.xact-id) 
where CYCLE(BLKD.blocked-id) 
and BLKblocked-id = req-xact-id 

Figure 7: Block and restart conflict views for 2PL. 
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on BEGIN: 
append to XACT(req-xact-id,“ready”) 

on ACCESS: 
replace ACC(mode = REQ.mode) 

whew not an9(BLKCFL) 
and ACC.obj-id = REQ.obj-id 
and ACC.xact-id = req-xact-id 

ndtmACC - T reo-xact-id.REX&mode,REQ.obj-id) 
kk+notr&@.mmj - - 
&not aay(ACC.obj-id 

*hca, ACC.obj-id = REQ.obj-id 
andAw.xact-id = repxact-id) 

BLOCK(req-xact-id,BLKCFL.xact-id) 
whew e.dBLKCn) 
and BLKCFLxact-id = 

IPbfn(BLKCFLxact-id) 
RESTART(re -xact-id) 

where en 4 BLKCFL) EmrlMyw~FL) 

on END: 
r@&zeXACT(state = “committed”) 

where XAfX.xact-id = req-xact-id 
FXFWNGE(req-xact-id) 

mure 8: Request processing queries for 2% 

all.requested objects. If a block conflict does exist, 
the requesting transaction is blocked on one of the 
confiicting transactions (the one with the smallest 
transaction identifier is arbitrarily picked here), 
and the RSTCFL view is materialized. If a restart 1 
Conilict exists, the requesting transaction is res- 
tarted. This corresponds to granting requests if no 
bcks interfere, blocking a transaction if one or 
more locks are unobtainable! and restarting a tran- 
saction if it becomes the cause of a deadlock condi- 
tion. 

2.2. Ba8icTimestam~ord~ 

In be&c timestasnp oTae?+rg (BTO) [BernBl], the 
concurrency control scheduler assigns time&amps 

to transactions according to their startup order. It 
maintains a table of read and write time&amps for 
objects, recording the timestamps of the latest 
reader’ and writer for each object. (Entries with 
t&e&amps older than the oldest active transaction 
need not be kept in the table.) A read request for 
an object. is granted as long as no newer write 
timestamp exists for the object, and a write request 
is granted as long as no newer read or write times- 
tamp exists for the object. If a request is rejected, 
the requesting transaction is restarted. Deadlock is 
impossible, although cyclic restarts are a possibility 
[Date82]. 

For the purpose of this example, read requests 
will be processed as they arrive, and ‘all write 

requests will be processed together just prior to 
transaction commit time. This simplifies the con- 
siderations involved in making EST0 work with two- 
phase commit, as otherwise some scheduling would 
be required to prevent transactions from reading 
objects for which a write request has been 

processed but the associated deferred update has 
not yet taken place. Figures 9 through 11 give a 
description of BTO using our model. The global vari- 
able wq-ts is assumed tocontain the timestamp of 
the current requestor. The macro-operation 
CURRENT-TS() is assumed to return the current 
timestamp value, implicitly increasing its value for 
the next time around and setting the global variable 
nurent -ts to the value of the, current timestamp. 
The global variable oidest -ts is assumed to contain 
the timestamp of the oldest active transaction. The 
global variable Teq-type is assumed to indicate the 
type of the current request. 

XACT(xact-id.state,ts) 
ACC(ts,mode,obj-id) - 
HIm(xact-id,obj-id) 

Figure 9: Concurrency control database for BTO. 

dallne vi&w RSTCFL(obj-id = ACC.obj-id) 
where (REQ.obj-id = ACC.obj-id 

and ACC.ts > req;ts 
and (REQ.mode = %a@’ 

andACC.mode = “write)) 
or (HIST.obj-id * ACC.&j-id~ 

and HIST.xiict-id‘ = ‘ha-xact-id 
and ACC.ts > r&q&h >- 
andreq-type = $VD) 

Figure 10: Restart conflict view for BTO. 
i 

While,this description appears a bit lengthy, its 
semantics are actually relatively simple: The ACE 

relation plays the role of the timestamp table for 
BTO. The “append to ACC...” portion of the ACCESS 

request query set in Figure 11 handles the case 
where there is no current timestamp for a 
requested object, recording a new one, and the 
“mplace ACC...” portion of the ACCESS request 
query set handles the case where there is a current 
timestamp for the object, updating it as called for 
by the BTO algorithm. The HIST relation is used to 
defer write timestamp checking until commit tie, 
with similar timestamp checking : and updating 
involving the HIST relation ocourring in the I$ND 
request portion of the description. 
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on BEGIN: 

on ACCESS: 
replace ACC(ts = max(ACC.ts.req-ts) 

tilCz;obgd = REQ. obj-id 

T req-ts,REIQ.mode.~Q.obj-id) 

where ACC.obj-id = REQ.obj-id 
and ACC.mode = “read”) 

append ta HISf(reqxact-d,RJilQ.obj-id) 
where REQ.mode = “write” 

RE?START(XACT.xact-id) 
where XACl’xact-id = REQ.xact-id 
and any(RSTCFL) 
and REQ.mode = “read” 

onEND: 
replsMI XACT(state = “committed”) 

where XACI’xact-id = req-xact-id 
- andnot an RWCFL) 

repke ACC .ts = max(ACC.ts,req-ts) t 
where not any(RsTcFL) 
au13 ACC.mode = “write” 
and ACC.obj-id = HIST.obj-id 
and HIST.xact-id = req-xact-id 

append to ACC(req-ts,HIST.obj-id,“write”) 
where not any(RSTCFL) 
and HIST.xact-id = req-xact-id 
and not any(ACC.obj-id 

where ACC.obj-id = HIST.obj-id 
and ACCmode = “write”) 

RFSTART(XACT.xact-id) 
rhereXACZ.xact-id = req-xact-id 
~ang(==lQ 

delete HIST 
rhere HIST.xact-id = req-xact-id 

delete XACT 
where XAcP.xact-id = req-xact-id 

delete ACC 
where ACC.ts < oldest-ts 

Figure 11: Request prgcessing queries for BTO. 

3.9. serial validation 

In aerial ~al&&&wz (SV) [Kung81], the con- 
currency control scheduler keeps track of the wri- 
tesets of recently committed transactions. Tran- 
sactions run freely until commit-time, at which 
point each transaction is submitted to a validity 
test to see if committing it will leave the database 
in a consistent state. For a committing transaction 
fi, the test considers all recently committed tran- 
sactions Tr., where a recently committed transac- 
tion is one that committed since T< started running. 
The test results in F, being committed iff 
rrcdsst(Tt) n witasd(T,) = # for all Tm, and being 
restarted otherwise. 

Rather than write a description of serial valida- 
tion as it was presented in [Kung8.1], we will 
describe a more efficient version with different but 
provably equivalent semantics. In our version, tran- 
sactions will be assigned a startup timestamp and a 
commit timestamp (though only their startup 
time&amps will be stored). Write timestamps’ will 
be maintained for all data objects, and the write 
timestamp for an object X will be the commit 
timestamp of its most recent (su&essfuUy Commit- 

ted) writer. A transaction will be allowed to commit 
if and only if the write timestamp of each object X 
in its readset is smaller than its startup timestamp. 
It is fairly easy to show that this test is equivalent 
to the original readsetjwriteset test of [Kung81], 
and it is clearly more efficient. A formal 
equivalence proof is presented in [CareB3]. Figures 
12 through 14 give a description, somewhat simpler 
than the previous descriptions, of BV using our 
model. 

4. Algorithm Overhesd Compariwns 

In this section, we present techniques for com- 
paring the relative overhead characteristics of, var& 
ous concurrency control algorithms. The storage 
and CPU overheads are compared via a simple com- 
plexity analysis, based on implementation- 
independent units of CPU and storage cost and 
influenced to some extent by ideas presented in 
[BerMO]. We illustrate the use of our techniques by 
using them to analyze and compare the three algo- 
rithms described in the previous section. 

To facilitate these cost analyses, we will use a 
performance model based on a set of simple param- 
eters. Let R be the average readset size for, tran- 
sactions, and let Fw be the average fraction of the 
readset also included in the writeset. Each transac- 
tion thus makes an average of R(l+F,) data access 
requests. (We assume the writeset to be a subset of 
the readset for each transaction, and we assume’ 
that transactions do not make the same request 
twice.) Let F,, be the average number of transac- 
tions in the system. Let Fb be the average fraction 
of blocked transactions, and let Fm be-the factor 
which, when multiplied by T,, yields the average 
number of recently committed transactions. (A 
recently committed transaction is one which com- 
mitted since the startup time of the oldest transac- 
tion still 
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The blocking and restart characteristics of 
algorithms will influence the parameters Fb and Fm, 

so they will vary from algorithm to algorithm. ‘ihe 
parameter F, is determined solely by the transac- 
tion mix. To bound these parameters, note that 
04 Fb S 1 and 0 5 FW L 1. For the parameter F=, 

however, all that is certain is that Fm k 0, as FtG is 
determined by the variance in running times for 
transactions in the transaction mix. For example, a 
very long transaction mixed with a collection of 
shart transactions wouJd result in a large value for 
Fk. 

4.1. stomge (keTilead 

We analyze the sizes of the relations in the con- 
currency control database for various algorithms in 
order to compare their storage overheads. We take 
one field of one tuple of one relation as the .unit of 
storage cost for this analysis.. Given an algorithm, 
the tuple widths of the relations in the concurrency 
control database are explicit in the description, and 
the cardinalities of the relations are determined by 
the nature of the query sets in the description. The 
overall database size is simply the sum of the 
width-cardinal&y products for the relations in the 
database. Both upper and lower bounds on the 
storage overhead of ,algorithms are quite easily 
determined in our model. 

We consider the 2PL algorithm first. ‘The XX7 
relation .represents a storage cost of 2T,, and the 
BJXZI relation represents a cast ‘of 2Fb To. For the 
ACC relation, a storage cost of’ 3T,,(l-F,)R is 
incurred for storing read locks (note that only one 
lock is set on objects that are to be written). For 
storing write locks, the cost can vary from as low as 
3F,R, in the case where all Ta transactions write 

XACT(xact-id,state,ts) 
ACC(ts,obj-id) 
HIST(xact-id.mode.obj-id) 

Figure 12: Concurrency control database for SV. 

&Urn? vtew RSTCF’L(obj-id = HIST.obj-id) 
where HIST.obj-id = ACC.obj-id 
w&m HIST.xact-id = req-xact-id 
where HIST.mode = “read” 
andACC.ts > req-ts 

Fiiure 13: Restart conflict view for SV. 

on BEGIN: 
nd to XACT 

‘“9p” req-xact-id.“ready”.CURRENT-TS()) 

on ACCESS:. 
ndtoHIST 

“9p” raq-xact-id.RRQ.mode.REQ.obj-id) 

on END: 
leplaoe XACT(state = “committed’) 

where XACT.xact-id = req-xact-id 
mldnotany(RsTcFL 

~~AKPO(ACT.xac!t-id 1 
share X&Cl’.xact-id = req-xact-id 
and an9(YTCFL) 

m?plsei ACC(ts = current-ts) 
where not &u&c3TcFL) 
and HIST.mode = “write” 
and ACC.obj-id = HIST.obj-id 
end HIST.xact-id = req-xact-id 

ndtoACC 
“9p” obj-id = HISTobj-id&s = ,current-ts) 

wherendtany(RsTcFL) 
and HISKmode = “write” 

andHIST.xact-id = req-xact-id 
and not any(ACC 

w ACC.obj-id = HIST.obj-id) 
delete HIsr 

where HHT.xact-id = req-xactiid . 
delete XACT I 

where XAcT.xa&id = req-xact-id 
delet&ACC 

w ACC.ts < oldest-b 

Figure 14: Request processing queries for Sv. 

the same objects, to as high as ST,F,R,, in the case 
where no two transactions write the same object. 
bus, we have: 

ST% I; 2T,(l+Fb)+3T,R (14 

STOWL 2 2Ta(1+F,)+3T,R(l-F,)+3F,R (lb) 

Similar reasoning yields the following results for 
BTOfUXisv: * ‘, 

STOmo g 3T.(l+F,)R(l+F,,,)+T.(3+2&R) (2a) 

STbo z 3R(l+F,)+T,(3+2F,R) (2b) 

STOsys 2T,(l+F,)R&+3T,(l+R(l+F,)) (3aj 

STOm 2 2RFW+3T,(l+R(l+Fw)) W 

Given the. bounds ,on Fb and F,, we can draw. 
some conclusions about the relative storage over- 
heads of the algorithms. From equations (la), .(2a), 
and @a), one can conclude that 2RL has the srr& 
lest worst-case storage overhead of the three algo-. 
rithms, which is (4+3R)T,. The worst-case storage 
overheads of the other two algorithms are depen- 
dent on the parameter F,, which is unbounded. A 
more detailed analysis of these equations reveals 
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that the worst-case storage overhead of SV is 
strictly smaller than that of BTO (assuming compar- 
able Fro values for the two algorithms), and that, if 
F, 5 l/2, 2PL is certain to have a smaller WOrSt-CaSe 

storage overhead than both SV and BTO. The 
worst-case storage overhead occurs when transac- 
tions do not compete for the same data items, 
which is likely to be the case for real mixes of tran- 
sactions [Grayal]. Thus, Fb is likely to be small for 
2PL, leading to the conclusion that 2PL dominates 
SV, and SV in turn dominates BTO, with respect fo 

worst-case storage overhead. 

A comparison of equations (2b) and (3b) reveals 
that, with respect to best-case storage overhead, 
BTO dominates SV for T. t 3. Comparing equations 
(lb) and (3b), we find that, if Fb sz l/2, 2PL is cer- 
tam to dominate SV as welL, Finally, a comparison 
of equations (lb) and (2b) indicates that BTO dom- 
inates 2PL unless FW 5 3/5 and Fb d l/2. Since the 
best-case overheads apply when transactions tend 
to conflict (access the same objects), this combina- 
tion of FW and Fb is impossible; if FW is large, tran- 
sactions will be competing for write locks on these 
shared objects, and lots of blocking will occur. 
Hence, BTO dominates 2PL with respect to best-case 
storage overhead. To summarize the overall 
storage overhead resuits, then, SV is the worst of 
the three algorithms. 2PL is best in terms of 
worst-case storage overhead, indicating’ that it is 
superior under low-conflict transaction mixes. BTO 
is best in terms of best-case storage overhead, 
meaning that it is best under high-conflict transac- 
tion mixes. 

4.2 CPUOverhead 

We analyze the number of operations involved 
in executing the query sets for various algorithms in 
order to compare their CPU overheads. We take 
one tuple access, insertion, or replacement in one 
relation as the unit of CPU cost for this analysis, 
assuming that the CPU time required is propor- 
tional to the number of table lookups, as proposed 
(in different terms) by Bernstein and Goodman 
[Bern50]. We do not assess CPU cost for accesses to 
the REQ relation, as this is simply our model of the 
way transactions pass requests to the scheduler. 

Unfortunately, analyzing the CPU overhead of a 
given concurrency control algorithm is, in the 

general case, considerably more complex than 
analyzing the storage overhead of the algorithm. In 
this paper we consider only the no-conflict CPU 
overhead [BadaBl], the CPU overhead experfenced 
by a transaction which does not conflict in any way 
with other concurrent transactions. Since actual 
conflicts are reported to be rare [GrayelI. the no- 
cost CPU overhead should be a reasonable “float- 
order” metric. We leave for future work the prob- 
lem of generalizing the analysis to include the addi- 
tional sources of CPU overhead associated with 
transactions which must restart or repeat requests 
due to blocking. 

We again consider 2PL fist. The cost of pro- 
cessing a BEGIN request is 1. The cost of material- 
i&g the BLKCFL view is 1, so the cost of processing 
R(l+F,) data access (ACCESS) requests is 2R(l+F,) 

if no blocking occurs. The cost of processing an 
END request is 3+R (assuming .me BLKD access to 
determine the lack of blocked transactions). 
Hence, we have: 

CPL& ‘= 4+R(3+2FW) 

Similar analyses can be performed forBT0 and 
SV. The cost of processing an END request for ET0 
and SV depends on the number of timestamps 
deleted at that time; in the no-conflict case, we 
assume that all transactions access different ‘data 
items, meaning that all timestamps associa4,ed with 
a given transaction must eventually be eliplicitly. 
deleted. We charge this timestamp deletion over- 
head to the transaction creating the t&restamp, 
even though deletion may occur at some later point 
in time. Other details of the CPU analysis for BTO 
and SV are quite similar to locking, so we do not 
present them here. We And that: 

cpbjj, = 3+R(3+7FW) (5) 

CPUm = 3+R(4+5FW) (6) 

Comparing equation (4) with equation (5), we 
find that 2PL has a smaller no-conflict CPU over- 
head than ST0 unless FW is extremely small. in 
which case 2PL and EITO are comparable. Compar- 
fng equation (4) with equation (5), we And that 2PL 
also has a smaller no-conflict CPU overhead than 
SV. Comparing equations (5) and (6), we And that 
BTO has a smaller no-conflict CPU overhead than SV 
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if F’ < l/2, and that SV has a smaller no-conflict 
CPU overhead if Fw > 1/ 2. Thus, with respect to this 
CPU overhead metric, 2PL is dominant, BTO is 
second-best if writing is infrequent, and SV is 
second-best if writing is frequent. 

4.9. Overhead Comparison Summ~ 

In the previous sections, we compared the 
storage and CPU overheads of 2PL, BTO, and SV. We 
found 2PL to be the algorithm involving the least 
storage overhead under low-conflict transaction 
mixes, with BTO being the best under high-conflict 
mixes. SV was the,worst algorithm with respect to 
storage overhead. We found 2PL to be the algorithm 
with the smallest no-conflict CPU overhead. BTO 
turned out to be second-best with respect to no- 
conflict CPU overhead if writing is infrequent, with 
SV being second-best if writing is frequent. These 
results are summarized in Figure 15. We will pursue 
these comparisons and investigate tradeoff points in 
a more rigorous fashion in [Care83]. In particular, 
we intend to use the storage and CPU results to par- 
tition the parameter space into regions where vari- 
ous algorithms are elearly’domlnant. 

I Results of Overhea&C 

Algorithm 

2PL 

E 
BTO 

sv 

Storage 
Overhead 

-z 

CPU 
Overhead 

best under best no-conflict 
low conflicts overhead 

best under second best under 
high conflicts infrequent writing 

worst of second best under 
the three frequent writing 

F’igure 15: Summary of algorithm overhead results. 

a HodelExtensions 

In our ongoing study of concurrency control 
algorithm performance, we are studying multiple 
version and distributed algorithms .as well as 
single-site algorithms. In this section we briefly 
describe the extensions required to our model 
which facilitate these studies. 

5.1. HuItipIe Versians 

Several recent concurrency control algorithm 

proposals involve maintaining multiple versions of 
data objects [Reed78, Baye89, Stea81, Chan82, 
BernBBb]. In order to describe such algorithms 
within our model, we introduce a new concurrency 
control database relation, the OBJ relation, with’ 
obj-id, version-id, and obj-value fields. Each ver- 
sion of each object in the database has a 
corresponding tuple in this relation. In places 
where an obj-id was called for in single-site algo- 
rithms, we use an (obj-id, ver&n-id) pair in our 
multiple version, model. The analysis techniques I 
can be applied to thii extended model in the same 
manner as for the single-site model, except that cl, 
units of storage cost are assessed for obj-value 

flelds of OBJ tuples (to reflect the fact that objects 
require much more storage, than typical con- 
currency control information). 

5.2 Distributed Databases 

Many recent concurrency control algorithm 
proposals are intended for use in distributed data- 
base systems [R0se78, Mena78, Ston79, Lind79, 
Bern80, Bernal. Bern82a, Thom79, Ceri82]. In order 
to describe distributed concurrency’ oontrol algo- 
rithms within our model, we assume that each site 
has a concurrency control scheduler with an associ- 
ated concurrency control database, and that the 
schedulers interact via messages. To model. this 
interaction, we introduce some new notation for use 
in writing algorithm descriptions for distributed 
systems. Queries of the form +ommond> where 
<predicate> AT&VTES-OF(obj-id) will be used to 
indicate that the predicate must be true at.all sites 
where the specified object resides, ,ir&oating the 
need for a round-trip message exchange to evaluate 
the predicate. In cases where the AT-SITES-OF 

clause is left out, just the local site will be involved 
in evaluating the predicate. 

With this extension, algorithm descriptions will 
be formulated as before, except that the 
AT-SITES-OF(X) set must’ be described for all 
objects X. It is this set description which will serve 
to differentiate primary site, primary copy, and 
decentralized concurrency control schemes 
[Bernal, BernBZa] from one another, for example. 
The overhead analysis techniques carry through, 
though is necessary to account for the additional 
overhead when the AT-SITES-OF set contains more 

than a single site. Also, a new type of overhead,. 
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message overhead, arises in distributed systems. 
This overhead may be characterized, by analyzing 
the number of messages required when executing 
the new query sets on behalf of transactions. 

We have presented a new model of concurrency 
control algorithms, one which provides. a unified 
framework for describing and comparing the many 
algorithm proposals. We have given several sample 
descriptions, and we have shown how our model 
facilitates analyses of the relative storage and CPU 
overheads of algorithms. Cur model differs from 
those of other researchers fBern89, BernBia, 
Gall821 ln this respect, as other attempte at uni- 
form concurrency control frameworks have not 
been able to support both algorithm descriptions 
and quantitative algorithm comparisons. Finally, we 
have indicated how we are extending our model to 
include the domains of multiple version and distri- 
buted concurrency control algorithms. 

We intend to use this model to perform a 
comprehensive study of the overheads of various 
concurrency control aIgorithms, describing them 
and comparing their storage, CPU, and message 
overheads. We have also .written a falrIy general 
simulation program, allowing a concurrency control 
algorithm to be described in terms of a small col- 
lection of Pascal routines (called by the simulator 
as needed), and we will use this simulator to vali- 
date our overhead bounds and to study the con- 
currency properties of algorithms as well. 

The author wishes to thank Mike Stonebraker 
for his helpful comments. suggestions, and support. 
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