E. Wong and R. H. Katz* -
Department of Electrical Engineering and Computer Sciences

and the Electronics Research

1 aharatany
Sarin Laolraliy

University of California, Berkeley, Californi; 94720

‘ABSTRACT

In this paper we treat the problem of sub-
dividing a database and allocating the fraoments
to the sites in a distributed database system in
order to maximize non-duplicative parallelism,
Our. goal is to establish a'conceptual framework
for distributing data without being cammitted to
specific cost models. '

He introduce‘the concept of "local sufficien-
cy" as:a measure of parallelism, and show how
certain classes of queries lead naturally to
irredundant partitions of a database that are
Tocally sufficient.. "For classes of queries for
whith no' irredundant distribution is locally
sufficient, we offer ways to introduce redundancy
in achieving local sufficiency

1. Introductiqn

The context in which the problem arises is
that of a distributed database system. By this
we mean any system consisting of multiple auto-
nomous processors- communicating through a commu-
nication mediom and each accessing a separate frag-
ment of the database, and where the collection of
fragments ¥s-to be seen by the user as an inte-
grated whole. Geographical dispersion is not a
necessary ingredient. Replication and, more
cenerally, redundancy of data among the fragments
may be present. The question we pose is the:
following: if wé are free to subdivide the data-
base into possibly overlapping fragments, how
should we do it?

. The objective of the subdivision is efficient
performance for both retrieval and update opera-
tions. While it would not be difficult to
express the problem of subdividing a database as
oné of minimizing a weighted cost of database
usage, doing so is not particularly useful for
several reasons: .

(1) weighting of costs requires knowing
the frequencies of usage for different opera-
*University of Wisconsin at Madison.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed fqr dn?ct
commercial advanitage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given .t.hat copying is by
permission of the Association for Computing Machnfery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM -0-89791-104-0/83/005/0023 $00.75

23

tions. Such statistics are neither easy to obtain
nor very stable. They are better uséd in fine
tuning than in the basic structural design.

(2)Similarly, for a specific database opera-:
tion, an aporopriate cost function is not easily’
estimated. In particular, how the cost depends
on the partition-pelicy is not 1ikely to be known
quantitatively. ’ ' :

(3) Even if precise cost could be computed
for each partition, there would be¢ too many ways
of subdividing a database for the problem of
finding the minimum to be tractable. -

- These considerations suggest that what is
needed is a-conceptial framework that captures and
makes. precise qualitative factors important in
designing a database partition. The goal is not
to find a single strategy, but to identify classes
of strategies with desirable properties. Within.
each class fine-tunina can then take place.. The
challenge is to do as much as one can in the design
without having to usé quantitative design data.

In this our approach differs significantly from

the existing work in file allocation [CHU73,MAH076]
wh$re a quantitative cost model plays a central
role. :

2. Local Sufficiency and MinimalVRedundangxi

Let D denote the database as seen by the user
Neither distribution nor redundancy is visible in
D. Let M; denote the ﬁragment'bf the database
associated with the ith processor. : We assume that
UMj = D and call the collection/M = {M;} a
materialization of D. The preblem of partitioning
is to the "best" materialization.

Let Q denote a class of queries on D. -We
shall say a materialization M is locally sufficient
(relative to Q) [WONGB1] if for every q € .Q there
exist local queries q; on My such that

result (q,0) = U result (qi;M{)
i

(2.1

Local sufficiency ‘means that no communication
among the processors is needed to process a query
in Q, the only data movement being a final one to
collect the fragments of the result produced at
different sites. .

"Local sufficiency is clearly a desirable nro-
perty for retrieval operations. It is in general
not attainable without redundancy, and that imposes
a cost on updates. The tension thus created makes
the design problem interesting. o

For any two materializations M and M' (of the
same D) define a partial ordering M > M' by :

M>M = M oM for every i (2.2)

If M > M', then (2.2) implies

Mi n Mij-3 Mi n Mj for all i,j
Hence, M > M' means that M is at least as redun-
dant is M'.

Let M be a locally sufficient materialization
for a given Q. We say that M is minimally redun-
dant (Q) if for every M' < M, M' being ﬁ-iocally
sufficient implies M' = M. In other words, M
being minimally redundant means there is no locally
sufficient materialization that is less redundant
than K.

It is reasonable to assume.that a query takes
longer to process if the volume of data is oreater.
For example, in a relational system the processing
time for a restriction, projection or join is a
nondecreasing funciton of the cardinalities of the
relations involved, .regardless of what storage
structures and processing algorithms are used.
Under;such an assumption, a minimally redundant M
is always better- than one‘that is not, for any
q €Q.

It is. perhaps even more reasonable ‘to assume
that the cost of an update is a nondecreasing
function of the degree of redundancy, whatever the
underlying implementation. - This:is 'so because
updating with redumdancy is tantamount to an update
without redundancy plus the enforcement of an
integrity constraint. - Such enforcement never comes
free. - It follows that in designing a materializa-
tion, we can limit our choices to those that are
minimally redundant, whatever the underlying
implementation and physical conditions. In se
-doing, we have succeeded in extracting from a rather
complex design problem an -approach for optimization
that 1is nearly universally applicable because it
is free-from quantitative assumption.

It is: interesting to note that any materiali-
'zation M that contains full replicas of the database
at two or more sites can never be minimally redun-
dant, because an irredundant M', having the entire
database at a single site, is already locally-
sufficient for any Q, and clearly M' <M.

We shall take minimal-redundancy as a criter-
ion of goodness:in-designing a distributed database.
As the example of having all the data at a single
site show, a minimally redundant materialization
need not have all the desirable characteristics.
One that is not, however,:is almost certain to be
a bad:design. Being entirely qualitative, the
criterion of minimum-redundancy is not sufficient
to reduce the:choice to a single deisgn, but it
does achieve a drastic reduction in the number
of: candidates that need to be considered.

3. A Semantic mOdE]

Minimal redundancy is defined relative to a
class of queries Q. How should Q be chosen?
Examples quickly suggest that natural query-classes
are determined by semantics. Therefore, we shall
introduce a simple semantic mode], and def1ne
retrieval and update operations in terms of this
model.

The model that we choose is a simplified ver-
sion of the entity- re]ationsh1p model [CHEN76,

- NONG79]. An entity is an undefined atomic obJect
An entity type is a named collection of entities.
A relationship is a "relation" with entity types

24

as its domains. For example, consider a "company"
database consistina of the followina:

emp, dept, job
qua1ified (emo, job)
assign (emp, dept,job)
mgr (deot, emp)

entity L_yiie :

relationship

The participation of an entity type in a relation-
ship may be subject to one or both of the follow-
ing constraints:

(a) E is uniaue in R -- Each entity of € ‘can
occur at most once in R.

(b) E is total in R -- Each entity of E must
occur at least once in R.

If E is both unigue and total in R, then R is a
function of E. In such a case we shall call R an
association. For example, suppose that every
employee has a unique assianment of both job and
dept, then the relationship assign is an associa-
tion on emp. On. the other hand, suppose each
dept has at most one mgr but some dept's may be
temporarily without.one, then dept is unique in
mar(dept,emp) but not total, and mor is not an
association. We shall refer to entity types and
those relationships that are not associations
co11ective1y as,primit1Vé'objects. An attribute
is a function maop1ng a. primitive object into a
value set, which is any machine- interpretable
data type (e.a., intecers, character strings).

For example, the fo1low1na is a description of,
the "company" database in terms of the semantic
objects that we have introduced:

Example 3. 1 Semanti¢ Schema for the "Company“
‘Database

entity types: emp,dept,job,
non-assoc. relationships: qualified (emp, job)
association: empziéiﬂpdept,job
attributes: empgﬁﬂﬂﬁczo
-1V
deptdna Pe10
‘ bfltle 10
i
qualified®¥i2
Suppose that every entity of each type is
assioned a unique non-updatable §dentifier that
serves as a surrogate for the entity Then, the
semantic description of the database can be ‘mapped
immediately into a collection of relations free
of any serious update anormalies. The basic
maopina rule can be stated as: "One and only one
relation per primitive obiect." For example, let
eno, dno and jid denote the identifiers of emp,
dept, and job respéectively. Then, the mapping
rule yields the following relational schema for
the "Company" database:

Example 3.2 Relational Schema of "Company" Database
emp(eno*,ename,age;assiqn-dno,éssign-jid)
dept(dno*,dname)
job(jid*,title,pay)
qualified(eno, jid,year)

mgr(dno ,eno)

For a relation representing an entity type, the
identifier-domain of that entity type is indicated
by an asterisk and will be called its primary key.
The underscored domains are identifier domains for
entity types represented by some other relations,
and they will be referred to as foreign keys.

Thus, for examp]e eno is the pr1mary key of emp
and assion-dno is a foreign key in emp.

4. Semantic Queries

Assume that the user's view of the distri-
buted database is given by a relatioral schema
free of any distribution information and designed
according to the procedure oiven in Section 3.

The question we address here is: what are the
semantically natural queries?

We say a relational query is a semantic guery

if:
{a) it is a one-variable guery (i.e., it
involves a unary operation), or
(b) it is an equijoin of two relations on
an identifier domain, or
(¢) it involves a finite sequence of opera-
tions of types (a) and (b).
The principal restriction that semantic queries
must satisfy is that "joins" can only by
"equality on identifier domains" (primary or
foreign keys). For example, the QUEL query

range of e is emp
range of j is job

retrieve (e. ename) where 1000 * e.age >
j.salary

is not semantic because the join-condition is
neither an equality nor on an identifier domains.
However, if the condition "e.assign-jid=j.jid"
were added to the qualification, the resulting
query would be semantic, since it would then
jnvolve an equi-join on the "jid" domain, to be
followed by a restriction on the condition

1000 * e.age > j.salary. '

There are at least two reasons to restrict
queries used in designing a distributed data-
base to semantic queries. First, they are more
natural, and hence are 1likely to be represen-
tative of the queries used in practice. Second,
these queries refiect the semantics of. the schema
so that the schema can be used to suggest the
class of queries to be used in deciding how the
database is to be distributed.

5. Semantically Induced Irredundant Materialization

The problem we face at this point is the
following: Given a relational schema designed
by using the mapping rules of Section 3, how
do we choose a set of queries, and for each
choice how should the relations be partitioned?
First, we note that if each relation is sub-
divided horizontally then every one-variable query
is locally sufficient.. It seems reasonable that
in most situations one would want all one-variable
queries to be in the de51gn set. Hence, we
assume that. each relation is always subdivided
horizontally.
Next, we introduce a graph representation.
A relational schema designed according to the

25

rules of Secticn 2 can be reoresented as a directed
araph (called schema-oraph) as follows:

(a) The nodes are in ont-to-one correspon-
dence with the relations of the schema.

(b) The arcs are in one-to-one correspondence
with the foreign keys such that, if a
foreion key domain in R is the primary
key in S then the arc points from R to S.

Example 5.1 The Schema of Example 3.2 is
Reoresented by the Followina Graph:

mar qualified

mp

dept job

Observe that an arc R + S represents a func-.
tion mapping R into S, and-R is partitioned into
disjoint subsets by the values of the primary

key of S. Thus, for example empgﬁfigﬂ—gﬂgdept

partitions emp into subsets each corresponding
to a different department. It follows, therefore,
that any partition of S yjelds a partition of R
via a function R » S,

T will be called a partition-tree of a schema
araoh G if:

(a)} T is a subaraph of G
(b) As an undirected graph, T is a tree.

(c) Each arc in T is directed from son to
parent. —

For example, the following is a partition-tree of
the schema araph of Example 5.1:

Example 5.2
dept

mgr emp

qualified

Proposition 5.1 A partition of the root-relation
in a partition tree induces a unique partition of
every relation in the tree.

Proof: The proposition follows trivially by

induction on the depth of the tree and from the

property that R +~ S together with a part1t1on of
S induce a unique partition of R.

For a aiven schema define a partition- forest
as a collection of partition-trees such that each
node of the schema-oraph appears in one and ohly
one tree. Partition-forests will be our basis
for distributine data.

Given a partition-forest F, identify those
relations that are roots of the trees in F.
Partition each root, and that induces a partition
of each non-root node in the corresponding tree.
Assigning the root fracments to sites then
achieves a nerfect subidvision of the database
in which the fracments of subordinate nodes fol-
low the correspondina fragments of the roots. We
call such a subdivision an F-induced subdivision.
Our. first procedure for designing a distributed
database is simply the following:

(a) Given a schema graph, f1nd a partition-
forest F. -

(b) Find an F-induced subdivision of the data-
base, and identify it as the materializa-
tion M of the distributed database.

NEirmam am drndicand e dd i ndnn +ha ~Alace N

ailven ar r-nmut.cu DUUUIVI)IUII II, LIIC LiIQoD
of locally sufficient queries can be determined
from F. Ne shall now present a way of doing so.

Let R be a relation on the schema. An identifier
domain in R is said to be F-supported if it corres-
ponds to an arc in a tree in F. Consider the
following example based on the schema of Example
5.1: ‘

txample 5.3 Let F be given by:

dept
emp Z/;——vmgr

The F-supported domain are

Job
} qualified
dno in emp and dept
eno in mgr and emp

jid in qualified and job

Relations produced by relational-algebraic opera-
tion inherit the F-supported domains. Thus, for
* example, dno is an F-supported domain of

emp[::gng::]mgr because it is one for emp.

Proposition 5.2 Let F be a partition-forest.
Let Q(F) denote the smallest class of queries
such that:

(a) Q{F) includes a1l one-variable queries
on the base relation (i.e., the relations
specified in the schema).

(b) Q(F) is closed under projection, restric-
tion, and join on an F-supported domain.

Then, an irredundant materialization M is locally
sufficient with respect to Q(F) if and only if M
is F-induced.

Remark: M being irredundant, is also minirally
redundant with respect to Q(F).

Proof:
zation M(F) is Q(F) locally sufficient. Let Qy
denote the subset of Q(F) involving n or fewer

joins, and let R(Q) denote the-set of relations ob-

tained by Q, act1ng on the datdbase. Every identi-
fier domain D is partitioned by M(F) into disjoint
subsets Di with Di.corresponding to site i.

Let RER(Qy). Whe shall prove by induction

that: (a) R=UR; where each Ry is produced by

i
local operations, and

(b) if D is an F- supported domain in R then
R, [D 1=9¢ for i#j where [D] denotes

restrict1on on D..

First, consider R € R(Qqa).
form

R = mpB

when B is one of the base relations, m is a pro-
jection, andp a restriction. B is partitioned by
M(F), so that

R=1rpZB1.=
i

Then R must be of the

™
'n;p1

First, we prove that an F-incuced materiali-

26

rted i then it must also be
Bi= :]. Hence,

= mp(B[D,])[D

= TrpB[D nD]

and properties (a) and ib) are proved for n=0."
< m and

Assume (&) and \b) to be true for n i1

consider R€ R(Qm+])

= np(A[?(] B)

vihere E>~<j denotes joint on D, and A and B are
in R(Qp) with D as an R-suoported domain. Mow,

A[><JB =),‘A[ni I><1 B[D]
and with oroperty (b} we have
A[><B = ZAi[Di]N'Bi[Di]
Since Aj; and B ;re locally generated, so is
A;[D4][><]B (051
= npi Ay [D]><B 11041

Unp(A [DJD<IB[DJ

R is expressible as

Therefore,

R;

[}
- e

and (a) is proved. .
For (b) let D; denote an F-supported domain
in R. Clearly, D{ must be an F-supported domain
in-at least one of the pair (A,B). - With no loss
$: generality assume D' to be supported in A.
en,

Ai[DJ!] =
and D
Ry ([D3] =mp((A, 051D, 1<) B"[JD"])

=¢
so that (b) is proved. By induction, properties’
(a) and (b) are true for all n.

We note that q¢ Q(F) implies q e Qy for some n
and the "if" part of Proposition 5.2 is proved.
Next, we shall prove the "only if" part by show1ng
that any Q(F)-locally-sufficient M must be F-
induced.

Let R be a relation corresponding to any node
in F. Then there is a unique path from R to a
root relation R(0).

= R(n)+R(n-1)~>...+R(0)

where each Tink (+) corresponds to an F-supported
domain. It follows that -the join:

R(n)><aR(n-1)...6dR(0) =

is in Q(F) and so is w(J|R), the projection of J
on the domains of R=R{n). Since M is irredundant
it must partition R(0). Because M is locally suf-
ficient with respect to m(J|R) the fragment of R
at site i is obtained from the ith fragment of.
R(0) by the operation w(J|R). This is.exactly how
an F-induced materialization was defined. The

proof is now complete.

€. Lpdate Through Local Jperations

The price to be paid for achievinc a greater
degree of local sufficiency is increased update
complexity. This is true even vhen the materiali-
zation involves no redundancy. Basically, this
is because Tocal sufficiency for Q(F) is achieved
only when the distribution of data (i.e., I!)
satisfies the following integrity constraint:

tvery identifier domain O is partitioned
by ¥ so that if D is F-supported in R then’

= Rl
Ri RLDi] -

where R is any base relation and R; is the
fragment of R in iij.
For exampie, in a materialization induced by the
F of Example 5.3, fragments of "emp" are determined
by dno, "mgr" by eno, and "qualified" by jid. On
updates the integrity constraint Ry = RfDi] must
be verified for each relation that is affected.

In a distributed system the communication
cost on updates has two components: message traf-
fic and sunchronization delay. If every update
can be accomplished by broadcast then the synchro-
nization delay, at least, is minimized. In this
section we attempt to isolate those updates that
can be effected by broadcast and propose an update
nrotocol to take advantage of this property.

We define an update to be locally realizable
if it can be completed by broadcasting and updat-
ing in place. For example, if every base relation
is horizontally subdivided then any one-variable
deletion operation {e.g., delete e where e.age > 65)
is locally realizable.

The insertion of a single tuple is also local-
1y realizable, but somewhat more complex. We note
that, first, the materialization being irredundant,
insertion 1s done at only a single site; and second,
there is a difference bétween inserting in a rela-
tion that corresponds to a root node in F ‘and one
that does not. For a root insertion, there has to
be an algorithm for allocating a new tuple td\ a spe-
cific site. The tuple is then sent to the dedig-
nated site, or the tuple and its site designation
are broadcast. To insert a tuple in a non-root re-
lations, the tuple is broadcast and upon its recep-
tion, each site checks the F-supported foreign key
(there is only one) value in the received tuple.
The tuple is installed only at the site (again,
there is only one) that hosts that key value. For
example, assume that M is induced by the F of Ex-
ample 5.3, and that the tuple:

e = (eno=12345,ename="F.Fox",age=32,dno=37
jid=213)

is to be inserted in emp. The domain dno is F- -
supported in emp. On receiving the broadcast
instruction to insert e, each site must check on
the existence of "dno=37" and e is -inserted at the
only site where the existence is verified. If
“dno=37" represents a new department then the
appropriate insertion to dept must precede the
insertion of e.

Changing values in a tuple is also locally
realizable except for changes to the primary key
or any F-supported foreign keys. Changing primary
keys can be assumed to be a prohibited operation

27

as it is in most systems. Changing an F-supported
foreign key is potentially non-locally-realizable.

Cancider. far axamnla. channina +ha dananbmand o
VVIIS TUTT 9 TUI CAGHP IT, LilAnyginyg uiic ueparuieie w

which a given employee is assigned. For the F in
Example 5.3 "employees" follow "departments" inthe
assignment of data to sites. Changing the depart-
ment may well require a tuple in emp to migrate
from one site to another, and is thus not Tocally
realizable. This difficulty is circumvented by
requiring an update to an F-supported foreign key
to be effected by a pair of deletion-insertion
operations. For example, changing dno from 37 to
12 for the employee with “eno = 12345" would re-
quire the following pair of operations:

delete e where e.eno = 12345

append to emp(eno = 12345, name = "F.Fox,"
age =32, dno =12, jid=213)

In summary, all one-variable updates are
locally realizable except changes to primary and
F-suoported keys. The former is an operation that
should be prohibited, and the latter must be re-
placed by a deletion-insertion nair if all updates
are to be locally realizable.

7. Replicating Data to Enhance Retrieval

Without data replication, about the best one
can do in distributing data is to pick a "parti-
tion forest" F from a schema graph and:use it to
induce a materialization M. In general, F being
only a subgraph of the schema graph, there are
semantic queries for which M 'is not locally suf-
ficient. Another view of this problem is afforded-
by noting that any collection of semantic queries
corresponds to a subset of the schema graph, and
if the subset is not a partition forest, then an
irredundant materialization cannot be locally
sufficient for the entire collection.

Example 7.1. Suppose that for the schema graph .
in Example 5.1 we require M to be locally suffi-
cient for the following joins: .

dept D<mgr dept Nemp
JobD><Jemp jobP<qualification
dent iob

m5;’,',"k*&\:ﬁﬁrﬁr”‘\\g\\%ua1ified

This not being a partition forest, there exists
no irredundant materialization that is Tocally
sufficient for all four of the specified joins,
except for the trivial materialization of having
all data at a single site. However, there are
many ways of replicating data to obtain a locally
sufficient materialization.

Replicating data to improve performance fs
hardly a new idea. In the context of distributed
processing, it has been considered as a tactic of
optimizing file allocation [APER80, Chu73, MAH076].
Our approach is significantly different in that
we exploit the semantic information in a database
schema in deciding how to replicate the data.
Three approaches to replicating data are discussed
here: denormalization, all-or-none, and multiple-
partitions.

The idea underlying denormalization is ex-
ceedingly simple. For a given materialization M,

call a guery unsupported if M is not locally suf-
ficient. The idea is to preprocess any unsunvorted
query and add it to the database before considering
the problem of partitioning and distributing the
database. The following exarmple illustrates the
procedure. : .

Example 7.2

Consider the schema for the “Company" data-
base considered in Example 5.1:

MY o > - - o qual

dept job
A possible partitioning forest is:
Partitioning Forest

mgr %qual

emp
P

dept job
The mgr ~dept, emp+dept, and qual +emp semantic
joins are supported by this partitioning, while
mgr +emp, emp->job, and qual +job are not. Queries
involving the latter three joins are not locally
sufficient.

Suppose that we add the joins: mgrp<Jemp,
empP><]job, qual job to the database and show
these as new nodes in the schema graph with arcs
directed to the relations that participate inthe
corresponding joins.

Denormalization
ngr. e ewp qual
A~ N
\‘\
wgr > qual
’
"/
V4
- _{’
dopt mppajob ™ 7 job

Mow extract the following partition forest from
the denormalized scherma graph and ncte that it
contains the previous partition forest:

A
qual et job

omp ot Job

dept

nyr

e qual
In this forest, all natural joins involving any
two relations from the original schema are suppor-
ted, but not all semantic queries. For example, -
empP><Jqual><ljob is not supported. :

Partitioning and distributing the denormal-
ized (hence replicated) database can now proceed
as before using the procedure given in Section 5.
In practice, it is probably desirable to distri-
bute semijoins rather than joins. - For example,
once we have partitioned empp><] job into disjoint
fragments (emp[> job);, we can project
(emp><J job); on thedomains of emp and job respec-
tively to get fragments of emp and job, which can
then be grouped with the fragments obtained fron
partitioning emp and job directly. In this way,
only fragments of the original relations neec be
sotred locally.

Denormalization certainly increases paral-
Telism for retrievals, but at the orice of making

28

updates more difficult. For each tuple the num-
ber of replicated copies and where they reside
may be difficult to determine, and on update
tuples may have to migrate. A1l in all, denorma-
lization is probably not a good idea for dynamic
data.

A better way of replicating dynamic data is
"all-or-none." Here, each relation is either
partitioned into non-overlapping fragments, or it
is fully replicated at every site. Clearly, up-
dating such a distributed database is no more
complex than updating an irredundant one. The
ques%ion is: howdowe decide which one to repli-
cate .

Consider any subgraph G of the schema graph,
including the schema graph itself. A node x on G
is said to be nonconflicting (G) if:

(a) no arc emanates from x, or

(b) exactly one arc emanates from x and 1is
directed to a non-conflicting node.

In all other cases, x is said to be conflicting.
For example, in the schema araph of Example 5.%
(also shown in Example 7.2) dept and job are
non-conflicting nodes, and the other three are
conflicting. In Example 7.1, emp is the only
conflicting node. s

A orocedure for constructing a materializa-
tion with all-or-none replication is simply the
following. Replicate the conflicting nodes and.
nartition the non-conflicting-ones. The reason
why this works is that the subgraph.of G that con-
tains. only the non-conflicting nodes is always a

.martition forest. '

Lo . H

.. A materialization with many fully replicated
relations is of dubious value. One achieves .
parallelism in such a situation, but the parallel
efforts are duplicative. For.example, fully
renlicating every relation enjoys no;advantace
in parallelism over placing the entire database:-
at a single site. ,(It may enjoy an advantace in
communication.) We shall consider an aporoach,
"multiple partitions," that combines features from
both denormalization and all-or-none. .

The idea underlying "multiple partitions" is
to replicate the conflicting nodes. in a graph
while keeping the number of arcs.the same, so.as
to eventually produce a partition forest. We
shall illustrate the idea with an example, but
omit any oroof for the general case.

Example 7.3

Consider the schema oraph in ExamﬁTe 7.2:

jobs
P —oag
dent aual

Duplicate the conflicting node emp, énd let each
arc connected to emp be connected to one or the
other, but not both, of the replicas.

Job

dept
mgr &emp 1 emp 2 &quﬂ

Now, only mar and qual are conflicting, and we can
replicate each to get a partition forest:

dept

dept job

mgr 1 empl emp?2 qdal 2

mgr 2 qual 1l

Any partition of dept and job induces a perfect
partition of each copy of emp, mgr, and qual. At
each site, the fragments from different copies of
the same relation can be merged if desired.
However, for each tuple at each site we need to
know which copies contain it. Compared to all-or-
none replication, replication by multipli-parti-
tions incurs less redundancy but.greater complex-
ity on updates.

8. Conclusion

To attain a high degree of parallelism in a
distributed database, one has to distribute the
data in a way as to minimize the need for moving
data between sites. In this paper we advance the
thesis that doing so requires semantic information
concerning the data.

To make precise the notion of parallelism
without commiting to a quantitative cost function,
we introduce the notion of "local sufficiency"
for distributed databases. Given a database
schema with a 1imited amount of semantic informa-
tion, we demonstrated a procedure to find those
classes of queries for which local sufficiency
without replication can be achieved. For classes
of queries that require replication to achieve
local sufficiency, three approaches to replica-
tion are proposed. Each enjoys a different blend
of cost and benefit.

ACKNOWLEDGEMENT
Research sponsored by the Air Force Office of

Scientific Research grant AFOSR-79-3596, the
National Science Foundation grant ECS-8007684, and

the O0ffice of Naval Research contract N00014-80-C--

0507.
REFERENCES

[APER80] Apers, P.M.G., "Redundant Allccation of
Relations in a Communications Network,"
Proc. Fifth Berkeley Workshop on Distri-
buted Data Management and Computer Net-
works (Feb. 1981).

[CHEN76] Chen, P.P., "The Entity-Relationship
Model-Toward a Unified View of sata,"

ACM Trans. Database Systems, V1, Nl
(Mar, 1976)

[CHU73] Chu, W.W., "Optimal. Allocation of Files
in Computer Metworks," in Computer
Communications. Networks, Prentice-Hall,

nglewoo s, NJ, 1973.

[MAHO76] Mahoud, S., J.S. Riordan, "Optimal Allo-
cation of Resources in Distributed
Information Networks," ACM Trans. on
Database Systems, V1, NI (Mar. 1976).

[WONG79] Tlong, E., Katz, R.H., "Logical Desian
and Schema Conversion for Relational and
DBTG Databases," Proc. Intl. Conference
on Entity-Relationship Approach to
Systems Analysis and Design (Dec. 1979).

29

[WONG81] Wong, E., “"Dynamic Re-Materialization:

Processing Distributed Queries Using
Redundant Data," Proc. Fifth Berkeley
Workshop on Distributed Data Management
and Computer Networks (Feb. 1981).

