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ABSTRACT 

In this paper we treat the problem of sub- 
dividing a database and allocating the fragments 
to the sites in a distributed database system in 
order to maximize non-.duplicative parallelism. 
Our goal is to establish a'conceptual framework 
for distributing data without being camnitted to 
specific cost models. 

We introduce,the concept of "local sufficien- 
cy" as a measure of parallelism, and show how 
certain'classes of queries lead naturally to 
irredundant partitions of a database that are 
locallv sufficient. .For classes of aueries for 
which no frredundant distribution is'locally 
sufficient, we offer ways to introduce redundancy 
in achieving local sufficiency 

1. Introduction 

The context in which the problem arises is 
that of a distributed database system. By this 
we mean any system consisting of multiple auto- 
nomous processors communicating through a commu- 
nication mediom and each-accessing a separate frag- 
ment of the database, ahd where the collection of 
fragments is'to be seen by the user as an inte- 
grated whole. Geographical dispersion is not a 
necessary ingredient. Replication and, more 
generally, redundancy of data among the fragments 
may be present. The question we pose is the, 
.following: if we are free to subdivide the data- 
base into possibly overlapping fragments, how 
should we do it? 

.The,objective of the subdivision is efficient 
performance for both retrieval and update opera- 
tions. While it would not be difficult to 
express the problem of subdividing a database as 
one of minimizing a weighted cost of database 
usage,, doing so is not particularly useful for 
several reasons: 

(1) Weighting of costs requires knowing 
the frequencies of usage for different opera- 
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tions. Such statistics are neither easy to obtain 
nor very stable. They are better-used in fine 
tuning than in the basic structural design. 

(P)Similarly, for a specific database opera-j 
tion, an appropriate'cost function is not easily' 
estimated, In particular, how the cost depends 
on the partition-policy is not likely to be known 
quantitatively. 

(3) Even if precise cost could be computed 
for each partition; there would b@too many ways 
dc subdividing a database for the problem of 
finding the minimum to be tractable. 

These considerations suggest that what is 
needed is a'conceptial framework that captures and 
makes precise qualitative factors important in 
designing a database partition. The goal is not 
to find a single strategy, but to identify classes 
of strategies with desirable,properties. Within. 
each class fine-tuning can then take place.. The 
challenge is to do,as much as one can in the design 
without having to use quantitative design data. 
In this our approach differs significantly from 
the existing work in file allocation [CHU73,MAHO761 
where a quantitative cost model plays a central 
role. 

2. Local Sufficiency and Minimal Redundancy 

Let 0 denote the database as seenby the user 
Neither distribution nor redundancy is'visible in 
U. Let M 

!I 
denote the 

associate with the it f; 
ragnent bf the database 

processor. ,We assume that 
UMi = U and call the collectionM = EMil a 
materialization of 0. Theprsblem of partitioning 
1s to find the "best" materialization. 

Let Q denote a class of queries on 0. We 
shall say a materialization M is locally sufficient 
(relative to Q) [WoNGGl] if for every q 6.Q there 
exist local queries qi on Mi such that 

result (q,D) = Y result (qi,Mi) (2.1) 

Local sufficiency'means that no communication 
among the processors is needed to process a query 
in Q, the only data movement being a final one to 
collect the fragments of the result produced at 
different sites. 

Local sufficiency is clearly a desirable oro- 
perty for retrieval operations. It is in general 
not attainable without redundancy, and that imposes . 
a cost on updates. The tension .thus created makes 
the design problem interesting. 

For any two materializations M and M' (of the 
same 0) define a partial ordering M > M' by 
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as its domains. For example, consider a "company" 
database consistino of the followino: 

entity types: emp, dept, job 

relationship: qualified (emp, job) 

assign (emp, dept,job) 

mgr (dept, emp) 

The participation of an entity type in a relation- 
ship may be subject to one or both of the follow- 
ing constraints: 

M>M’- M i 2 M; for every i (2.2) 
If M > M', then (2.2) implies 

Mi n M.. 
lJ- 1 

3 MI n M; for all i,j 

Hence, M > M' means that M is at least as redun- 
dant is M'. 

Let M be a locally sufficient materialization 
for a given Q. We say that M is minimal1 redun- 
dant (9) if for every M' < M, M' being --Tkxli 
sufficient implies M' = M. In other words, M 
being minimally redundant means there is no locally 
sufficient materialization that is less redundant 
than M. 

It is reasonable to assume that a query takes 
longer to process if the volume of data is oreater. 
For example, in a relational system the processinp 
time for a restriction, projection or join is a 
nondecreasing funciton of the cardinalities of the 
relations involved,,regardless of what storage 
structures and processing algorithms are used. 
Under such an assumption, a minimally redundant M 
is always better than one that is not, for any 
q c 9. 

It is perhaps even more reasonable to assume 
that the cost of an update is a nondecreasinp 
function of the degree of redu,ndancy, whatever the 
underlying implementation. This ,is so because 
updating with redundancy is tantamount to an update 
without redundancy plus the enforcement of an 
integrity constraint. Such enforcement never comes 
free. It follows that in designing a materializa- 
tion, we can limit our choices to those that are 
minimally redundant, whatever the underlying 
implementation and .physical conditions. In so 
doing, we have succeeded in extracting from a rather 
complex design problem an approach for optimization 
,that is nearly universally applicable because it 
is free-from quantitative assumption. 

It is, interesting to note that any materiali- 
,zation M that contains full replicas of the database 
at two or more sites can never be minimally redun- 

(a) E is unioue in R -- Each entity of E can 
occur-%%%t once in R. 

(b) E is total in R -- Each entity of E must 
occurmeast once in R. 

If E is both unique and total in P, then R is a 
function of E. In such a case we shall call R an 
association. For example, suppose that every 
employee has a unique assignment of both job and 
dept, then the relationship assign is an associa- 
tion on emp. On the other hand, suppose each 
dept has at most one mgr but some dept's may be 
temporarily without,one, then dept is unique in 
mgr(dept,emp) but not total, and rnor is not an 
association. We shall refer to entity types and 
those relationshiDs that are not associations 
collectively as primitive objects. An attribute 
is a function maoping a,Drimltlve object into a 
value set, which.is any machine- interpretable 
data type (e.g., inteoers, character strings). 
For example, the following is 'a description of, 
the "company" database in terms of the semantic 
objects that we have introduced: 

Example 3.1 Semantic Schema for the "Company" 
Database 

attributes 

entity types: emp,dept,job 

non-assoc. relationships: qualifted (emp, job) 

association: emmdept.job. 

: empemc20 

wi2 

dept%cIO 

jobt%c10 

&i4 

dant, because an irredundant M', having the entire 
database at a single site, is already locally- 
sufficient for,any Q, and clearly M' < M. 

We shall take minimal-redundancy as a criter- 
ion of goodness in,designing a distributed database. 
As the examole of havi,no all the data at a sinale 
site show, a minimally redundant materialization 
need not have all the desirable characteristics. 
One that is not, however,.is almost certain to be 
a bad.design. Being entirely qualitative, the 
criterion of minimum-redundancy is not sufficient 
to reduce the choice to a single deisgn, but it 
does achieve a drastic reduction in the number 
of candidates that need to be considered. 

qualifie#si2 
Suppose that every entity of each type is 

assioned a unique non-updatable,'jdentifier that 
serves as a surrooate for the entity. Then, the 
semantic description of the database can be'mapped 
immediately into a collection.of relations free 
of any serious update anormalies. The basic 
mappinn rule can be stated as: "One and only one 
relation per Drimitive object." For example, let 
eno, dno and jid denote the identifiers of-emp, 
dept, and job respectively. Then, the mapping 
rule yields the followinq relational schema for 
the."Company" database: 

Example 3.2 Relational Schema of "Company" Database 

emp(eno*,ename,aqe,assipn-dno,assign-jfd) 

dept(dno*,dname) 

job(jid*,title,pay) 

qualified(e&, fi,year) 

3 . A Semantic !+odel 

Minimal redundancy.is defined relative to a 
class of queries 9. How should Q be chosen? 
Examples quickly suggest that natural query-classes 
are determined by semantics. Therefore, we shall 
intr0duce.a 'simple semantic model, and define 
retrieval and update operations in terms of this 
model. 

The model that we choose is a sim lified ver- 
' sion of the entity,-relationship model e CHEN76, 

WONG79-j. An entity is an undefined atomic object. 
An entity type is a named collection of-entities. 
Arelationship is a "relation" with entity types 
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mgr(dno,eno) 

For a relation representing an entity type, the 
identifier-domain of that entity type is indicated 
by an asterisk and will be called its rimar ke 
The underscored domains are identifier +I-=- omalns for 
entity types represented by some other relations, 
and they will be referred to as foreian keys. 
Thus, for example, eno is the primary key of emp 
and assign-dno is a foreign key in emp. 

4. Semantic Queries 

Assume that the user's view of the distri- 
buted database is given by a relational schema 
free of any: distribution information and desipned 
according to the procedure given in Section 3. 
The question we address here is: what are the 
semantically natural queries? 

We say a relational query is a semantic auery 
if: . . 

(a) it is a one-variable query (i.e., it 
involves a unary operation), or 

(b) it is an equijoin of two relations on 
an identifier domain, or 

(c) it involves a finite sequence of opera- 
tions of types (a) and (b). 

The principal restriction that semantic queries 
must satisfy is that "joins" can only by 
"equality on identifier domains" (primary or 
foreign keys). For example, the QUEL query 

range of e is emp 

range of j is job 

retrieve (e. ename) where 1000 * e.age > 
j.salary 

is not semantic because the join-condition is 
neither an equality nor on an identifier domains. 
However, if the condition "e.assign-jid=j.jid" 
were added to the qualification, the resultino 
query would be semantic, since it would then 
involve an equi-join on the "jid" domain, to be 
followed by a restriction on the condition 
1000 * e.age > j.salary. 

There are at least two reasons to restrict 
queries used in designing a distributed data- 
base to semantic queries. First, they are more 
natural, and hence are likely to be represen- 
tative of the queries used in practice. Second, 
these queries reflect the semantics of the schema 
so that the schema can be used to suggest the 
class of queries to be used in deciding how the 
database is to be distributed. 

5. Semantically Induced Irredundant Materialization 

The problem we face at this point is the 
following: Given a relational schema designed 
by using the mapping rules of Section 3, how 
do we choose a set of queries, and for each 
choice how should the relations be partitioned? 

First, we note that if each relation is sub- 
divided horizontally then every one-variable query 
is locally sufficient. It seems reasonable that 
in most situations one would want all one-variable 
queries to be in the design set. Hence, we 
assume that each relation is always subdivided 
horiiontally. 

Next, we introduce a graph representation. 
A relational schema designed according to the 

rules of Section 3 can be represented as a directed 
graph (called schema-graph) as follows: 

(a) The nodes are in ont-to-one correspon- 
dence with the relations of the schema. 

(b) The arcs are in one-to-one correspondence 
with the foreign keys such that, if a 
foreinn key domain in R is the primary 
key in S then the arc points from R to S. 

Example 5.1 The Schema of Example'3.2 is 
Represented by the Followinp Graph: 

Observe that an arc R -c S represents a func- 
tion mapping R into S, and R is partitioned into 
disjoint subsets by the values of the primary 

key of S. Thus, for example emp assign-dnodept 

partitions emp into subsets each correspondino 
to a different department. It follows, therefore, 
that anv oartition of S vields a partition of R - , 
via a function R -f S. 

T will be called a partition-tree of a schema 
araph G if: 

(a) T is a subpraph of G 

(b) As an undirected graph, T is a tree. 

(c) b;;in;rc in T is directed from son to. 
-* 

For example, the followinp is a partition-tree of 
the schema graph of Example 5.1: 

Example 5.2 
deDt weem 

t aualified 

Proposition 5.1 A partition of the root-relation 
in a partition tree induces a unique partition of 
every relation in the tree. 

Proof: The proposition follows trivially by 
induction on the depth of the tree and from the 
property that R + S together with a partition of 
S induce a unique partition of R. 

For a given schema define a partition-forezt 
as a collection of partition-trees such that each 
node of the schema-praph appears in one and only 
one tree. Partition-forests will be our basis 
for distributing data. 

Given a partition-forest F, identify those 
relations that are roots of the trees in F. 
Partition each root, and that induces a partition 
of each non-root node in the corresponding tree. 
Assigning the root fraoments to sites then 
achieves aperfect subidvision of the database 
in whichthe fragments of subordinate nodes fol- 
low the corresoondino fraaments of the roots. We 
call such a subdivision ai F-induced subdivision. 
Our first procedure for desm 
database is simply the following: 

(a) Given a schema graph, find a partition- 
forest F. 
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(b) Find an F-induced subdivision of the data- 
base, and identify it as the materializa- 
tion M of the distributed database. 

Given an F-induced subdivision M, the class Q 
of locally sufficient queries can be determined 
from F. We shall now present a way of doing so. 
Let R be a relation on the schema. An identifier 
domain in R is said to be F-supported if it corres- 
ponds to an arc in a tree in F. Consider the 
following example based on the schema of Example 
5.1: 

Example 5.3 Let F be given by: 

dept 

ev dL li 

job 

w 
The F-supported domain are 

dno in emp and dept 

eno in mgr and emp 

qualified 

jid in qualified and job 

Relations produced by relational-algebraic opera- 
tion inherit the F-supported domains. Thus, for 
example, dno is an F-supported domain of 

empmgr because it is one for emp. 

Proposition 5.2 Let F be a partition-forest. 
Let Q(F) denote the smallest class of queries 
such that: 

(a) Q(F) includes all one-variable queries 
on the base relation (i.e., the relations 
specified in the schema). 

(b) Q(F) is closed under projection, restric- 
tion, and join on an F-supported domain. 

Then, an irredundant materialization M is locally 
sufficient with respect to Q(F) if and only if M 
is F-induced. 

Remark: M being irredundant, is also minimally 
redundant with respect to Q(F). 

Proof: First, we prove that an F-induced materiali- 
zation M(F) is Q(F) locally sufficient. Let Qn 
denote the subset of Q(F) involving n or fewer 
joins, and let R(Qn) denote theset of relations ob- 
tained by Qn acting on the database. Every identi- 
fier ddmain 0 is partitioned by M(F) into disjoint 
subsets Oi,With Oi.corresponding to site i. 

Let RER(Qn). Whe shall prove by induction 

that'(a) R=yRi where each Ri is produced by 

local operations, and 

(b) if 0 is an F-supported domain in R then 
Ri[Oj]=$ for i#j where [oj] denotes 

restriction on 0.. 

First, consider R c R(QC)! Then R must be of the 
form 

R = npB 

when B is one of the base relations, IT is a pro- 
jection, andp a restriction. B is partitioned by 
M(F), so that 

R -apIai 
i 

= TT~ pBi 
1 

= u spsi 
i 

!4ow, if 3 is F-supported in R then it.must also be 
F-supported in B and Bf=B[Of]. Hence, 

RiCDjI = ~P(B[DiI)COjI 
= rpBIOin 0.1 = 4 

and properties (a) and b) are proved for n=O.'- t 
Assume (a) and (b) to be true for n<m, ahd 

consider Rc R(Qm+,). R is expressible as 

R = ;p(Adl<lB) 

where m denotes joint on 0, and Aand B are 
in R(Qm) with C as an R-supported domain. Now, 

A&B = 1 A[Oi] & BC+l 
1 

and with property (b) we have 

A~B = C A,[Di]~“i[DiI 

Since Ai and Bi :re locally-generated, so is 
0 

Ai[Oi]wBL[Di]- Therefore, 

R = 'Pi Ai[Oi]dl3Bi[Oil 
i 

= y np(Ai[Oi]& Bi[Oi] 

= U Ri 
i 

and (a) is proved. 

in R. 
For (b) let Oi denote an F-supported domain 

Clearly, Oi must be an F-supported domain 
in at least one of the pair (Ap,B). With no,loss 
of generality assume.0; to be supported in A. 
Then, 

AID;1 = 4 
and 0 

Ri([OjI =*P((A1[DjI)[PiJ~ Bi[,Oi]) 

=Q 

so that (b) is proved. By inducti'on, properties 
(a) and (b) are true for all n. 

We note that qc Q(F) implieS,qcQn for SO& n 
and the "if" part of Proposition 5.2 is proved.;' 
Next, we shall prove the "only if" part by showing 
that any Q(F)-locally-sufficient M must be F- 
induced. 

Let R be a relation corresponding to any node 
in F. Then there is a unique path from R to a 
root relation R(0). 

R = R(n)+R(n-l)+...+R(O) 

where each link (+) corresponds to an F-supported 
domain. It follows thatthe join: 

R(n)bdR(n-T)...tiR(O) = J 

is in Q(F) and so is r(J R), the projection Of J 
on the domains of R= R(n . Since M ts irredundant 
it must partition R(0). Because M is locally suf- 
ficient with respect to n(JIR) the fragment of R 
at site i is obtained from the ith fragment Of’ 
R(0) by the operation R(J R). This is exactly how 

I an F-induced materializat on was defined. The 
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proof is now complete. 
0 

6. Cpdate Through Local Jperations 

The price to be paid for achievinp a greater 
degree of local sufficiency is increased update 
complexity. This is true even when the aateriali- 
zation involves no redundancy. Basically, this 
is because local sufficiency for D(F) is achieved 
only when the distribution of data (i.e., I:) 
satisfies the.following integrity constraint: 

Every identifier domain S is partitioned 
by 11 so that if D is F-supported in R then' 

iii = RIDi] 

where 8 is any base relation and !?i is the 
fragment of 8 in Wi. 

For example, in a materialization induced by the 
F of Example 5.3, fragments of "emp" are determined 
by dno, "mgr" by eno, and "qualified" bv'iid. On 
updates the integrity constraint Ri = RID;] must 
be verified for each relation that is affected. 

In a distributed system the communication 
cost on updates has two components: message traf- 
fic and sunchronization delay. If every update 
can be accomplished by broadcast then the synchro- 
nization delay, at least, is minimized. In this 
section we attempt to isolate those updates that 
can be effected by broadcast and propose an update 
protocol to take advantage of this orosertv. 

We define an update to be locally 'realjzable 
if it can be completed by broadcasting and-updat- 
ing in place. For exampie, if every base reiation 
is horizontally subdivided then any one-variable 
deletion operation (e.g., delete e wheree.age>65) 
is locally realizable. 

The insertion of a single tuple is also local- 
ly realizable, but somewhat more complex. We note 
that, first, the materialiration being irredundant, 
insertion is done at only a single site; and second, 
there is a difference between inserting in a rela- 
tion that corresponds to a root node in F 'and one 
that does not. For a root insertion, there has to 
be an algorithm for allocating a new tuple tcka spe- 
cific site. The tuple is then sent to the deafg- 
nated site, or the tuple and its site designation 
are broadcast. To insert a tuple in a non-root re- 
lations, the tuple is broadcast and upon its recep- 
tion, each site checks the F-supported foreign key 
(there is only one) value in the received tuple. 
The tuple is installed only at the site (again, 
there is only one) that hosts that key value. For 
example, assume that fl is induced by the F of Ex- 
ample 5.3, and that the tuple: 

e = Je;o;;;45,ename="F.FoxU,age=32,dno=37 
1= 

is to be inserted in emp. The domain dno is F- 
supported in emp. On receiving the broadcast 
instruction to insert e, each site must check on 
the existence of "dno=37" and e is .inserted at the 
only site where the existence is verified. If 
"dno=37" represents a new department then the 
appropriate insertion to dept must precede the 
insertion of e. 

Changing values in a tuple is also locally 
realizable except for changes to the primary key 
or any F-supported foreign keys. Changing primary 
keys can be assumed to be a prohibited operation 

as it is in most systems. Changing an F-supported 
foreign key is potentially non-locally-realizable. 
Consider, for example, changing the department to 
which a given employee is assigned. For the F in 
Example 5.3 "employees" follow "departments" inthe 
assignment of data to sites. Changing the depart- 
ment may well require a tuple in emp to migrate 
from one site to another, and is thus not locally 
realizable. This difficulty is circumvented by 
requiring an update to an F-supported foreign 
to be effected by a pair of deletion-insertion 

key 

operations. For example, changing dno from 37 to 
12 for the employee with "eno=12345" would re- 
quire the following pair of operations: 

delete e where e.eno = 12345 

append to emp(eno=12345, name= "F.Fox," 
age=32, dno=lZ, jid=213) 

In summary, all one-variable updates are 
locally realizable except changes to primary and 
F-supported kevs. The former is an oneration that 
should be proh?bited. and the latter must be re- 
placed by a deletion:insertion oair if-all updates 
are to be locally realizable. 

7. Replicating Data to Enhance Retrieval 

Without data replication, about tbe best one 
can do in distributing data is to pick a "parti- 
tion forest" F from a schema graph and.use it to 
induce a materialization M. In general, F being 
only a subgraph of the schema graph, there-are 
semantic queries for which M is not locally suf- 
ficient. Another view of this problem is afforded- 
by noting that any collection of semantic queries 
corresponds to a subset of the schema graph, and 
if the subset is not a partition forest, then an 
irredundant materialization cannot be locally 
sufficient for the entire collectfon. 

Example 7.1. Suppose that for the schema graph 
in Example 5.1 we require M to be locally suffi- 
cient for the following joins: 

deptmmgr deptmemp 

jobwmp jobwqualification 

deot iob 

This not being a partition forest, there exists 
no irredundant materialization that is locally 
sufficient for all four of the specfffed joins, 
except for the trivial materialization of having 
all data at a single site. However, there are 
many ways of replicating data to obtain a locally 
sufficient materialization. 

Replicating data to improve performance Is 
hardly a new idea. In the context of distributed 
processing, it has been considered as a tactic of 
optimizing file allocation [APER%O, Chu73, MAH076]. 
Our approach is significantly different in that 
we exploit the semantic information in a database 
schema in deciding how to replicate the data. 
Three approaches to replicating data are discussed 
here: denormalization, all-or-none,andmultiple- 
partitions. 

The idea underlying denormalfzatfon is ex- 
ceedingly simple. For a given materialization M, 
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call a query unsupported if H is not locally suf- updates more difficult. For each tu le the num- 
ficient. The idea is to preprocess any unsupported ber of replicated copies and where t Re y reside 
query and add it to the database before considering may be difficult to determine, and on update 
the, problem of partitioning and distributing the tuples may have to migrate. All in all, denonaa- 
database. The following example illustrates the lization is probably not a good idea for dynamic 
procedure. data. 

Example 7.2 
A better way of replicating~dynamic data is 

"all-or-none." Here, each relation,is either 

^ Consider the schema for the "Company" data- 
base considered in Example 5.1: 

partitioned into non-overlkpping fragments, or it 
is fullv reDlfcated at every site. Clearly. UP- 
dating &'a distributed database is no rnbre 
complex than updating an irredundant one. The 
question is: howdowe decide which one to repli- ngr 

A possible partitioning forest is: 

Partitioninq Forest 

w- 
Jhe mgr+dept, emp+dept, and qual+emp semantic 
joins are supported by this partitioning, while 
mgr+emp, emp+job, and qual+job are not. Queries 
involving the latter three joins are not locally - 
sufficient. 

Suppose that we add the joins: mgrwemp, 
empwjob, qualDdjob to'the database and show 
these as new nodes in the schema graph with arcs 
directed to the relations that participate inthe 
corresponding joins. 

Denormalization 

Now extract the following partition forest from 
the denonsalized schema graph and note that it 
contains the previous partition forest: 

< b 
grflrg Wl 

In this forest, all natural joins involving any 
two relations from the original schema are suppor- 
ted, but not all semantic queries. For example, 
empwqualt>ajob is not supported. 

Partitionina and distributing the denonnal- 
ized (hence replicated) database can now proceed 
as before using the procedure given in Section 5. 
In practice, it is probably desirable to distri- 
bute semijoins rather than joins. For example, 
once we have partitioned empmjob into disjoint 
fragments (empWjob)i, we can project 
(empwjob)i on thedomains of emp and job respec- 
tively to get fragments of emp and job, which can 
then be grouped with the fragments obtained fron 
partitioning emp and job directly. In this way, 
only fragments of the original relations need be 
sotred locally. 

L&normalization certainly increases paral- 
lelism.for retrievals, but at the price of making 

cate? 
Consider any subgraph G of the schema graph, 

including the schema graph itself. A node x on G 
is said to be nonconflicting (G) if: 

(a) no arc emanates from x. or 

(b) exactly one arc emanates from x and is 
directed to a non-conflicting node. 

In all other cases, x is said to be conflictfn 
----l-f For example, in the schema graph of ExamD-e 5.. 

(also shown in Example 'I..?)-deDt and job.are 
non-conflicting nodes, and the other three are 
conflicting. In Example 7.1, emp is the only 
conflicting node. 

A Drocedure for constructing a materializa- 
tion with all-ornone reDlication is simo1.v the 
following. Replicate the conflicting node's and. 
partition the noniconflictfng-ones. The reason 
why this works is that the subgraph of G that con- 
tains only the non-conflicting nodes is always a 
partition-forest. , 

A materialization with many fully replica&d 
relations is of dubious value. One achieves 
parallelism in such a situation, but the parallel 
efforts are duplicative. ForSexampler fully 
replicating every relation enjoys io:aduantioe 
in oarallelism over Dlacinothe entire database.' 
at a single site. ,(It may-enjoy an advantage in 
communication.) We shall consider an approach, 
"multiole oartftions." that combines features from 

deDt 
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both denorinalization-and all-or-none. 
The idea underlying "multiple partitions" is 

to replicate the conflicting nodes. in a graph 
while keeping the number of arcsthe same, so as 
to eventually produce a partition forest. We 
shall illustrate the idea with an example,,but 
omit any proof for the general case. 

Example 7.3 ' 

Consider the schema graph in Example 7.2: 

Duplicate the conflicting node emp, and let each 
arc connected to emp be connected to one or the 
other, but not both, of the replicas. 

job 

A mgr ‘. em0 2 aqua1 emp 1 , 

Now, only mgr and qua1 are conflicting, and we can 
replicate each to get a partition forest: 



dept job 

mgr l+emp I emp 2equal ? 

d mgr 2 qua1 1 
A 

Any partition of dept and job induces a perfect 
partition of each copy of emp, mgr, and qual. At 
each site, the fragments from different copies of 
the sane relation can be merged if desired. 
However, for each tuple at each site we need to 
know which copies contain it. Compared to all-or- 
none replication, replication by multipli-parti- 
tions incurs less redundancy but.greater complex- 
ity on updates. 

8. Conclusion 

To attain a high degree of parallelism in a 
distributed database. one has to distribute the 
data in a way as to minimize the need for'moving 
data between sites. In this paper we advance the 
thesis that doing so requires semantic information 
concerning the data. 

To make precise the notion of parallelism 
without comniting to a quantitative-cost function, 
we introduce the notion of "local sufficiencv" 
for distributed databases. Given a database- 
schema with a limited amount of semantic informa- 
tion, we demonstrated a procedure to find those 
classes of queries for which local sufficiency 
without replication can be achieved. For classes 
of queries that require replication to achieve 
local sufficiency, three approaches to replica- 
tion are proposed. Each enjoys a different blend 
of cost and benefit. 
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