
DISTRIBUTING A DATABASE FOR PARALLELISM

E. Wong and R. H. Katz*
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

ABSTRACT

In this paper we treat the problem of sub-
dividing a database and allocating the fragments
to the sites in a distributed database system in
order to maximize non-.duplicative parallelism.
Our goal is to establish a'conceptual framework
for distributing data without being camnitted to
specific cost models.

We introduce,the concept of "local sufficien-
cy" as a measure of parallelism, and show how
certain'classes of queries lead naturally to
irredundant partitions of a database that are
locallv sufficient. .For classes of aueries for
which no frredundant distribution is'locally
sufficient, we offer ways to introduce redundancy
in achieving local sufficiency

1. Introduction

The context in which the problem arises is
that of a distributed database system. By this
we mean any system consisting of multiple auto-
nomous processors communicating through a commu-
nication mediom and each-accessing a separate frag-
ment of the database, ahd where the collection of
fragments is'to be seen by the user as an inte-
grated whole. Geographical dispersion is not a
necessary ingredient. Replication and, more
generally, redundancy of data among the fragments
may be present. The question we pose is the,
.following: if we are free to subdivide the data-
base into possibly overlapping fragments, how
should we do it?

.The,objective of the subdivision is efficient
performance for both retrieval and update opera-
tions. While it would not be difficult to
express the problem of subdividing a database as
one of minimizing a weighted cost of database
usage,, doing so is not particularly useful for
several reasons:

(1) Weighting of costs requires knowing
the frequencies of usage for different opera-
*University of Wisconsin at Madison.

mmission to copy without fee au or part of thii material is granted
provided that the copies are not made or distributed for direct
com~rci8l advantye, the ACM copyright notice and tk title of the
publication and its date appear, and notice h .&en that copying is by
permission of the Atition for Computing Machinery. To copy
othuwisc. or to republish, nquires a fee rnd/or rpseif= prmission.

o 1983 ACM -O-89791-104-O/83/005/0023 $00.75

tions. Such statistics are neither easy to obtain
nor very stable. They are better-used in fine
tuning than in the basic structural design.

(P)Similarly, for a specific database opera-j
tion, an appropriate'cost function is not easily'
estimated, In particular, how the cost depends
on the partition-policy is not likely to be known
quantitatively.

(3) Even if precise cost could be computed
for each partition; there would b@too many ways
dc subdividing a database for the problem of
finding the minimum to be tractable.

These considerations suggest that what is
needed is a'conceptial framework that captures and
makes precise qualitative factors important in
designing a database partition. The goal is not
to find a single strategy, but to identify classes
of strategies with desirable,properties. Within.
each class fine-tuning can then take place.. The
challenge is to do,as much as one can in the design
without having to use quantitative design data.
In this our approach differs significantly from
the existing work in file allocation [CHU73,MAHO761
where a quantitative cost model plays a central
role.

2. Local Sufficiency and Minimal Redundancy

Let 0 denote the database as seenby the user
Neither distribution nor redundancy is'visible in
U. Let M

!I
denote the

associate with the it f;
ragnent bf the database

processor. ,We assume that
UMi = U and call the collectionM = EMil a
materialization of 0. Theprsblem of partitioning
1s to find the "best" materialization.

Let Q denote a class of queries on 0. We
shall say a materialization M is locally sufficient
(relative to Q) [WoNGGl] if for every q 6.Q there
exist local queries qi on Mi such that

result (q,D) = Y result (qi,Mi) (2.1)

Local sufficiency'means that no communication
among the processors is needed to process a query
in Q, the only data movement being a final one to
collect the fragments of the result produced at
different sites.

Local sufficiency is clearly a desirable oro-
perty for retrieval operations. It is in general
not attainable without redundancy, and that imposes .
a cost on updates. The tension .thus created makes
the design problem interesting.

For any two materializations M and M' (of the
same 0) define a partial ordering M > M' by

23

as its domains. For example, consider a "company"
database consistino of the followino:

entity types: emp, dept, job

relationship: qualified (emp, job)

assign (emp, dept,job)

mgr (dept, emp)

The participation of an entity type in a relation-
ship may be subject to one or both of the follow-
ing constraints:

M>M’- M i 2 M; for every i (2.2)
If M > M', then (2.2) implies

Mi n M..
lJ- 1

3 MI n M; for all i,j

Hence, M > M' means that M is at least as redun-
dant is M'.

Let M be a locally sufficient materialization
for a given Q. We say that M is minimal1 redun-
dant (9) if for every M' < M, M' being --Tkxli
sufficient implies M' = M. In other words, M
being minimally redundant means there is no locally
sufficient materialization that is less redundant
than M.

It is reasonable to assume that a query takes
longer to process if the volume of data is oreater.
For example, in a relational system the processinp
time for a restriction, projection or join is a
nondecreasing funciton of the cardinalities of the
relations involved,,regardless of what storage
structures and processing algorithms are used.
Under such an assumption, a minimally redundant M
is always better than one that is not, for any
q c 9.

It is perhaps even more reasonable to assume
that the cost of an update is a nondecreasinp
function of the degree of redu,ndancy, whatever the
underlying implementation. This ,is so because
updating with redundancy is tantamount to an update
without redundancy plus the enforcement of an
integrity constraint. Such enforcement never comes
free. It follows that in designing a materializa-
tion, we can limit our choices to those that are
minimally redundant, whatever the underlying
implementation and .physical conditions. In so
doing, we have succeeded in extracting from a rather
complex design problem an approach for optimization
,that is nearly universally applicable because it
is free-from quantitative assumption.

It is, interesting to note that any materiali-
,zation M that contains full replicas of the database
at two or more sites can never be minimally redun-

(a) E is unioue in R -- Each entity of E can
occur-%%%t once in R.

(b) E is total in R -- Each entity of E must
occurmeast once in R.

If E is both unique and total in P, then R is a
function of E. In such a case we shall call R an
association. For example, suppose that every
employee has a unique assignment of both job and
dept, then the relationship assign is an associa-
tion on emp. On the other hand, suppose each
dept has at most one mgr but some dept's may be
temporarily without,one, then dept is unique in
mgr(dept,emp) but not total, and rnor is not an
association. We shall refer to entity types and
those relationshiDs that are not associations
collectively as primitive objects. An attribute
is a function maoping a,Drimltlve object into a
value set, which.is any machine- interpretable
data type (e.g., inteoers, character strings).
For example, the following is 'a description of,
the "company" database in terms of the semantic
objects that we have introduced:

Example 3.1 Semantic Schema for the "Company"
Database

attributes

entity types: emp,dept,job

non-assoc. relationships: qualifted (emp, job)

association: emmdept.job.

: empemc20

wi2

dept%cIO

jobt%c10

&i4

dant, because an irredundant M', having the entire
database at a single site, is already locally-
sufficient for,any Q, and clearly M' < M.

We shall take minimal-redundancy as a criter-
ion of goodness in,designing a distributed database.
As the examole of havi,no all the data at a sinale
site show, a minimally redundant materialization
need not have all the desirable characteristics.
One that is not, however,.is almost certain to be
a bad.design. Being entirely qualitative, the
criterion of minimum-redundancy is not sufficient
to reduce the choice to a single deisgn, but it
does achieve a drastic reduction in the number
of candidates that need to be considered.

qualifie#si2
Suppose that every entity of each type is

assioned a unique non-updatable,'jdentifier that
serves as a surrooate for the entity. Then, the
semantic description of the database can be'mapped
immediately into a collection.of relations free
of any serious update anormalies. The basic
mappinn rule can be stated as: "One and only one
relation per Drimitive object." For example, let
eno, dno and jid denote the identifiers of-emp,
dept, and job respectively. Then, the mapping
rule yields the followinq relational schema for
the."Company" database:

Example 3.2 Relational Schema of "Company" Database

emp(eno*,ename,aqe,assipn-dno,assign-jfd)

dept(dno*,dname)

job(jid*,title,pay)

qualified(e&, fi,year)

3 . A Semantic !+odel

Minimal redundancy.is defined relative to a
class of queries 9. How should Q be chosen?
Examples quickly suggest that natural query-classes
are determined by semantics. Therefore, we shall
intr0duce.a 'simple semantic model, and define
retrieval and update operations in terms of this
model.

The model that we choose is a sim lified ver-
' sion of the entity,-relationship model e CHEN76,

WONG79-j. An entity is an undefined atomic object.
An entity type is a named collection of-entities.
Arelationship is a "relation" with entity types

24

mgr(dno,eno)

For a relation representing an entity type, the
identifier-domain of that entity type is indicated
by an asterisk and will be called its rimar ke
The underscored domains are identifier +I-=- omalns for
entity types represented by some other relations,
and they will be referred to as foreian keys.
Thus, for example, eno is the primary key of emp
and assign-dno is a foreign key in emp.

4. Semantic Queries

Assume that the user's view of the distri-
buted database is given by a relational schema
free of any: distribution information and desipned
according to the procedure given in Section 3.
The question we address here is: what are the
semantically natural queries?

We say a relational query is a semantic auery
if: . .

(a) it is a one-variable query (i.e., it
involves a unary operation), or

(b) it is an equijoin of two relations on
an identifier domain, or

(c) it involves a finite sequence of opera-
tions of types (a) and (b).

The principal restriction that semantic queries
must satisfy is that "joins" can only by
"equality on identifier domains" (primary or
foreign keys). For example, the QUEL query

range of e is emp

range of j is job

retrieve (e. ename) where 1000 * e.age >
j.salary

is not semantic because the join-condition is
neither an equality nor on an identifier domains.
However, if the condition "e.assign-jid=j.jid"
were added to the qualification, the resultino
query would be semantic, since it would then
involve an equi-join on the "jid" domain, to be
followed by a restriction on the condition
1000 * e.age > j.salary.

There are at least two reasons to restrict
queries used in designing a distributed data-
base to semantic queries. First, they are more
natural, and hence are likely to be represen-
tative of the queries used in practice. Second,
these queries reflect the semantics of the schema
so that the schema can be used to suggest the
class of queries to be used in deciding how the
database is to be distributed.

5. Semantically Induced Irredundant Materialization

The problem we face at this point is the
following: Given a relational schema designed
by using the mapping rules of Section 3, how
do we choose a set of queries, and for each
choice how should the relations be partitioned?

First, we note that if each relation is sub-
divided horizontally then every one-variable query
is locally sufficient. It seems reasonable that
in most situations one would want all one-variable
queries to be in the design set. Hence, we
assume that each relation is always subdivided
horiiontally.

Next, we introduce a graph representation.
A relational schema designed according to the

rules of Section 3 can be represented as a directed
graph (called schema-graph) as follows:

(a) The nodes are in ont-to-one correspon-
dence with the relations of the schema.

(b) The arcs are in one-to-one correspondence
with the foreign keys such that, if a
foreinn key domain in R is the primary
key in S then the arc points from R to S.

Example 5.1 The Schema of Example'3.2 is
Represented by the Followinp Graph:

Observe that an arc R -c S represents a func-
tion mapping R into S, and R is partitioned into
disjoint subsets by the values of the primary

key of S. Thus, for example emp assign-dnodept

partitions emp into subsets each correspondino
to a different department. It follows, therefore,
that anv oartition of S vields a partition of R - ,
via a function R -f S.

T will be called a partition-tree of a schema
araph G if:

(a) T is a subpraph of G

(b) As an undirected graph, T is a tree.

(c) b;;in;rc in T is directed from son to.
-*

For example, the followinp is a partition-tree of
the schema graph of Example 5.1:

Example 5.2
deDt weem

t aualified

Proposition 5.1 A partition of the root-relation
in a partition tree induces a unique partition of
every relation in the tree.

Proof: The proposition follows trivially by
induction on the depth of the tree and from the
property that R + S together with a partition of
S induce a unique partition of R.

For a given schema define a partition-forezt
as a collection of partition-trees such that each
node of the schema-praph appears in one and only
one tree. Partition-forests will be our basis
for distributing data.

Given a partition-forest F, identify those
relations that are roots of the trees in F.
Partition each root, and that induces a partition
of each non-root node in the corresponding tree.
Assigning the root fraoments to sites then
achieves aperfect subidvision of the database
in whichthe fragments of subordinate nodes fol-
low the corresoondino fraaments of the roots. We
call such a subdivision ai F-induced subdivision.
Our first procedure for desm
database is simply the following:

(a) Given a schema graph, find a partition-
forest F.

25

(b) Find an F-induced subdivision of the data-
base, and identify it as the materializa-
tion M of the distributed database.

Given an F-induced subdivision M, the class Q
of locally sufficient queries can be determined
from F. We shall now present a way of doing so.
Let R be a relation on the schema. An identifier
domain in R is said to be F-supported if it corres-
ponds to an arc in a tree in F. Consider the
following example based on the schema of Example
5.1:

Example 5.3 Let F be given by:

dept

ev dL li

job

w
The F-supported domain are

dno in emp and dept

eno in mgr and emp

qualified

jid in qualified and job

Relations produced by relational-algebraic opera-
tion inherit the F-supported domains. Thus, for
example, dno is an F-supported domain of

empmgr because it is one for emp.

Proposition 5.2 Let F be a partition-forest.
Let Q(F) denote the smallest class of queries
such that:

(a) Q(F) includes all one-variable queries
on the base relation (i.e., the relations
specified in the schema).

(b) Q(F) is closed under projection, restric-
tion, and join on an F-supported domain.

Then, an irredundant materialization M is locally
sufficient with respect to Q(F) if and only if M
is F-induced.

Remark: M being irredundant, is also minimally
redundant with respect to Q(F).

Proof: First, we prove that an F-induced materiali-
zation M(F) is Q(F) locally sufficient. Let Qn
denote the subset of Q(F) involving n or fewer
joins, and let R(Qn) denote theset of relations ob-
tained by Qn acting on the database. Every identi-
fier ddmain 0 is partitioned by M(F) into disjoint
subsets Oi,With Oi.corresponding to site i.

Let RER(Qn). Whe shall prove by induction

that'(a) R=yRi where each Ri is produced by

local operations, and

(b) if 0 is an F-supported domain in R then
Ri[Oj]=$ for i#j where [oj] denotes

restriction on 0..

First, consider R c R(QC)! Then R must be of the
form

R = npB

when B is one of the base relations, IT is a pro-
jection, andp a restriction. B is partitioned by
M(F), so that

R -apIai
i

= TT~ pBi
1

= u spsi
i

!4ow, if 3 is F-supported in R then it.must also be
F-supported in B and Bf=B[Of]. Hence,

RiCDjI = ~P(B[DiI)COjI
= rpBIOin 0.1 = 4

and properties (a) and b) are proved for n=O.'- t
Assume (a) and (b) to be true for n<m, ahd

consider Rc R(Qm+,). R is expressible as

R = ;p(Adl<lB)

where m denotes joint on 0, and Aand B are
in R(Qm) with C as an R-supported domain. Now,

A&B = 1 A[Oi] & BC+l
1

and with property (b) we have

A~B = C A,[Di]~“i[DiI

Since Ai and Bi :re locally-generated, so is
0

Ai[Oi]wBL[Di]- Therefore,

R = 'Pi Ai[Oi]dl3Bi[Oil
i

= y np(Ai[Oi]& Bi[Oi]

= U Ri
i

and (a) is proved.

in R.
For (b) let Oi denote an F-supported domain

Clearly, Oi must be an F-supported domain
in at least one of the pair (Ap,B). With no,loss
of generality assume.0; to be supported in A.
Then,

AID;1 = 4
and 0

Ri([OjI =*P((A1[DjI)[PiJ~ Bi[,Oi])

=Q

so that (b) is proved. By inducti'on, properties
(a) and (b) are true for all n.

We note that qc Q(F) implieS,qcQn for SO& n
and the "if" part of Proposition 5.2 is proved.;'
Next, we shall prove the "only if" part by showing
that any Q(F)-locally-sufficient M must be F-
induced.

Let R be a relation corresponding to any node
in F. Then there is a unique path from R to a
root relation R(0).

R = R(n)+R(n-l)+...+R(O)

where each link (+) corresponds to an F-supported
domain. It follows thatthe join:

R(n)bdR(n-T)...tiR(O) = J

is in Q(F) and so is r(J R), the projection Of J
on the domains of R= R(n . Since M ts irredundant
it must partition R(0). Because M is locally suf-
ficient with respect to n(JIR) the fragment of R
at site i is obtained from the ith fragment Of’
R(0) by the operation R(J R). This is exactly how

I an F-induced materializat on was defined. The

26

proof is now complete.
0

6. Cpdate Through Local Jperations

The price to be paid for achievinp a greater
degree of local sufficiency is increased update
complexity. This is true even when the aateriali-
zation involves no redundancy. Basically, this
is because local sufficiency for D(F) is achieved
only when the distribution of data (i.e., I:)
satisfies the.following integrity constraint:

Every identifier domain S is partitioned
by 11 so that if D is F-supported in R then'

iii = RIDi]

where 8 is any base relation and !?i is the
fragment of 8 in Wi.

For example, in a materialization induced by the
F of Example 5.3, fragments of "emp" are determined
by dno, "mgr" by eno, and "qualified" bv'iid. On
updates the integrity constraint Ri = RID;] must
be verified for each relation that is affected.

In a distributed system the communication
cost on updates has two components: message traf-
fic and sunchronization delay. If every update
can be accomplished by broadcast then the synchro-
nization delay, at least, is minimized. In this
section we attempt to isolate those updates that
can be effected by broadcast and propose an update
protocol to take advantage of this orosertv.

We define an update to be locally 'realjzable
if it can be completed by broadcasting and-updat-
ing in place. For exampie, if every base reiation
is horizontally subdivided then any one-variable
deletion operation (e.g., delete e wheree.age>65)
is locally realizable.

The insertion of a single tuple is also local-
ly realizable, but somewhat more complex. We note
that, first, the materialiration being irredundant,
insertion is done at only a single site; and second,
there is a difference between inserting in a rela-
tion that corresponds to a root node in F 'and one
that does not. For a root insertion, there has to
be an algorithm for allocating a new tuple tcka spe-
cific site. The tuple is then sent to the deafg-
nated site, or the tuple and its site designation
are broadcast. To insert a tuple in a non-root re-
lations, the tuple is broadcast and upon its recep-
tion, each site checks the F-supported foreign key
(there is only one) value in the received tuple.
The tuple is installed only at the site (again,
there is only one) that hosts that key value. For
example, assume that fl is induced by the F of Ex-
ample 5.3, and that the tuple:

e = Je;o;;;45,ename="F.FoxU,age=32,dno=37
1=

is to be inserted in emp. The domain dno is F-
supported in emp. On receiving the broadcast
instruction to insert e, each site must check on
the existence of "dno=37" and e is .inserted at the
only site where the existence is verified. If
"dno=37" represents a new department then the
appropriate insertion to dept must precede the
insertion of e.

Changing values in a tuple is also locally
realizable except for changes to the primary key
or any F-supported foreign keys. Changing primary
keys can be assumed to be a prohibited operation

as it is in most systems. Changing an F-supported
foreign key is potentially non-locally-realizable.
Consider, for example, changing the department to
which a given employee is assigned. For the F in
Example 5.3 "employees" follow "departments" inthe
assignment of data to sites. Changing the depart-
ment may well require a tuple in emp to migrate
from one site to another, and is thus not locally
realizable. This difficulty is circumvented by
requiring an update to an F-supported foreign
to be effected by a pair of deletion-insertion

key

operations. For example, changing dno from 37 to
12 for the employee with "eno=12345" would re-
quire the following pair of operations:

delete e where e.eno = 12345

append to emp(eno=12345, name= "F.Fox,"
age=32, dno=lZ, jid=213)

In summary, all one-variable updates are
locally realizable except changes to primary and
F-supported kevs. The former is an oneration that
should be proh?bited. and the latter must be re-
placed by a deletion:insertion oair if-all updates
are to be locally realizable.

7. Replicating Data to Enhance Retrieval

Without data replication, about tbe best one
can do in distributing data is to pick a "parti-
tion forest" F from a schema graph and.use it to
induce a materialization M. In general, F being
only a subgraph of the schema graph, there-are
semantic queries for which M is not locally suf-
ficient. Another view of this problem is afforded-
by noting that any collection of semantic queries
corresponds to a subset of the schema graph, and
if the subset is not a partition forest, then an
irredundant materialization cannot be locally
sufficient for the entire collectfon.

Example 7.1. Suppose that for the schema graph
in Example 5.1 we require M to be locally suffi-
cient for the following joins:

deptmmgr deptmemp

jobwmp jobwqualification

deot iob

This not being a partition forest, there exists
no irredundant materialization that is locally
sufficient for all four of the specfffed joins,
except for the trivial materialization of having
all data at a single site. However, there are
many ways of replicating data to obtain a locally
sufficient materialization.

Replicating data to improve performance Is
hardly a new idea. In the context of distributed
processing, it has been considered as a tactic of
optimizing file allocation [APER%O, Chu73, MAH076].
Our approach is significantly different in that
we exploit the semantic information in a database
schema in deciding how to replicate the data.
Three approaches to replicating data are discussed
here: denormalization, all-or-none,andmultiple-
partitions.

The idea underlying denormalfzatfon is ex-
ceedingly simple. For a given materialization M,

27

call a query unsupported if H is not locally suf- updates more difficult. For each tu le the num-
ficient. The idea is to preprocess any unsupported ber of replicated copies and where t Re y reside
query and add it to the database before considering may be difficult to determine, and on update
the, problem of partitioning and distributing the tuples may have to migrate. All in all, denonaa-
database. The following example illustrates the lization is probably not a good idea for dynamic
procedure. data.

Example 7.2
A better way of replicating~dynamic data is

"all-or-none." Here, each relation,is either

^ Consider the schema for the "Company" data-
base considered in Example 5.1:

partitioned into non-overlkpping fragments, or it
is fullv reDlfcated at every site. Clearly. UP-
dating &'a distributed database is no rnbre
complex than updating an irredundant one. The
question is: howdowe decide which one to repli- ngr

A possible partitioning forest is:

Partitioninq Forest

w-
Jhe mgr+dept, emp+dept, and qual+emp semantic
joins are supported by this partitioning, while
mgr+emp, emp+job, and qual+job are not. Queries
involving the latter three joins are not locally -
sufficient.

Suppose that we add the joins: mgrwemp,
empwjob, qualDdjob to'the database and show
these as new nodes in the schema graph with arcs
directed to the relations that participate inthe
corresponding joins.

Denormalization

Now extract the following partition forest from
the denonsalized schema graph and note that it
contains the previous partition forest:

< b
grflrg Wl

In this forest, all natural joins involving any
two relations from the original schema are suppor-
ted, but not all semantic queries. For example,
empwqualt>ajob is not supported.

Partitionina and distributing the denonnal-
ized (hence replicated) database can now proceed
as before using the procedure given in Section 5.
In practice, it is probably desirable to distri-
bute semijoins rather than joins. For example,
once we have partitioned empmjob into disjoint
fragments (empWjob)i, we can project
(empwjob)i on thedomains of emp and job respec-
tively to get fragments of emp and job, which can
then be grouped with the fragments obtained fron
partitioning emp and job directly. In this way,
only fragments of the original relations need be
sotred locally.

L&normalization certainly increases paral-
lelism.for retrievals, but at the price of making

cate?
Consider any subgraph G of the schema graph,

including the schema graph itself. A node x on G
is said to be nonconflicting (G) if:

(a) no arc emanates from x. or

(b) exactly one arc emanates from x and is
directed to a non-conflicting node.

In all other cases, x is said to be conflictfn
----l-f For example, in the schema graph of ExamD-e 5..

(also shown in Example 'I..?)-deDt and job.are
non-conflicting nodes, and the other three are
conflicting. In Example 7.1, emp is the only
conflicting node.

A Drocedure for constructing a materializa-
tion with all-ornone reDlication is simo1.v the
following. Replicate the conflicting node's and.
partition the noniconflictfng-ones. The reason
why this works is that the subgraph of G that con-
tains only the non-conflicting nodes is always a
partition-forest. ,

A materialization with many fully replica&d
relations is of dubious value. One achieves
parallelism in such a situation, but the parallel
efforts are duplicative. ForSexampler fully
replicating every relation enjoys io:aduantioe
in oarallelism over Dlacinothe entire database.'
at a single site. ,(It may-enjoy an advantage in
communication.) We shall consider an approach,
"multiole oartftions." that combines features from

deDt

28

both denorinalization-and all-or-none.
The idea underlying "multiple partitions" is

to replicate the conflicting nodes. in a graph
while keeping the number of arcsthe same, so as
to eventually produce a partition forest. We
shall illustrate the idea with an example,,but
omit any proof for the general case.

Example 7.3 '

Consider the schema graph in Example 7.2:

Duplicate the conflicting node emp, and let each
arc connected to emp be connected to one or the
other, but not both, of the replicas.

job

A mgr ‘. em0 2 aqua1 emp 1 ,

Now, only mgr and qua1 are conflicting, and we can
replicate each to get a partition forest:

dept job

mgr l+emp I emp 2equal ?

d mgr 2 qua1 1
A

Any partition of dept and job induces a perfect
partition of each copy of emp, mgr, and qual. At
each site, the fragments from different copies of
the sane relation can be merged if desired.
However, for each tuple at each site we need to
know which copies contain it. Compared to all-or-
none replication, replication by multipli-parti-
tions incurs less redundancy but.greater complex-
ity on updates.

8. Conclusion

To attain a high degree of parallelism in a
distributed database. one has to distribute the
data in a way as to minimize the need for'moving
data between sites. In this paper we advance the
thesis that doing so requires semantic information
concerning the data.

To make precise the notion of parallelism
without comniting to a quantitative-cost function,
we introduce the notion of "local sufficiencv"
for distributed databases. Given a database-
schema with a limited amount of semantic informa-
tion, we demonstrated a procedure to find those
classes of queries for which local sufficiency
without replication can be achieved. For classes
of queries that require replication to achieve
local sufficiency, three approaches to replica-
tion are proposed. Each enjoys a different blend
of cost and benefit.

ACKNOWLEDGEMENT

Research sponsored by the Air Force Office of
Scientific Research grant, AFOSR-79-3596, the
National Science Foundation grant ECS-8007684, and
the Office of Naval Research contract N00014-80-C-
0507.

REFERENCES

CAPER801 Apers, P.M.G., "Redundant Allccation of
Relations in a Communications Network,"
Proc. Fifth Berkeley Workshop on Distri-
buted Data Management and Computer Net-
works (Feb. 1981).

[CHEN76] Chen, P.P., "The Entity-Relationship
Model-Toward a Unified View of Data,"
ACM Trans. Database Systems, Vl, Nl
[Mar. 1976!.

[CHU73] Chu,-W.W.,'" Optimal. Allocation of Files
in Computer Networks," in Computer
Communications Networks, Prentice-Hall,
Englewood Cliff NJ

[MAHo tlahoud, S., J.S?'Rio;d~~73'0ptimal Allo-
cation of Resources in D;stributed
Information Networks," ACM Trans. on
Database Systems, Vl, Nl Mar. 1976).

[WON6791 Hong, E., Katz, R.H., "Lo!$cal Design
and Schema Conversion for Relational and
DBTG Databases," Proc. Intl. Conference
on Entity-Relationship Approach to
Systems Analysis and Design (Dec. 1979).

29

[WON6811 Wong, E., "Dynamic Re-Materialization:
Processing Distributed Queries Using
Redundant Data," Proc. Fifth Berkeley
Workshop on Distributed Data Management
and Computer Networks (Feb. 1981).

*.

.I ‘.

