
External Perfect Hashing

Per-Ake Larson and A4 V Ramakrlshna

Data Structurmg Group
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

A hashing functton 1s perfect if tt does not
create any overflow records The use of perfect
hashing functions has previously been studied only
for small static sets stored m mam memory In
this paper we describe a perfect hashing scheme
for large external files which we are currently
mvestigatmg The scheme guarantees retrieval of
any record m a single disk access This 1s
achieved at the cost of a small m-core table and
increased cost of insertions We also suggest a
pohcy for limrtmg the cost of msertrons and we
study the tradeoff between expected storage utth-
zatron, size of the internal table and cost of mser-
trons under this pohcy The results obtained so far
are very promrsmg They indicate that it may
indeed by posstble to destgn practical perfect
hashing schemes for external files based on the
suggested approach

Electronic mad
uucp {decvax,allegra,lhnp4]

~watmath~watdalsy~(palarson,mvramalmshn)
csnet {palarson,mvramakruhn)% watdauy@ Waterloo csnet

Permtsston to copy wtthout fee all or part of this matenal IS granted
prowled that the coplea are not made or dlstrlbuted for dwect
commercial advantage, the ACM copyright nouce and the tnle of the
pubhcatlon and its date appear, and nottcc IS gwen that copymg IS by
permlsslon of the Assoclatlon for Computing Machmery To copy
otherwse, or to repubhsh, reqmres a fee and/or specific permIssIon

1. Introduction
Hashing 1s a popular technique for orgamz-

mg internal tables as well as external files It 1s
simple and retrieval 1s very fast on average How-
ever, the worst case may still be extremely poor,
that is, the retrieval cost for any given record may
still be high This may not be acceptable for cer-
tam real-time apphcattons where there are strict
bounds on the time available for retneval of a
record

The variation m retrieval speed 1s caused by
overflow records If there were no overflow
records the problem would disappear A perfect
hashing function 1s a hashing function that does
not create overflow records, The problem of fmd-
mg a perfect hashing function for a given set of
keys has previously been studred only for small
static sets, stored m internal memory We are
currently mvesttgatmg whether, and how, this idea
can be successfully extended to large dynamic
external files The approach taken and prehm-
mary performance results are summarized m this
paper

The goal 1s to develop a simple, practical
file structure that guarantees retrieval of any
record m one access The proposed method
requires an m-core directory to achieve this The
results mdrcate that the directory can be kept
quite small and that an overall load factor of 75%
or higher can be maintained A method with the
same goal, but based on a different approach was
proposed by Gonnet and Larson [GNT, LRSN]

@ 1985 ACM 0-89791-160-l/85/005/0190 $00 75

190

2. Background

Consider a hash table (or hash file) consrst-
mg of m buckets (pages), each with a capacity of
b records A set S of n records, n I mb, are to
be stored m the table A hashing function h,
operating on the key of the record, assigns each
record an address m the range 1,2 , , m The
hashing function h 1s said to be perfect if no
address receives more than b records It 1s a
mmlmal perfect hashing function rf the table is of
mmrmal size, that IS, m = L 1 n/b

Given a class of hashing functions, a hash
table T and a set S of keys, the problem 1s to fmd
a member of the class which is perfect for the set
S and the table T For practical reasons the
hashing functions considered are normally fairly
simple functions with a few unknown parameters
The problem of fmdmg a perfect hashing function
then bolls down to determmmg the values of the
parameters This can be done m a systematic way
or on a trial-and-error basis

The problem of fmdmg a perfect hashing
function for a given set S was first studied sys-
tematically by Sprugnoh [SPRG] He considered
only internal hash tables and the followmg two
classes of functions

h,(x) = +
I I

Mx) =
(xq + d) mod it4

N

where s, N and q, d, M, N are the unknown
parameters and x denotes a key He gave a sys-
tematic procedure for fmdmg the parameters
The procedure is complicated and Its time com-
plexity 1s O(n3), with a large constant It 1s
guaranteed to fmd a perfect hashmg functton, tf
one exists wrthm the given class, but the resulting
load factor may be low The cost of fmdmg a per-
fect hashing function using his method grows very
rapidly with the srze of the set To handle large
sets, Sprugnoh suggested segmentation An ordl-
nary hashing function 1s first used to divide the
given set mto a number of small subsets The
problem of fmdmg a perfect hashing function is
then solved separately for each subset The srze
and locatron of the hash tables for each subset,
together with the parameters of each perfect hash-
mg function, are stored m a separate table, whrch
1s addressed by the segmentation hashing function

Jaeschke [JSCH] designed a simpler, sys-
tematic method for fmdmg mmrmal perfect hash-
mg functions His method 1s called reciprocal
hashing and utthzes a function of the form

mod m

Even though its time complexrty 1s exponential, rt
is slightly faster than Sprugnoli’s method for small
sets Another systematic method, was proposed by
Chang [CHNG] It has the advantage of grvmg
order-preservmg hashing functions However, tt
does not appear practical because the calculatrons
involve very large numbers

Several researchers have studied trtal-and-
error methods Crchelh [CCHL] considered
alphanumenc keys and hash functtons of the form

h(x) = length (x) + g (first character of x)

+ g (last character of x)

where g 1s defined by a table mapping characters
mto integers The mapping 1s chosen by guided
trial-and-error search so as to give a perfect hash-
mg function This Idea has been extended to
include other characters of the key by Cercone,
Krause and Boates [CRCN] In practice, the
method appears to perform well, even for sets of a
few hundred keys

Fredman, Komlos and Szemeredr [FRDM]
described a method, again based on trial-and-error,
which has constant retrieval time and uses
n + o(n) storage Then data structure tmple-
ments Sprugnoh’s segmentation idea The class of
hashing functions constdered IS defined by

h(x) = (kx modp) mod s

where s 1s the size of the hash table (for the sub-
set m question), p 1s a pnme number greater than
any of the keys and k 1s a parameter, k < p For
a given set of keys the complete data structure
and the hashing functtons can be constructed m
O(n) random expected time

191

{Key set)

I H(x) {ordinary hashing 1

pm3
Header table

(in core)
l m t s-l S I L

/

uu

I h(x,R) {perfect hashing 1
\

A ~lmpagelll ii-
P -

< group t s

Figure 1: Illustration of external perfect hashing

I Secondary

memory

Based on the ideas of Fredman et al, Cor-
mack, Horspool and Kalserswerth [CRMC]
designed a more practical scheme, which 1s not
limited to static sets Insertion of a new element
may involve fmdmg a new perfect hashing func-
tion for the subset mto which the new record 1s
inserted The study reported m this paper was
largely motivated by their results

3. Perfect hasking for external fdes

The results m [FRDM], [CRMC] and
[CRCN] indicate that, m practice, it 1s not dlffl-
cult to fmd perfect hashing functions for small
sets using a trial-and-error approach For external
files records are normally stored on fairly large
pages There are good reasons to believe that this
should make it easier to find a perfect hashing
function These observations led us to consider
possible extensions of perfect hashing to large
external files Segmentation 1s obviously necessary
and for fmdmg perfect hashing functions the tnal-
and-error approach appears more promlsmg than
the systematic methods known so far The two
level data structure suggested by Cormack et al
[CRMC] can immediately be extended to external
files, as illustrated m Figure 1

A header table of length s 1s stored m mam
memory An ordmary hash function H maps keys
mto the header table Let key group t denote the
set of keys hashing to address t , 1 5 t I s, of
the header table Each entry m the table 1s of the
form (p, m , R) where p is a pomter to a group of

m contiguous pages on secondary storage and R IS
the set of parameters defmmg the perfect hashing
function used for that key group Let (Pr , mt, R,)
be the header table entry for key group t Let
page group t denote the pages on which the
records of key group t are stored, that is, pages
Pt, Pt + 1 J Pt + mt
record m key ’ group t

- 1 The address of a
1s then given by

pr •t h (x, R,), where h (x, R,) IS the perfect
hashing function having the parameter values R,

Retrieval 1s extremely simple Given the
search key x, compute t = H(x) and extract
(pt, mt, R,) from the header table The page
address 1s then given by pt + h(x, R,) Read m
that page and search the page for the desired
record

To insert a record, first compute the page
address as above and read m the page If the
page IS not full, insert the record If the page 1s
full, a new perfect hashing function must be
found, possibly increasing the number of pages m
the group Rehash all the records using the new
perfect hashing function and update the header
table entry

Deletion of a record does not, as such,
necessitate construction of a new hashing function
However, we may want to prevent the load factor
of the group from decreasing below a certain level
If so, we construct a new perfect hashing function
for the group (probably having fewer pages),
rehash the records of the group and update the
header table entry

192

The above description outlmes a possible
scheme but its usefulness depends on several fac-
tors How’ dlfflcult 1s it to fmd a perfect hashmg
function when using large pages? What load fac-
tor 1s achievable? Can we fmd a practical class of
hashing functions from which to choose a perfect
hashing functlonv These and other questions are
addressed m the subsequent sectlons

4. Randomly chosen functions

There are a total of m” different mappings,
or functions, of n keys mto m addresses If we
randomly choose one of the m” functions, what IS
the probablhty that it ~111 be perfect? That is,
what 1s the probability that none of the addresses
~111 receive more than b records’ Let P(n, m, 6)
denote this probability Let F(n, m, b) denote
the number of ways m which n keys can be dlstn-
buted among m pages, of size b records each,
without any one of the pages overflowmg Clearly
we have P(n, m, b) = F(n, m, b) / m” For
the case b = 1, F(n, m, 1) 1s extremely simple
F(n, m, 1) = ml / (m - n)’ However, for
b > 1 the function 1s much more complex [DVS]

F(n,m, b) = E nl/ fi f,!
Osf,zsb r-l

where the summation 1s over all possible combma-

tlons of f, such that E f, = n. Davis and Bar-
I=1

ton point out that there 1s no closed form expres-
sion for F(n, m, b) simpler than the one above
[DVS] F(n, m, b) can also be computed as the
coefficient of x” / n’ m the

(1 + ++ $+
%

eneratmg function

+ $1” For computa-

tional purposes both formulas are essehtlally use-
less They are computatlonally slow and involve
very large numbers However, we were able to
denve a recurrence relation that gives a fast and
easy way of computing P(n, m, b)

Consider a situation where n keys have been
distributed among m pages wlthout overflow The
next record, the (n + l)st, 1s now randomly
hashed to a page Let p. denote the condltlonal
probability that it will not cause overflow This
probability can be expressed as

po = P(n + 1, m, b)
Ph m, b)

The (n + 1)st record will cause overflow If and
only if it hits a page that already contams b keys
The probablhty of this event 1s precisely 1 - po

It can be expressed as

1 _ po = (tz) P(n - b, m - 1, 6) (m - lYeb
P(n, m, b)m”

By combmmg these two equations and rearrang-
mg, we obtain the followmg recurrence relation

P(n i- 1, m, b) = P(n, m, 6)

- (i) P(n - b, m - 1, b) (m - l)n-b / m”

Using this recurrence relation, we can easily com-
pute a table of P(n, m , b) for various values of m
and n (n varies up to mb) The computation can
be organized so that computmg each new value m
the table requires only five floatmg point opera-
tions The numbers involved are well scaled and
round-off errors do not cause problems In Figure
2 the probability of a randomly chosen function
being perfect 1s plotted for the case b = 20 and
several values of m These results were computed
usmg the above recurrence relation

10

~08

io7

b06

;05

f 04

103
t
YO2

01

00

40 50 60 70 80 90 100
Load factor(%)

Figure 2: Probability of a randomly
chosen function being perfect
b = 20, m = 2,4,6,8,10,15. .40

The graph mdlcates that the probablhty of
fmdmg a perfect hashmg function drops very
rapidly from almost 1 to almost 0 within a narrow
load factor range This critical range moves
slowly towards zero as the value of m mcreases
The above results are quite encouraging For
example, d we want to hash 150 records mto 10
pages of size 20 records (load factor 75%) we can
expect to fmd a perfect hashing function m 2 tn-
als If we are willing to make 15 tnals on aver-
age, we can hash 240 records mto 15 pages,

correspondmg to a load factor of 80%

5. Limiting the cost of finding a perfect hashing
function

There 1s a tradeoff between the load factor
and the cost of fmdmg a perfect hashmg functron
the higher the load on a group of pages, the
higher the cost of fmdmg a perfect hashing func-
tion will be. Furthermore, the larger the number
of records (and pages), the higher will the cost be,
even when the load factor is kept constant

As records are inserted and the number of
records per group increases, we need some pohcy
for how to increase the number of pages per
group A straightforward solutron 1s to keep the
load factor constant (or wrthm a narrow range)
However, this approach has some disadvantages
The cost of fmdmg a perfect hashing functron will
steadily increase The cost of inserting a record
will also increase because the hashing function
must be recomputed more frequently The varia-
tion m the number of trials needed to fmd a per-
fect hashing function 1s also very high

The above disadvantages led us to consider
a pohcy that attempts to balance the cost of fmd-
mg a perfect hashing function and the load factor
The idea 1s to place a bound on the number of trr-
als and then distribute these trials over an accept-
able load factor range so as to maxlmrze the
expected load factor Given n, we restrict the
number of pages m a group to an interval
rnosrn Iml

1 1

The lower bound 1s simply
mo= n/b The upper bound 1s chosen so
that n / mlb X 0 5 The probabrhty of a trial
succeeding 1s very high when the load, factor 1s as
low as 0 5 Let r = ml - m. + 1 and let t be
the maximum number of tnals we are wrllmg to
make to fmd a perfect hashing function Partition
t into 01, t2 P t,) such that
t1 + t2 + i- t, = t ’ Any such partrtromng
defines a pohcy for fmdmg a perfect hashmg func-
tion try up to t t randomly chosen hashmg func-
tions with m. pages, rf there is no success, try up
to t2 functrons with m0 + 1 pages, etc Every
such pohcy has an associated expected load factor
and an overall probabrhty of success P, that is,
probabrhty of having found a perfect hashing
function after at most t trials We specify a lower
bound on the probabrhty of overall success, say
P L 0 99 or P L 0 98 Grven these restrictions,
we want to fmd the pohcy (tl, t2 , t,) that
gives the highest expected load factor There is a
small probability, (1 - P), of not succeedmg in t

trials If so, we contmue trymg with m = ml,
until a perfect hashing functron 1s eventually
found Hence, the actual number of trials may
occasronally exceed t by a small amount

Mathematically the above approach leads to
a nonlinear (integer) optlmrzatron problem with
linear constramts, see the Appendix Solvmg this
problem exactly 1s too trme consummg, but a very
close approxrmatron may be obtained by dynamic
programming The example below illustrates the
drscussron For this particular case the optimal
pobcy 1s at most 4 tnals with 11 pages, 4 with 12
pages, 1 with 13 pages and 1 with 15 pages If we
have not succeeded m 10 trials, we continue trying
with 17 pages until a perfect hashing functron 1s
found The probabrhty of this event 1s only
0 0073 The expected load factor resulting from
this pohcy 1s 75 53%

Parameters
n = 180, b = 20, t = 10, P = 0 99
Bounds m. = 180/20 = 9, ml = 17

Pages P(n,m ,b) Optimal Pr of final
(ml Policy group size

being m
9 000 0 000

Expected number of pages 1192
Expected load factor 75 53%

194

L n keys

insert

cl n+l keys

Figure 3: State transitions when inserting a record

Q,(n) 1s the probability that the group consists of (m + I - 1) pages when there are n records

p,, 1s the probablhty that the current perfect hashmg function remains perfect for (n -t 1) keys

6. Load factor under the optimal policy

Consider a file being built incrementally by
msertlon, followmg the optimal pohcy outlined m
the previous section whenever a rehash 1s neces-
sary What 1s the expected load factor? Before
being able to answer this question we must first
compute the expected load of a group built mcre-
mentally

Consider an arbitrary but fixed group
When the number of records 1s less than or equal
to b, the group needs only one page When the
(b + 1)st record arnves, a rehash 1s necessary
The group size will grow to two or three pages,
depending on the total number of trials allowed
and the actual number of trials required In gen-
eral, when msertmg the (n + 1)st record one of
two events will occur the record fits mto its
assigned page or the asslgned page overflows In
the latter case, a new perfect hashing function
must be found and all the n + 1 records must be
rehashed The optimal pohcy for fmdmg a hash-
mg function IS computed and followed m the
search The state transltlons that the (n + 1)st
record may cause are illustrated m Figure 3

Given the probablhtles Q,(n) and the proba-
blhtles P(n, m, b), the probablhtles Q,(n + 1) can
be computed, see the Appendix This mvolves
fmdmg the optimal pohcy by solvmg the optlmlza-
tlon problem discussed m the previous section
Once these probablhtles have been found, we can
compute the expected load factor This 1s lllus-
trated m the followmg table for the case
n = 179, b = 20, t = 10, P = 099

195

121 10 1 047 1 750 1 0 I 035 I
3 11 573 886 4 540

4 12 264 943 4 298

151 13 1 057 1 970 1 1 1 062 1

6 14 028 984 0 028

7 15 022 991 1 026

I81 l6 1 008 1 995 1 0 I 008 I
9 17 002 997 0 003

Expected load factor (n = 180) 77 39%
Probablhty of rehashing 0 094

Figure 4 shows the expected load factor of a
group as a function of the number of records m
the group The page size IS 50 and t = 5, 10, 20

1
f 80
a
C

t
Q 70
r

I I

0 200 400 600 800 1000 1200
No of records

Figure 4: Expected load factor of an
incrementally built group with b = 50
and t = 5,10,20

The osclllatlons m the beginning are
expected When there are exactly b records, one
page IS needed and the load factor IS 100% On
the other hand, when there are b + 1 records, at
least two pages are required and the load factor
drops to around 50% The osclllatlons gradually
die out as the number of records increases As the
number of records grows the expected load factor
decreases, but very slowly This IS basically a
result of hmltmg the number of trials allowed for
finding a perfect hashing function and the fact

that it becomes more and more difficult to fmd
one

The dlstnbutlon of the number of records m
a group can be closely approximated by a Poisson
dlstrlbutlon By combmmg this with the above
results we can compute the expected load factor of
a file built incrementally under the optimal pohcy,
see the Appendix Figure 5 plots the expected
load factor as a function of the expected number
of records per group for a few different page sizes
The lrmlt on the number of trials IS t = 20 m all
cases The page size slgmflcantly affects the load
factor To achieve an expected load factor of 70%
or higher, the page size should be 20 or higher

- 9o 1 I
L

r 60 1 , I , I , I , I -

0 200 400 600 800 1000
No of keys per group

Figure 5: Expected load factor of a file
when using the optimal strategy t = 20
and b = 10,20,30,40,50 (plot symbols
1,2,3,W

The cost of an insertion IS largely deter-
mined by the frequency of rehashing The proba-
bility of an insertion causing a rehash of a page
group IS plotted m Figure 6 The page srze IS 50
The upper curve corresponds to t = 20, the lower
onetot = 10

196

‘06,
r I

-I I

r03
e 1 II

0 200 400 600 800 1000 1200
No of records

Figure 6: Prob of rehashmg a group with
b = 50 and t = lo,20

table for different page sizes The number of
records m the file 1s lo6 A page size of 10
records yields a very low load factor even for a
large header table For a given page size, the
improvements m the load factor become mslgmfl-
cant when the header table size 1s increased
beyond a certain range Consider the case when
b = 50 A header table of 2,000 entries gives a
load factor of almost 85% Doublmg the table
size to 4,000 entries increases the load factor to
86% only The size of an entry m the header table
depends on the number of parameters of the hash-
mg functions used In the next section a class of
functions with two parameters 1s studled and
found to perform well Usmg this class of funo
tlons, 12 bytes per entry 1s sufficient (pointer 3,
size 1, parameters 2X4) A header table of
1,000 entries, (yielding a load factor of 81%), then
corresponds to 12,000 bytes Further work on the
structure of the header table 1s m progress, and we
are confident that the amount of storage needed
can be slgmflcantly reduced

As far as the achievable load factor and the
frequency of rehashing are concerned, the above
results strongly suggest that perfect hashing could
be of practical use for external files For a file
with b = 50 and t = 20 we can achieve an
expected load factor of 82% by havmg groups of
1,000 records (approximately 25 pages) on aver-
age The probability of an insertion causing a
rehash 1s then as low as 0 04, that is, on the aver-
age every 25 msertlons will cause a rehash

It 1s clearly lmpractlcal to have to solve a
dynamic programming problem to fmd the optimal
pohcy every time a rehash 1s required Some less
expensive way of determining a pohcy 1s desirable
We have made same prehmmary tests of a fairly
simple heuristic Its performance, m terms of
expected load factor, 1s quite close to that of the
optimal pohcy Further study of simple heunstlcs
1s needed and we will not go mto details here

7. Internal storage requirements

To achieve one-access retneval the header
table must be small enough to be stored m mter-
nal memory The page size has a slgmflcant
effect on the size of the header table The larger
the page size is, the fewer groups and entries m
the header table are needed Furthermore, each
group can consist of more pages and/or a higher
load factor can be achieved Figure 7 plots the
expected load factor (under the optimal pohcy) as
a function of the number of entries m the header

L

i,.r

f
a
c TO-
t
0

r 60 I I I I I I I I I

,

0 1 2345678
Header table nze(x1000)

9 10

Figure 7: Expected load factor of a file of
lo6 records as a function of header table
size t = 20, b = 10,20,30,40,50 (plot
symbols 1,2,3,4,5)

8. A practical class of hashing functions

The analytical results m the previous sec-
tions were based on the assumption that the hash-
mg functions are chosen from the set of all func-
tions from n keys to m addresses This 1s obvl-
ously lmpractlcal, n log m bits would be needed
to be able to represent any one of the m” func-
tions A practical hashing function must be slm-
ple to evaluate (constant time, no extremely large
numbers involved) and require only a small, fixed
amount of storage

197

To gam some experience of the difficulty of
fmdmg perfect hashing functions we performed a
series of experiments using two real life test files
The hashing functions used m the experiments
were of the form

h(x, c, d) = ((cx + d) modp) mod m

where c and d are (integer) parameters defmmg
the function, p, 1s a fixed prime greater than the
highest key and m 1s the number of pages The
parameters c and d must both be less than p
This class of hashing function was shown to be
umversalz by Carter and Wegman [CRTR]

Test data for the experiments were obtained
from two files Test file A contained 6,100 words
randomly drawn from a 24,000 word drctronary
used for spelling checkmg Test file B consisted
of approximately 12,000 userids (max 8 charac-
ters) from a large time-sharing mstallatron For
srmphcrty, all parameters and keys were restricted
to 15 bit unsigned integers The keys were con-
verted from strings of ascn characters to 15 bit
integers by concatenatmg the 5 least stgmfrcant
bits of three successive characters and takmg the
exclusive OR of the resulting bit strings (of length
15)

A set of 400 hashing functions was created
as follows The maximum key value 1s 32,767, so
p was chosen to be 32,801 (a prime) A hashing
function is then completely defined by specrfymg
the parameters c and d A set of 400 (c, d) pans
was randomly generated The standard random
number generator RANDOM () supplied with
UNIX was used (seed = 314159) The 15 least
srgmfrcant bits of each random number were
extracted and used as the value for a parameter

The keys m each test file were divided mto
11 groups by the hashing function
h(x) = ((29422x + 25858) mod 32801) mod 11

Each experiment was carried out as follows
The page size b, the number of pages m, the load
factor a and the key group were specified The
number of records was then computed as
n = amb and the first n keys from the key group
read m The n keys were hashed by each one of
the 400 hashing functions and the number of per-
fect hashing functions was recorded The same
was repeated for various values of a, b and m
Figure 8 plots the observed relative frequency of
perfect functions against the load factor for dlf-
ferent values of m The page size 1s 20 and the
test data 1s from key group 5 of file B The solid
lines represent the experimental results and the

dotted lmes represent the correspondmg theorett-
cal results Similar results were obtained for other
groups of file B, and also for file A

10

09

~08

b06

to5

00
40 50 60 70 80 90 100

load Factor(%)
Figure 8: Observed and computed proba-
bility of a randomly chosen function being
perfect b = 20, m = 5,15,40
Keys are from group 5 of test file B

The experimental results are close to, or
better, than the theoretical results The class of
hashing functions considered here 1s extremely
simple and rt appears to perform as well as the set
of all functions, perhaps even better There are
probably many other classes of hashing functions
with a similar behavlour We fmd these first
results very encouraging, fmdmg simple classes of
hashing functions that perform well m practice
does not appear overly difficult Needless to say,
further experiments and analysis are needed to
substantiate this claim

9. Conclusion

A perfect hashing scheme for large external
files has been proposed and analysed The scheme
IS based on the idea of segmentation an ordmary
hashing function is used to divide the records mto
small groups and a perfect hashing function 1s
defined for each group separately The size, loca-
tion and the parameters of the hashing function of
each group are kept m an internally stored table

We proposed fmdmg perfect hashing func-
tions by repeated random selection from a suitable
class of functions The probabrhty that a function
randomly selected from the set of all functions 1s
perfect was derived A method for handling the

198

trade-off between the amount of external storage
used and the cost of fmdmg a perfect hashing
function was also suggested The resulting
expected load factor and rehashing frequency were
analysed Finally, we performed a number of
experiments with real data and a simple class of
hashing functions to fmd out whether the
predicted results can be achieved m practice

In summary, we fmd the results obtained so
far very encouraging It appears possible to
design practical perfect hashmg schemes for exter-
nal files based on the suggested approach How-
ever, further work 1s clearly needed to gam a
better understanding of the posslblhtles and hmlta-
tlons of the method

Acknowledgement

We want to thank G V Cormack for many fruitful
dlscusslons This work was supported by the
Natural Sciences and Engineering Research Coun-
cil of Canada under grant A2460 and a Com-
monwealth Scholarship

References

[CCHL]
Clchelh, R J iUrmma1 perfect hash func-
tzons made simple CACM, 23, l(1980),
17-19

[CHNG]
Chang, C C The study of an ordered
mmlmal perfect hashmg scheme CACM
27, 4(1984), 384-387

[CRCN]
Cercone, N , Krause, M and Boates, J
Mmlmal and almost mmlmal perfect hash
function search with appllcatron to natural
language lexicon design Comp k Maths
with Appl 9, 1(1983), 215-231

[CRMC]
Cormack, G V , Horspool, RN S and
Kalserswerth, M Practtcal perfect hashing
The Computer Journal, 28, l(1985)

[CRTR]
Carter, L J and Wegman, M L Universal
classes of hash functions Ninth ACM
Symposmm on Theory of Computmg,
(1977), 106-l 12

[DVS]Davs, F N and Barton, D E Combma-
torzal Chance London Griffin, 1962

[FRDM]
Fredman, M L , Komlos, J and Szemeredl,
E Storing a sparse table with O(1) worst
case access time Proc of 23rd Symposmm
on Foundations of Computer Science, IEEE
Computer Society (1982), 165-168

[GNTI G
Gonnet, G H and Larson, P -A External

hashing with limited rnternal storage
Proc ACM Symposmm on Prmclples of
Database Syst , (Los Angeles, 1982), ACM,
N Y ,256-261

[JSCH]
Jaeschke, G Recrprocal hashing A
method for generating mmlmal perfect
hashing functions CACM, 24, 12(1981),
829-833

[LRSN]
Larson, P-A and KaJla, A File orgamza-

tlon - lmplementatlon of a method guaran-
teeing retrieval In one access CACM, 27,7
(1984), 670-677

[SPRG]
Sprugnoh, R J Perfect hashing functions
A single probe retnevmg method for static
sets CACM, 20, 11(1977), 841-850

199

Appendix

This appendix summarizes the formulas
used for the computations discussed m sections 5-
8

Let qr denote the probablhty that a ran-
domly chosen hashing function IS not perfect when
there are n keys and m. + I- 1 pages We have

r
RH(n + 1) = 1 - z t&(n) Pkk

k=l

Let 5 be the expected number of records per
group (h. = total number of records m the
file/number of groups) Then the expected
number of pages per group, and the overall load
factor, can be computed as

q1 = 1 - P(n, m. + l-1, b)

where P(n, m. + I - 1, b) can be computed using
the recurrence derived li section 4 - Let E(nj
denote the expected number of pages resulting
from a partltlomng pohcy when there are n
records The optlmlzatlon problem then becomes

Mmlmlze E(n),

EP@) = 2 + Wn) ,
n-l

E(n) = mo(l-q:‘)+(mo+l)q:‘(l-q?)+

+ rn1q:lq2 q:‘Ii(1-qq:‘)+mlq:‘q:2 4:’

such that

t1 + t2 + +t,=t

t1h3q1 + t2lw2 +

+ t,logq, 1 - log(1 - P)

Given a pohcy (tl, t2, , t,) the probability that a
group will consist of mo + I - 1 pages when there
are n -I- 1 pages, Q,(n -I- l), can be computed as

Qh + 1) = PtrQdn) +

&(n +1X1 - k& Qk(n)Pkk), 1 = 192, , r--l

r-l

and Q,(n •F 1) = 1 - x Qk(n)
k-l

R,(n+l) = q:‘q2 4:‘w - 4:‘) ,
P(n + 1, mo + k - 1, b)

Pkk = P(n , mo + k - 1, b)

Once the probablhtles Q,(n + 1) have been
computed we can compute the expected number
of pages m a group, and the load factor, as follows

GP(n + 1) = z Qi(n + l)(mo + r-l),
i-1

GLF(n i- 1) = (n + 1)
b GP(n + 1)

The probability of rehashing while inserting the
(n + 1)st record mto a group is given as

200

