Constructing Queries from Tokens

Amihai Motro

Department of Computer Science
University of Southern Califorma
Los Angeles, CA 90089

Abstract

A database token 1s a value of either the data
or the metadata Usually, such tokens are
combined with formal language constructs to
form queries In this paper we show how a given
set of tokens may be completed to a proper
query This process provides a useful means of
communication between naive users and
databases, allowing them to express simple
requests by histing several tokens As the
inferred query 1s always shown to the user, this
process has a side effect of mstructing the user 1n
the proper use of the query language The
method 15 described and demonstrated with
relational databases, but its principles may be
implemented with other databases as well

1. Introduction

Most query languages require their users to
have specific retrieval goals, and then express
them in a formal way This also implies that
users must be familiar with the organization of
each database that they access (which, n turn,
requires adequate understanding of the data
model used by the system)

Often, wusers may lack some of these
prerequisites For example, a user may be aware
that a database 1s available on students, courses

Permussion to copy without fee all or part of this matenal 1s granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by

permussion of the Association for Computing Machinery To copy

otherwise, or to republish, requires a fee and/or specific permission

© 1986 ACM 0-89791-191-1/86/0500/0120 $00 75

and enrollments, and would hke to find out the
Grade Pont Average (GPA) of a student called
Smith However, due to insufficient experience
with either the query language or the data model
or this database, this user may be unable to
utter more than "SMITH GPA®, where he should
be entering something like

retrieve GPA of STUDENT where
NAME=SMITH

or

Q(y) = STUDENT(z) A NAME(z,SMITH) A
GPA(z,y)

The problem with SMITH GPA 15, of course,
that 1t 1s not a proper query But, then, this
may be regarded as a limtation of the query
mterface used We could imagine an nterface
that "understands® such utterances by
interpreting them 1n a unique way, 1e¢ complete
them to proper queries If answers to such
fragmented queries are always accompanied by
the inferred queries, then users get a chance to
reject interpretations which are mncorrect (if the
user 15 not sure whether an interpretation 1s
correct, he may have to try the query and
examine the data 1t retrieves) Displaymng the
mterpretations also has instructional benefits, as
it shows the user how the request should have
been phrased

Consider the situation of a person who goes
mnto a shop m a foreign country As he does not
know the language, he utters whatever words he
knows, 1n an attempt to describe what he needs
The shopkeeper, eager to help, tries to mterpret
this request and fetches something (perhaps more
than one thing) If 1t doesn’t match his
intentions, the customer will try to modify his
request, perhaps by adding another word (if he

observes that 1t 1s needed to disambiguate his
previous request), or by eliminating a previous
word (f he can identify that 1t led to the
erroneous mterpretatlon) The process may
continue, until finally the mterpretation 1s close
enough to the intentions of the customer Of
course, there 1s always the possibihty that the
customer walks away frustrated (or worse, that
in the end he buys the wrong thing'), but often,
the process will be carried out successfully (and
the customer even picks up a new phrase n this
language)

Almost every aspect of this situation has its
direct analogy in database access (including the
advantage of shopkeepers that speak one’s
language) Indeed, the interpretation of query
utterances may be regarded as a case of
understanding unparsable input, an active area
of natural language research (for example,
see [3, 5, 11]) Our approach here 1s to create a
useful interface which 1s both cooperative and
mstructional (objectives often associated with
*ntelhgence”), while using only the database at
hand

We define database tokens to be the basic
utterances, and then develop methods by which
a set of tokens may be completed by the system
to a proper query, which 1s then displayed to the
user for his approval (as well as enlightment)
The proper query 1s then submitted to the
standard query processor Our token inlerpreter
can therefore be regarded as an interface for
naive users that should be used in tandem with a
standard interface (Figure 1-1)

Naive Sophisticated
Users Ugers

Y
Token Standard Query
Interpreter Language Processor

v

Database

Figure 1-1: The Token Interpreter

121

Our work here 15 done n the context of the
relational database model The primary reason
for this 18 the widespread use of relational
databases The principles could also be
implemented with other data models, such as the
network, the hierarchical or the functional data
models

recalls several efforts on the
automatic connection of database
relations [1, 8] Another related effort 1s
System/U [4], the relational DBMS which 1s
based on the umiversal relation assumption The
mamn advantage of System/U is that it reheves
the user from the responsibiity of navigating
within the relations, relying nstead on the pre-
defimtion of schematic constructs called maximal
objects Also related 1s work based on the
umversal relation schema assumption [6], which
guarantees that a set of attributes umiquely
determines a semantic connection between them

Our work

Similarly, we too are concerned with automatic
inference of the connections required to answer a
query Here, however, the emphasis 1s on an
mterface which 15 extremely simple In
particular, 1t 1s free of any data model details
the user who supphes the tokens need not know
about concepts such as relations, schemas or
attributes He need not even distinguish between
data values and metadata values (re relation
names, attribute names, domamn names) He
only needs to supply a hst of words We see the
uniform treatment of data and metadata as an
important convenience virtually all database
interfaces perpetuate the dichotomy between
data and metadata, when this distinction may be
of concern to database designers, but 1s not
always clear to database users In addition, we
do not subscribe to any assumptions on the
structure of the database, and our methods are
intended to be used with any relationa] DBMS
At times our methods require nteraction with
the user, such as to disambiguate a token, or to
select between alternative interpretations
(System/U would retrieve the union of the
alternatives) Admittedly, as the *language of
tokens® has no formal structures, 1t s
considerably less expressive than regular query
languages However, we must consider this as
the price of doing away with all formahties

Our methods require a schematic
representation of relational databases called
dependency graphs This representation 1s
described 1n Section 2, and Section 3 then defines
quertes and tokens The mechanism for
interpreting tokens mnto queries 1s described and
demonstrated i Section 4, and Section 5 shows
how to handle ambiguous sets of tokens Section
6 describes a few useful extemsions of the basic
mechanism, and discusses complexity and
mmplementation We conclude 1n Section 7 with
a brief discussion of the results

2. Dependency Graphs

We assume relational schemas provide the
following mformation There 1s a set of
distinctly named relations With each relation
there 15 an associated set of distinctly named
attributes, one of which 1s designated as key
attribute! Each attribute has an associated
doman

As an example, Figure 2-1 defines a database
UNIVERSITY with three relations STUDENT,
COURSE and ENROLLMENT Each relation
definition shows the attributes (the key attribute
15 underlined) and theirr associated domamns
Thus, the attribute NAME 1n relation STUDENT

and the attribute STUDENT 1n relation
ENROLLMENT are both of domain
PERSON_ NAME A small mstance of this

database 1s shown 1n Figure 2-2

STUDENT
NAME PERSON_NAME
MAJOR ACADENIC DISCIPLINE
GPA NUMBER

COURSE
C-K0 COURSE_NUMBER
DEPARTMENT ACADEMIC DISCIPLINE
UNITS NUMBER

ENROLLMENT
E-KO ENROLLMENT NUMBER
STUDENT PERSON_NAME
COURSE COURSE_NUMBER
GRADE LETTER GRADE

Figure 2-1: Schema of Database UNIVERSITY

1F‘or simplicity, we assume that all relations have
simple (one attribute) keys Composite keys will be
discussed later

122

STUDENT

NAME MAJOR GPA

Math
ElecEng
CompSci
Math

Brown
Chen

Klein
Smith

WM wN
[-2 I

COURSE
C-NO DEPARTMENT UNITS

Cs101
CS202
MATH270
MATH370
BI0425

CompSci 4
CompSci 3
Math 4
Math 3
Biology 4

ENROLLMENT
E-NO STUDENT COURSE GRADE

MATH370 C+
C5101 A-
BI0425 B+
MATH370 B
C€5101 A
MATH270 B-
C5202 B

E762
E824
E628
E742
E844
E722
E535

Smith
Smith
Brown
Brown
Klein
Klein
Chen
Figure 2-2: Example of Database UNIVERSITY

Each relational schema may be represented as
a dependency graph The dependency graph has
a node for each attribute and for each doman
From each domain node there are directed arcs
to all the nodes of the attributes that draw their
values from this domamn Such arcs are called
ssmilarity arcs From each node that
corresponds to a key attribute there are directed
arcs to all the nodes of the non-key attributes of
the same relation Such arcs are called
dependency arcs Similarty arcs connect
attributes that use values of the same domain 1n
the relational database these two attributes
could serve as the basis for a natural jom
between their respective relations Dependency
arcs represent functional dependencies each
database value 1n the tail attribute determines a
unmique database value 1 the head attrmbute
The dependency graph for database UNIVERSITY
1s shown 1 Figure 2-3 The dashed arcs are for
similanties, the solid arcs are for dependencies
Note that dependency graphs are not necessarily
connected

ENROLLMENT NUMBER

PERSON_NAME E-XO COURSE_NUMBER
/ \ /7 N\
/N / \
/ \ / \
/ \ | \ / \
NAME STUDERT GRADE COURSE C-N0
|
|
l
GPA MAJOR LETTER_GRADE DEPARTMERT URITS
~ d 7
\\ ~ ~ P < 4
~N ~ - rd
~ ~ 7 ”
~ ~ s -
~ ~N e 7
~ ~ ACADEMIC DISCIPLINE P
~ 7
~ rd
~ ~ P i
~ < Phd
NUMBER”

Figure 2-3:

When relational queries mention particular
data values, they are always associated with
particular metadata values For example, the
query "retrieve STUDENT NAME where
STUDENT MAJOR=MATH" 1mples that MATH 1s
from the domam of attribute MAJOR By itself,
the value MATH does not suggest any particular
domam In this paper we assume the database
management system stores domamn nformation
in an auxiliary relation called LEXICON with two
attributes, VALUE and DOMAIN A tuple (V,D) 1n
this relation indicates that value Vv 1s from
domam D (and possibly appears in the database
under some attribute of this domam) Some
examples of LEXICON tuples are (BROWN,
PERSON _NAME), and (B+,LETTER_GRADE)
Given an arbitrary value, the system can use
this LEXICON to find out 1ts possible domains
(and thus gamn some understanding of 1ts

meaning) This relation 1s further discussed,
along with other implementation 1issues,
Section 6

123

Dependency Graph for Database UNIVERSITY

3. Queries and Tokens

Relational databases may be queried on the
basis of their dependency graphs, using a formal
dependency language which 1s based on predicate
calculus

For each dependency arc we introduce a binary
predicate named with 1its two participating
attributes (tail attnbute first) For example,
NAME—MAIJOR, C-NO—DEPARTMENT and
E-NO—STUDENT The mstantiation of predicate
A—B for data values U and Vv (denoted
U A—B V) 1s true, if and only if the relation from
which this dependency was extracted has a tuple
with values U and v for attributes A and B,
respectively Thus, CHEN NAME—MAJOR
ELECENG 1s true, but CS101 C-NO—
DEPARTMENT MATH 15 false In addition to
these dependency predicates we assume there are
built-in binary predicates such as <, >, <,
>, = and #

With wvariables, predicates may be used to
specify sets of data values For example, if z 1s
a variable, then the predicate
z STUDENT—MAJOR MATH specifies the set of
students who are Math majors Using

conjunction, disjunction and negation operations,
predicates may be combined into formulas All
variables 1n a formula are assumed to be
existential quantifiers, unless they are declared
to be free A formula which declares its free
vanables is called a query Let Q(zl, ,zn) be a

query with free varables z .z, The value of

1’

@ 15 the set of all data values v v, which

l’
satisfy the formula 2

As an example, assume we want to retrieve the
name and major of all students with a GPA over
3 0 and who received either A or B 1n Cs101 We
assign variables z, y, z and w to range over
PERSON _ NAME, ACADEMIC _DISCIPLINE,
NUMBER and ENROLLMENT _ NUMBER,
respectively The statement "retrieve (z,y)"
declares z and y to be free, 1t 1s followed by a
formula with seven predicates

let z be from domain PERSON_NAME
let y be from domain
ACADEMIC _ DISCIPLINE
let 2 be from domain NUMBER
let w be from domain
ENROLLMENT _ NUMBER
retrieve (z,y) where
(z NAME—+MAIJOR y) A
(zr NAME—GPA 2) A
{(z>30)A
(w EENO—STUDENT z) A
(w EENO—COURSE CS101) A
((w ENO—GRADE A) V
(w E-NO—GRADE B))

Like most other query languages, this
dependency language mmvolves complex structures
and rigid syntax In contrast, tokens are very
elementary a database token 1s either a data
value or a metadata value (1e a relation name,
an attribute name or a domam name) Some
examples are

ENROLLMENT, STUDENT, MAJOR, SMITH
and CS101

2Note that negation 1s well defined a negated
predicate 1s true, if the relevant relation does not have a
tuple with these values As existential quantification 1s
always done globally, our formulas cannot simulate
universal quantification If logical completeness 1s
important, universal quantifiers should be added

124

Each set of such tokens 1s considered as an
attempt to formulate a query Two examples of
token sets are

SMITH, GPA

and
STUDENT, MAJOR, BIO425, F

Our techmques for nterpretation of database
tokens wil result m queries to retrieve,
respectively, the GPA of Smith, and the name
and major of the students who are enrolled in
BIO425 and failed

4. Interpreting Sets of Tokens

Consider again the query to retrieve the name
and major of all students with GPA over 30
Assume that for each of 1its six dependency
predicates we mark the corresponding arc in the
dependency graph (together with 1ts end nodes)
Also, assume that whenever two marked nodes
are connected to the same domam (such as
STUDENT and NAME) we mark the path between
them (e g from each to PERSON_NAME) The
result 1s a connected subgraph, which 1s shown 1n
Figure 4-1

PERSON_NAME E-KO
/ \
// \\
/ \
NAME STUDENT GRADE COURSE
GPA ¥AJOR

The Connected Subgraph for
Our Example Query

Figure 4-1:

While not all proper queries correspond to a
single connected subgraph, a query that
corresponds to several disjoint subgraphs could
safely be regarded as a collection of independent
querles that were submitted together Based on
this observation, we may assume that only
queries that correspond to a single connected
subgraph are permitted Note that the mapping
of queries mto graphic representations 1s not
injective and different queries may correspond to
the same connected subgraph

With dependency graphs we can translate the
problem of interpreting a set of database tokens
mmto a graph problem Each token corresponds
to a node 1n the graph, and this scattered set of
nodes 1s a model of the request Its missing
parts will be provided by the nodes and arcs
necessary to connect them Thus, the
interpretation we provide for a given set of
database tokens 1s a query that corresponds to a
subgraph that connects thewrr corresponding
nodes This process mnvolves two 1ssues (1) how
to connect the nodes into a subgraph, and (2)
which query corresponds to this subgraph
These 1ssues occupy much of the remainder of
this paper

One constraint that we place on the connecting
subgraph 1s that 1t should be minimal, 1e there
should be no strict subgraph of 1t that connects
the given nodes Obviously, such subgraphs are
always trees, and the problem 1s known as the
Stesner tree problem [2] (This problem 1s a
generahization of the minimum spanning tree
problem) Still, this constraint does not
guarantee uniqueness, as there may be several
such trees, and each may serve as the basis for
an interpretation Another 1ssue, which will be
addressed later, 1s the appropriate algorithm for
finding minimum spanning trees and 1ts
complexity

We defer to a later section the discussion of
how to obtaimn the desirable mmmimum sparning
tree from the given nodes, and at this pomt
assume that there 1s a procedure that performs
this task We also assume that the given set of
tokens does not include rephcations, and that all
tokens are recognizable as values of either the
data or the metadata We divide the process of
interpreting a set of tokens into a proper query
into six steps

1. Mark the dependency graph. For each
token we mark a node mn the dependency graph
if the token 15 an attribute name, we mark the
attribute node, if it 15 a domain name, we mark
the domain node, if 1t 1s a relation name, we

125

mark the node of its key attnbute"’, otherwise,
we assume 1t 15 a data value and we mark the
node which corresponds to its domamn (obtained
from relation LEXICON) For example, consider
the tokens STUDENT and MATH The first 1s an
attribute name and we mark the node by this
name The other 1s a data value and we mark
the node ACADEMIC _ DISCIPLINE

2. Obtain minimum spanning trees. Our
next step 1s to obtamn a minimum tree i the
dependency graph that spans the marked nodes
If a minimum spanning tree cannot be found
(due to disconnectivity), then no query may be
inferred from this set of tokens If several trees
exist, then there should be a method for selecting
one as the basis for interpretation As we stated
earher, we assume that a procedure that
performs this task 1s available In our example,
there are several minimum spanning trees One
connects STUDENT and ACADEMIC _ DISCIPLINE
through PERSON_NAME, NAME and MAIJOR,
another connects them through E-NO, COURSE,
COURSE _ NUMBER, C-NO and DEPARTMENT
These two trees correspond to different meanings
of the token MATH (a major and a department)
Additional trees exist that make connections
through the node NUMBER For demonstration
purposes we describe the rest of the process for
the first two alternatives

3. Instantiate predicates. Next, we
associate a variable with each node of the tree
For each dependency arc we nstantiate its
predicate between the variables associated with
its two attribute nodes For each similanty arc
we 1nstantiate the equality predicate between the
vanable associated with its domam node and the
variable associated with its attribute node In
our example, five variables z,, %y are required
for the first tree They are associated,
respectively, with STUDENT, PERSON_NAME,
NAME, MAJOR and ACADEMIC _ DISCIPLINE
Four predicates are instantiated

3'I‘hus, a token which 1s a relation name 1s 1n effect
mapped nto the token which 1s the key attribute of that
relation

I, =%
Ty = T4
z, NAME—MAIJOR z,
Ig= %4

The second tree requires seven variables Yy U

which are associated, respectively, with
STUDENT, E-NO, COURSE, COURSE_ NUMBER,
C-NO, DEPARTMENT and ACADEMIC_

DISCIPLINE The instantiated predicates are
Y, ENO—STUDENT y,
Y, ENO—COURSE y,

Yg = Y3
¥, C-NO—DEPARTMENT y,

4. Substitute known data values. For
each node that was marked because of a data
value we now substitute the node variable with
the value 1n all predicates in which 1t occurs In
our example we substitute MATH for z. mn the
first alternative, and for ¥, I the second
alternative We obtan

z, =2

2 1
I, =2
z, NAME—MAJOR z,
MATH = z,

and
y, E-NO—+STUDENT ¥,
y, E-NO~+COURSE y,
y4 = y3
Y=Y
¥, C-NO—DEPARTMENT y,
MATH = ys

5. Eliminate equality predicates. Next,
we eliminate all the instantiations of the equalsty
predicate one by one, after we perform the
necessary substitutions i the other predicates
In our example, we obtain

:cl NAME—MAJOR MATH
and
¥, ENO—STUDENT y,
Y, E-NO—+COURSE y,
y5 C-NO-——+DEPARTMENT MATH

126

8. Determine free variables and
construct queries. Finally, we combine the
predicates mto a formula through multiple
conjunctions In this formula, variables of nodes
that were marked i the mitial step (or variables
of nodes connected by similanity arcs to nodes
marked m the initial step) are considered free
variables (in our example, z, and y,) All other

variables are considered existential (im our
example, y, and ys) The final queries that

correspond to the tokens STUDENT, and MATH
are as follows (we use notation which 1s
somewhat less mathematical that that
introduced n Section 3)
let z be from domalin PERSON_ NAME
retrieve (z) where
z is NAME of STUDENT having
MAJOR MATH
and
let z be from domain PERSON_NAME
let y be from domaln
ENROLLMENT _ NUMBER
let 2z be from domain
COURSE _ NUMBER
retrieve (z) where
y is ENO of ENROLLMENT having
STUDENT z and
y Is E-NO of ENROLLMENT having
COURSE z and
z Is C-NO of COURSE having
DEPARTMENT MATH

Thus, the two interpretations of the tokens
STUDENT and MATH are “retrieve the names of
all students who are Math majors® and "retrieve
the names of all students who are enrolled in
Math courses® The corresponding answers are

NAME
BROWN
SMITH

and
NAME
BROWN
KLEIN
SMITH

As another example, consider the tokens
STUDENT, MATH and cS101 Agam, there will be
two interpretations, however, one terpretation
will mmstantiate a predicate that will falsify the

query
MATH is DEPARTMENT of COURSE having
C-NO CS101
The other alternative will retrieve all the Math
majors enrolled in CS101

As a third example, the tokens STUDENT,
MAJOR and cS101 will be interpreted as a query
with two free varniables, to retrieve the names
and majors of all the students who are enrolled
m CS101

let z be from domain PERSON_NAME

let y be from domain
ENROLLMENT _ NUMBER

let z be from domain
ACADEMIC __ DISCIPLINE

retrieve (z,z) where

z is NAME of STUDENT having
MAIJOR 2z and

y I8 E-NO of ENROLLMENT having
STUDENT z and

y I8 E-NO of ENROLLMENT having
COURSE CS101

The answer 1s

NAME MAJOR
KLEIN COMPSCI
SMITH MATH

Notice that our process handles single tokens
satisfactorily If the token 1s a metadata value,
the process will produce a query to retrieve all
the values of a domain For example, the token
COURSE results 1n

let z be from domain

COURSE _ NUMBER

retrieve (z)
which will hist all course numbers A single
token which 1s a data value generates no
predicates, and therefore results in no operation
(The wuser should be prompted for more
information)

Sets of tokens that include no metadata values
require no special handling either Because they
contain database values only, they generate
queries without any free varables These
propositions are answered by TRUE or FALSE
For example, the tokens KLEIN, CS101 and A are
iterpreted with the following proposition

127

let z be from domain
ENROLLMENT _NUMBER

retrieve () where

z is E-NO of ENROLLMENT having
STUDENT KLEIN and

z 18 E-NO of ENROLLMENT having
COURSE csi10t and

z is E-NO of ENROLLMENT having
GRADE A

Its answer 1s
TRUE

Sometimes, a set of tokens may include both a
domamn name and a database value from this
domain (the domain node 1s then marked twice)
This presents no problems, as the usual process
will mnstantiate a variable for this node and then
bind 1t to the particular data value The final
effect will be as iIf the doman token was not
included

5. Resolving Ambiguities

As already mentioned, a given set of tokens
may be connected with several mmmum
spanning trees, which will lead to several
different queries The given set of tokens is then
called ambiguous We distinguish between three
kinds of ambigumty

1 Multiple trees for the same nodes.
The set of marked nodes (obtained from the
given tokens) may be connected with more
than one mimimum spanning tree The
example which demonstrated the process
was of this kind

2 Alternative sets of nodes. A given data
token may belong to more than one domam
Together with the nodes marked by the
remaining tokens, each of the possible
domain nodes forms a valhd set of marked
nodes For example, BROWN may be known
as both PERSON_NAME and COLOR, which,
considered together with the attribute CAR,
may lead to either ®all cars owned by
Brown®, or "all brown cars"

3 Multiple interpretations for the same
tree. Several values may be from the same
domain, which 1s then marked several times

In such cases, several interpretations are
possible even for the same tree For
example, COURSE, BROWN and KLEIN could
be mterpreted as the courses in which esther
student 1s enrolled, or as the courses In
which both are enrolled

There are three ways to approach ambiguities,
and our methods here combine all three

1 Determine correct interpretation. The
most desirable solution 15, of course, a
procedure which selects a single
interpretation as the correct one
Unfortunately, it 15 often impossible to
justify any particular interpretation over
the others A less ambitious (but more
feasible) approach 1s to ehminate certam
interpretations as ncorrect, and perhaps

rank the remamning interpretations for
hkelthood of being correct
2 Interact with the user. Alternatively,

we may try to approach the user for further
clarification This method 1s usually sumpler
and often cheaper, though sometimes the
user may be unable to offer substantial
assistance For example, the user may be
asked to disambiguate a token {"1s BROWN
a COLOR or a PERSON_NAME?*) Or the
system may only request more tokens, in
the hope that they will strengthen certain
alternatives, and possibly invahdate others
Or the user may be offered to select from
several different interpretations of his token
set

3 Pursue multiple interpretations.
Fmally, if the number of alternatives 1s
relatively small, the system could pursue
them all and present thewr outcome to the
user for his decision

When the user enters a token, the system looks
it up mmmediately 1 the lexicon If multiple
entries are found for this token, then the system
displays the different entries and requests the
user to select among them Thus, ambiguities of
the second kind are resolved mstantly with user
assistance

128

Amiguities of the first kind are handled with
a prune-and-rank procedure, which discards
some interpretations and then ranks the
remaining interpretations for hkehhood of beng
correct The pruning phase i1s based on the
following observation Whenever a domam node
15 used 1 the spanning tree, an assumption 1s
made that the semantics of the attribute nodes
which 1t connects are similar This 15 a nisky
assumption Sometimes the risk 1s low 1n our
example, the attributes C-NO and COURSE have
almost 1dentical meanings However, GPA and
UNITS have very hittle in common This suggests
that interpretations that contain fewer such
connections are more hkely to be correct
Consequently, given two interpretations we will
prefer the one that makes the least number of
such "jomns" Thus, among all mmmnm
spanning trees we prefer those that have the
smallest number of similarity arcs, and discard
the others Our ranking of the remainng
acceptable trees i1s based on their size the
smaller the tree, the more likely 1ts
mterpretation 1s the correct one This measure
18 based on the observation that unhkely
iterpretations require more intermediate
concepts to connect the set of tokens provided
by the user, resulting m larger trees In the
example that demonstrated the process, each of
the two trees that were pursued has one such
*jom", but the first tree ("retrieve the names of
all students who are Math majors") 1s smaller
and 15 therefore ranked before the second
(*retrieve the names of all students who are
enrolled 1n Math courses") Several other trees
are discarded altogether because they make more
"jomns" {e g "retrieve the names of all students
whose GPA 1s 1dentical to the unmits of some
Math course')4 After this procedure 1s
performed, the different queries are presented to
the user as possible interpretations of his tokens,
and he 15 asked to select one If he dechines, they
are attempted sequentially, mm their order of
likelthood

4Some extensions of the relational model use the
concept of role, to distinguish between attributes that are
of the same domain, but still express different semantics
As this feature eliminates the nisk of “joins®, our
selection procedure under such a model will be based on
s1ze only

The last kind of ambiguity is the most difficult
to resolve. Consider the tokens DEPARTMENT,
BROWN and KLEIN (where the last two are both
from domain PERSON_NAME) and the minimum
spanning tree that connects them through
STUDENT, E-NO, COURSE, COURSE_ NUMBER and
C-NO. The interpretation is to retrieve the
departments which offer courses in which these
students are enrolled. However, several
variations are possible here, and they retrieve
different sets of departments: those which enroll
esther BROWN or KLEIN; those which enroll both;
and those which enroll both in the same course.
To understand these alternatives, assume the
tokens DEPARTMENT and BROWN and the
tokens DEPARTMENT and KLEIN are considered
separately. For each pair of tokens a chain of
variables is instantiated over the path that
connects them. In considering the three tokens
together, we may choose to keep the chains
separate, or we may identify some of the
corresponding variables. The first interpretation
is for separate chains; the second identifies the
two DEPARTMENT variables; and the third also
identifies the two COURSE variables. In such
cases we adopt the safer approach of not
identifying any of the variables. The effect is as
if the user repeated the query twice: first with
BROWN and then with KLEIN. It is also possible
to show all the different interpretations to the
user 2nd have him select one.

6. Extensions and
Implementation
Considerations

Until now we have assumed that all relations
have simple keys. However, no significant
modifications are required to handle composed
keys. 1In addition to the attribute nodes for
every component of the key, the dependency
graph should include an extra node for the
composed key, with dependency arcs to each
component node, as well as to the other
attributes of the relation. Thus, if in the

database UNIVERSITY, relation ENROLLMENT did

not have the key attribute E-NO, but instead the

composed key (STUDENT,COURSE), we would
introduce a new node for the composed key, and
the dependency graph would be exactly like the
one obtained before. This extra node

129

corresponds to the structured attribute that
many database management systems introduce
to handle composed keys (for example, [10]).

With simple extensions, the power of this naive
query language can be increased. One example
are arsthmetic comparisons. Given the tokens
NAME, GPA, > and 3.0, the following query will
be generated:

(z NAME—GPA) A (y > 3.0).

Another simple extension will allow users to
refer to attribute names by example. A user
who wants to know the numbers of math courses
that give 3 units of credit, but does not know
the token C-NO, will be able to supply instead an
ezample of a course number he knows, e.g. Cs101
(to indicate that Csi01 is only an example, it
should be prefixed by ~). A token set that will
accomplish this request is: ~CS101, MATH, 3,
UNITS. Note that the last token serves only as
reinforcement; a proper interpretation will also
be produced without it.

The query interpretation mechanism described
here may be implemented with any relational
database management system. The only
modification needed is to add a lexicon feature
(see below). As the dependency language queries
produced by the interpreter are easy to translate
into other query languages, this interface can be
implemented to produce queries in a language
aiready supported by the system. Note that the
database itself is never modified, except for the
additional relation LEXICON, and all other
applications and user interfaces are unaffected
by this mechanism.

The relation LEXICON must not be modified by
users; the system should update it automatically,
to reflect user updates to other relations. This is
similar to the way that secondary indexes are
handled in some relational systems (for example,

[9]). A similar device was used by the relational
interface BAROQUE, to provide a semantic
network view of relational databases, and thus
offer elaborate browsing functions [7]. The cost
of this relation, in terms of the additional space
to store this relation and the additional
computation for its initialization and its
continuous update, is comparable to the cost of a

secondary ndex on every database attribute
Except, of course, that there i1s no need to store
numbers 1n the lexicon, as theirr domamn 1s
apparent, usually, numbers account for a
substantial part of the database If the required
storage 1s still prohibitive, 1t 1s possible to
implement the lexicon only in part, by inverting
on selected attributes only Thus, tokens of
certain domains will not be recogmzed, and the
system will have to extract the domamn
mformation by means of a dialogue

One difficulty that must be considered 1s that
the algorithm for finding minimum spanning
trees m a graph 15 known to be
NP-Complete [2] However, 1ts actual
complexity can be controlled quite tightly by the
following restrictions First, we may hmt the
number of tokens users are expected to provide,
so that the number of marked nodes does not
exceed 4 or 5 This restriction 1s quite safe, as
the type of requests anticipated from users of
this interface normally would not mnvolve very
many tokens (note that tokens which are from
the same domain only mark a single node, so
token sets can actually be much larger) Second,
we may himit our search to spanning trees which
require at most 2 or 3 unmarked nodes to
connect any two marked nodes (e sets of
tokens which can only be connected by long
paths of unmarked nodes are considered
disconnected) Agamn, this 15 a reasonable
assumption, as the significance of a possible
assoctation between two tokens decreases rapidly
with the number of links necessary to connect
them (note that i such cases, the process may
be retried if the user provides an additional
token to help associate the previous tokens)
Finally, we may develop heuristic methods which
construct spanning trees that are not necessarly
mimimal, but are compact enough to provide a
reasonable basis for an interpretation

7. Conclusion

We have described a new kind of user-database
interface which requires neither a formal
language, nor any understanding of the
organization of the database Our mechanism
performs a task which may be called intelligent
conclude a request from a set of tokens By

130

returming 1ts interpretations of token set
requests, 1t also instructs users i the proper
apphcation of the formal language

Of course, the "language” of tokens 1s not
complete 1 any sense a large number of
requests cannot be phrased with tokens alone
Still, tokems enable naive users to express a
substantial number of popular queries 1 an
extremely simple and informal way The
combination of our token interpreter with a
standard query mterface, will result i a very
effective interface

Our methods for interpreting a set of tokens
sometimes require that the user be consulted,
but most of the time we preferred to interpret
the tokens provided by the user in some simple
default way Another possible direction, which 1s
currently under investigation, 1s to strengthen
the interactive capabilities of the interface
Thus, m effect the interface will start with the
tokens, and then help the user construct his
query Such a dialogue-based terface will
remove some of the uncertainties that are part
of our token interpretation methods Also, 1t
will allow the user to specify a richer set of
requests

References

[1] C R Carlson and R S Kaplan

A General Access Path Model and 1its
Apphcation to a Relational Database
System

In Proceedings of ACM-SIGMOD
International Conference on
Management of Data, pages 143-154
1976

2] S Even
Graph Algorithms
Computer Science Press, 1979, pages
24-26,225-226

[3]

(4]

[5}

[6]

7l

8]

(9]

[10]

P J Hayes and J G Carbonell [11]
Multi-Strategy Construction Specific

Parsing for Flexible Data Base Query

and Update
In Proccedings of the Seventh

International Joint Conference on

Artificial Intelligence, pages 432-439

Vancouver, B C, 1981

H F Korth et al

System/U A Database System Based on
the Universal Relation Assumption

ACM Transactions on Database Systems
9(3) 331-347, September, 1984

S Kwasny and N K Sondheimer

Ungrammaticability and Extra-
Grammaticability in Natural
Language Understanding Systems

In Proceedings of the 17th Annual
Meeting of the Association for
Computatsonal Linguistics 1979

D Maier

The Theory of Relational Databases

Computer Science Press, 1983, Chapter
12

A Motro

BAROQUE A Browsing Interface to
Relational Databases

Technical Report TR-8-312, Computer
Science Department, University of
Southern Cahfornia, August, 1984

To appear in the ACM Transactions on
Office Information Systems

S L Osborne

Towards a Universal Relation Instance

In Proceedings of the Fifth International
Conference on Very Large Data
Bases, pages 52-60 Rio de Janeiro,
Brazl, 1979

M Stonebraker et al

The Design and Implementation of
INGRES

ACM Transactions on Database Systems
1(3) 189-222, September, 1976

UNIFY Reference Manual
3 0 edition, UNIFY Corporation, 1983

131

R M Weischedel and J E Black

Responding Intelligently to Unparsable
Inputs

American Journal of Computational
Linguistics 6(2), 1980

