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Abstract 

A database token IS a value of either the data 
or the metadata Usually, such tokens are 
combined with formal language constructs to 
form queries In this paper we show how a given 
set of tokens may be completed to a proper 

query This process provides a useful means of 
commumcatlon between naive users and 
databases, allowing them to express simple 
requests by hstmg several tokens As the 
inferred query 1s always shown to the user, this 
process has a side effect of mstructmg the user m 
the proper use of the query language The 
method IS described and demonstrated w&h 
relational databases, but its prmclples may be 
implemented with other databases as well 

1, Introduction 
Most query languages require their users to 

have specific retrieval goals, and then express 
them m a formal way This also lmphes that 
users must be famdlar with the orgamzatlon of 
each database that they access (which, m turn, 
requires adequate understandmg of the data 
model used by the system) 

Often, users may lack some of these 
prerequisites For example, a user may be aware 
that a database IS available on students, courses 
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and enrollments, and would hke to fmd out the 
Grade Point Average (GPA) of a student called 
Smith However, due to msufflclent experience 
with either the query language or the data model 
or this database, this user may be unable to 
utter more than n SMITH GPA~, where he should 
be entering something hke 

retrieve GPA of STUDENT where 
NAME-SMITH 

or 

G?(Y)~)(T~;DENT(~) A NA@z,SMmH) A 
, 

The problem with SMITH GPA IS, of course, 
that it IS not a proper query But, then, this 
may be regarded as a hmltatlon of the query 
interface used We could Imagine an Interface 
that .understands’ such utterances by 
mterpretmg them m a unique way, 1 e complete 
them to proper queries If answers to such 
fragmented queries are always accompamed by 
the Inferred queries, then users get a chance to 
relect interpretations which are incorrect (If the 
user IS not sure whether an mterpretatlon IS 
correct, he may have to try the query and 
examme the data it retrieves) Dlsplaymg the 
interpretations also has mstructlonal benefits, as 
it shows the user how the request should have 
been phrased 

Consider the sltuatlon of a person who goes 
mto a shop m a foreign country As he does not 
know the language, he utters whatever words he 
knows, m an attempt to describe what he needs 
The shopkeeper, eager’ to help, tries to interpret 
this request and fetches something (perhaps more 
than one thing) If it doesn’t match his 
intentions, the customer will try to modify his 
request, perhaps by addmg another word (If he 



observes that rt IS needed to dlsamblguate his 
previous request), or by ehmmatmg a prevrous 
word (if he can identify that rt led to the 
erroneous interpretation) The process may 
continue, until finally the mterpretatron 1s close 
enough to the mtentlons of the customer Of 
course, there IS always the possrbrhty that the 
customer walks away frustrated (or worse, that 
m the end he buys the wrong thing!), but often, 
the process will be carried out successfully (and 
the customer even picks up a new phrase m this 
language) 

Almost every aspect of thus situation has its 
direct analogy m database access (mcludmg the 
advantage of shopkeepers that speak one’s 
language) Indeed, the mterpretatron of query 
utterances may be regarded as a case of 
understandzng unparsable Input, an active area 
of natural language research (for example, 
see [3, 5, 111) 0 ur approach here IS to create a 
useful interface which 1s both cooperatrve and 
instructional (objectives often associated with 
“mtelhgence*), while using only the database at 
hand 

We define database tokens to be the basic 
utterances, and then develop methods by which 
a set of tokens may be completed by the system 
to a proper query, which IS then displayed to the 
user for his approval (as well as enhghtment) 
The proper query 1s then submitted to the 
standard query processor Our token tnterpreter 
can therefore be regarded as an interface for 
naive users that should be used m tandem with a 
standard interface (Figure l-l) 

llaive Sophieticated 
USWS User8 

Token Query 
Interpreter 

~ Standard 
Language Processor 

Database 

Figure l-l: The Token Interpreter 

Our work here 1s done m the context of the 
relatronal database model The primary reason 
for this 1s the widespread use of relational 
databases The prmcrples could also be 
implemented with other data models, such as the 
network, the hrerarchrcal or the functional data 
models 

Our work recalls several efforts on the 
automatic connection of database 
relations 11, S] Another related effort IS 
System/U [4], the relatronal DBMS which 1s 
based on the umversal relation assumptron The 
main advantage of System/U 1s that rt relieves 
the user from the responsrbrhty of navigating 
within the relations, relying instead on the pre- 
defmltron of schemattc constructs called maximal 
objects Also related I work based on the 
universal relation schema assumption IS], which 
guarantees that a set of attributes uniquely 
determines a semantic connectron between them 

Srmdarly, we too are concerned with automatic 
inference of the connectrons required to answer a 
query Here, however, the emphasis 1s on an 
interface which IS extremely simple In 
particular, rt IS free of any data model details 
the user who supplies the tokens need not know 
about concepts such as relations, schemas or 
attributes He need not even drstmgursh between 
data values and metadata values (1 e relation 
names, attribute names, domain names) He 
only needs to supply a hst of words We see the 
uniform treatment of data and metadata as an 
important convenience virtually all database 
Interfaces perpetuate the dichotomy between 
data and metadata, when this drstmctron may be 
of concern to database designers, but IS not 
always clear to database users In addition, we 
do not subscribe to any assumptrons on the 
structure of the database, and our methods are 
intended to be used with any relational DBMS 
At times our methods require mteractlon with 
the user, such as to dlsambrguate a token, or to 
select between alternative interpretations 
(System/U would retrieve the union of the 
alternatives) Admittedly, as the “language of 
tokens. has no formal structures, rt IS 
consrderably less expressive than regular query 
languages However, we must consider this as 
the price of doing away with all formahtres 
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our methods require a schematic 
representation of relatlonal databases called 
dependency graphs This representation IS 
described m Section 2, and Section 3 then defines 
queries and tokens The mechamsm for 
interpreting tokens mto queries IS described and 
demonstrated m Section 4, and Section 5 shows 
how to handle ambiguous sets of tokens Section 
6 describes a few useful extensions of the basic 
mechanism, and discusses complexity and 
lmplementatlon We conclude In Sectlon 7 with 
a brief dlscusslon of the results 

2. Dependency Graphs 
We assume relational schemas provide the 

following informatlon There IS a set of 
dlstmctly named relattons With each relation 
there IS an associated set of dlstmctly named 
attrtbutes, one of which IS designated as key 
attrdwte’ Each attribute has an associated 
domarn 

As an example, Figure 2-l defmes a database 
UNIVERSITY with three relations STUDENT, 
COURSE and ENROLLMENT Each relation 
defmltlon shows the attributes (the key attribute 
IS underlined) and their associated domains 
Thus, the attribute NAME m relation STUDENT 
and the attribute STUDENT in relation 
ENROLLMENT are both of domam 
PERSON-NAME A small instance of this 
database IS shown m Figure 2-2 

STUDEIT 
BAME 
YAJOR 

PERSOII~MKE 
ACADEKIC_DISCIPLIgE 

CPA KUBBER 
COURSE 

c-II0 COURSE-IILJKBER 
=TYEBI ACADEMICJISCIPLII 
UBITS IIUHBEB 

EKROLLYEIT 
E-B0 
STUDEIT 

EKROLLMEKT~BlJKBER 
PERsoKllgAKE 

COURSE CODRSE_IIJyBEB 
GRADE LETTER-GRADE 

Figure 2-l: Schema of Database UNIVERSITY 

1 For slmphclty, we assume that all relatlons have 
simple (one attrlbute) keys Composite keys will be 
dlscussed later 
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STDDEKT 
IAME KAJOR CPA 

Brown Math 2 6 
Chen ElecEng 3 2 
Klein Co~pSci 2 3 
Smith Math 3 4 

COURSE 
C-IO DEPARrYEIT IJHTS 

CSlOl compsci 
cs202 compsci 
KATB270 Math 
MATH370 Math 
BI0425 Biology 

EIROLLKEKT 
E-IO STDDEKT COURSE GRADE 

E762 Stith KATR370 C* 
E824 Smith CSlOl A- 
E623 Bromr BIO425 B+ 
E742 Bromr HATB370 B 
E344 Klein CSlOl A 
E722 Klein KATB270 B- 
E535 Chen CS202 B 

Figure 2-2: Example of Database UNIVERSITY 

Each relational schema may be represented as 
a dependency graph The dependency graph has 
a node for each attribute and for each domain 
From each domain node there are directed arcs 
to all the nodes of the attributes that draw their 
values from this domain Such arcs are called 
stmtlarrty arcs From each node that 
corresponds to a key attrlbute there are dlrected 
arcs to all the nodes of the non-key attributes of 
the same relation Such arcs are called 
dependency arcs Similarity arcs connect 
attributes that use values of the same domain m 
the relational database these two attributes 
could serve as the basis for a natural Join 
between their respective relations Dependency 
arcs represent funct:onal dependencres each 
database value m the tad attribute determmes a 
unique database value m the head attribute 
The dependency graph for database UNIVERSITY 
1s shown m Figure 2-3 The dashed arcs are for 
srmdarrtres, the solid arcs are for dependencies 
Note that dependency graphs are not necessarily 
connected 
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Figure 2-3: Dependency Graph for Database UNIVERSITY 

When relational queries mention particular 
data values, they are always associated with 
particular metadata values For example, the 

query *retrieve STUDENTNAME where 
STUDENTMAJOR~MATH" implies that MATH IS 
from the domain of attribute MAJOR By Itself, 
the value MATH does not suggest any particular 
domain In this paper we assume the database 
management system stores domain mformatlon 
m an auxhary relation called LEXICON with two 
attributes, VALUE and DOMAIN A tuple (V,D) in 
this relation mdlcates that value v 1s from 
domain D (and possibly appears m the database 
under some attribute of this domain) Some 
examples Of LEXICON tuples are (BROWN, 

PERSON-NAME), and (B+,LETTER-GRADE) 

Given an arbitrary value, the system can use 
this LEXICON to fmd out its possible domains 
(and thus gam some understanding of Its 
meaning) This relation 1s further discussed, 
along with other rmplementatlon asues, m 
Section 6 

3. Queries and Tokens 
Relational databases may be queried on the 

basis of their dependency graphs, usmg a formal 
dependency language which IS based on predicate 
calculus 

For each dependency arc we introduce a binary 
prehcate named with its two partlclpatmg 
attributes (tad attribute first) For example, 
NAME+MAJOR, C-NO+DEPARTMENT and 
ENO+STUDENT The mstantlatlon of predicate 
A+B for data values u and v (denoted 
u A--*B V) IS true, d and only d the relation from 
which this dependency was extracted has a tuple 
with values U and v for attributes A and B, 

respectively Thus, CHENNAME+MAJOR 

ELECENG 1s true, but CSlOl C-NO+ 

DEPARTMENT MATH is false In addition to 
these dependency predicates we assume there are 
bulk-m binary predicates such as < , > , 5 , 
> -t = and # 

With vanables, predicates may be used to 
specify sets of data values For example, d z 1s 
a variable, then the predicate 
z STUDENT-MAJOR MATH specifies the set of 
students who are Math majors Using 
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conJunctron, dlsJunctron and negation operatrons, 
predicates may be combined mto formulas All 
variables m a formula are assumed to be 
existential quantlfrers, unless they are declared 
to be free A formula which declares Its free 
variables IS called a query Let &(zr, ,zn) be a 

query with free variables zr, ,zn The value of 

& IS the set of all data values ur, ,v~ which 

satisfy the formula 2 

As an example, assume we want to retrieve the 
name and major of all students wrth a GPA over 
3 0 and who received either A or B m CSIOI We 
assign variables x, y, z and w to range over 
PERSON _ NAME, ACADEMIC _ DISCIPLINE, 

NUMBER and ENROLLMENT-NUMBER, 

respectively The statement .retrieve (2,~). 
declares z and y to be free, rt IS followed by a 
formula with seven predicates 

let z be from domain PERSON-NAME 

let y be from domain 
ACADEMIC- DISCIPLINE 

let t be from domain NUMBER 

let w be from domain 
ENROLLMENT-NUMBER 

retrieve (ZJ) where 
(z NAME+MAJOR y) I\ 

(Z NAME+GPA 2) /\ 

(z > 3 0) A 
(w ENO-+STUDENT z) I\ 

(w ENO+COURSE CSlOl) A 

((w ENO+GRADE A) v 

(w ENO+GRADE B)) 

Like most other query languages, this 
dependency language mvolves complex structures 
and rigid syntax In contrast, tokens are very 
elementary a database token IS either a data 
value or a metadata value (1 e a relation name, 
an attribute name or a domain name) Some 
examples are 

ENROLLMENT, STUDENT, MAJOR, SMITH 

and CSIOI 

2 Note that negation IS well defined L negated 
predicate 1s true, If the relevant relation does not have a 
tuple with these values As exlstentlal qusntficstlon IS 
always done globally, our formulas cannot simulate 
universal quantficatlon If loglcsl completeness is 
Important, universal quantifiers should be added 

Each set of such tokens 1s consrdered as an 
attempt to formulate a query Two examples of 
token sets are 

SMITH, GPA 

and 

STUDENT, MAJOR, B10425, F 

Our techmques for mterpretatron of database 
tokens will result m queries to retrieve, 
respectively, the GPA of Smith, and the name 
and major of the students who are enrolled m 
B10425 and faded 

4. Interpreting Sets of Tokens 
Consider again the query to retrieve the name 

and malor of all students wrth GPA over 3 0 
Assume that for each of Its srx dependency 
predicates we mark the correspondmg arc m the 
dependency graph (together with Its end nodes) 
Also, assume that whenever two marked nodes 
are connected to the same domain (such as 
STUDENT and NAME) we mark the path between 
them (e g from each to PERSON-NAME) The 
result IS a connected subgraph, which IS shown m 
Figure 4-1 

PERSOI_IAyE E-PO 

/ EAHE SIUDEET GRADE COURSE 

/\ 
CPA MAJOR 

Figure 4- 1: The Connected Subgraph for 
Our Example Query 

While not all proper queries correspond to a 
single connected subgraph, a query that 
corresponds to several disjoint subgraphs could 
safely be regarded as a collectron of independent 
queries that were submitted together Based on 
this observatron, we may assume that only 
queries that correspond to a single connected 
subgraph are permrtted Note that the mapping 
of queries mto graphrc representations IS not 
mlectlve and different querres may correspond to 
the same connected subgraph 
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With dependency graphs we can translate the 
problem of interpreting a set of database tokens 
mto a graph problem Each token corresponds 
to a node m the graph, and this scattered set of 
nodes 1s a model of the request Its missing 
parts will be provided by the nodes and arcs 
necessary to connect them Thus, the 
mterpretatlon we provide for a given set of 
database tokens IS a query that corresponds to a 
subgraph that connects their correspondmg 
nodes This process mvoIves two issues (1) how 
to connect the nodes mto a subgraph, and (2) 
which query corresponds to this subgraph 
These issues occupy much of the remainder of 
this paper 

One constraint that we place on the connectmg 
subgraph 1s that it should be mgn~mal, 1 e there 
should be no strict subgraph of it that connects 
the given nodes Obviously, such subgraphs are 
always trees, and the problem 1s known as the 
Stetner tree problem [2] (This problem IS a 
generalization of the msntmum spanntng tree 
problem ) Still, this constraint does not 
guarantee uniqueness, as there may be several 
such trees, and each may serve as the basis for 
an interpretation Another issue, which will be 
addressed later, IS the appropriate algorithm for 
finding minimum spanning trees and its 
complexity 

We defer to a later section the dlscusslon of 
how to obtain the desirable mmlmum spanning 
tree from the given nodes, and at this point 
assume that there 1s a procedure that performs 
this task We also assume that the given set of 
tokens does not include rephcatlons, and that all 
tokens are recognizable as values of either the 
data or the metadata We divide the process of 
interpreting a set of tokens mto a proper query 
into six steps 

1. Mark the dependency graph. For each 
token we mark a node m the dependency graph 
if the token 1s an attribute name, we mark the 
attribute node, If it 1s a domain name, we mark 
the domain node, d it IS a relation name, we 

mark the node of its key attnbute3, otherwise, 
we assume it IS a data value and we mark the 
node which corresponds to its domam (obtained 
from relation LEXICON) For example, consider 
the tokens STUDENT and MATH The first IS an 
attribute name and we mark the node by this 
name The other IS a data value and we mark 
the node ACADEMIC-DISCIPLINE 

2. Obtain minimum spanning treee. Our 
next step IS to obtain a mmlmum tree m the 
dependency graph that spans the marked nodes 
If a mmlmum spannmg tree cannot be found 
(due to dlsconnectlvlty), then no query may be 
mferred from this set of tokens If several trees 
exist, then there should be a method for selecting 
one as the basis for mterpretatlon As we stated 
earlier, we assume that a procedure that 
performs this task IS available In our example, 
there are several mmlmum spanning trees One 
connects STUDENT and ACADEMIC-DISCIPLINE 
through PERSON-NAME, NAME and MAJOR, 
another connects them through ENO, COURSE, 
COURSE-NUMBER, C-NO and DEPARTMENT 
These two trees correspond to different meanings 
of the token MATH (a major and a department) 
Additional trees exist that make connections 
through the node NUMBER For demonstration 
purposes we describe the rest of the process for 
the first two alternatives 

3. Inetantlate predicates. Next, we 
associate a variable with each node of the tree 
For each dependency arc we instantiate its 
predicate between the variables associated with 
its two attribute nodes For each slmllarlty arc 
we instantiate the equaltty predicate between the 
variable associated with Its domain node and the 
variable associated with its attribute node In 
our example, five variables x1, ,z5 are required 

for the first tree They are associated, 
respectively, with STUDENT, PERSON-NAME, 
NAME, MAJOR and ACADEMIC-DISCIPLINE 
Four predicates are instantiated 

3 Thus, B token which 1s a relation name 1s m effect 
mapped into the token which IS the key attrlbute of that 
relation 
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x2 = z1 

x2 = x3 

z3 NAME+MAJOR z, 

x5 = 2, 

The second tree requrres seven variables y,, ,y,, 
whrch are associated, respectively, with 
STUDENT, ENO, COURSE, COURSE-NUMBER, 

C-NO, DEPARTMENT and ACADEMIC- 

DISCIPLINE The instantiated predicates are 
yz ENO-+STUDENT y, 

yz ENO+COURSE y3 

Y, = Ys 
Y, = Yg 
y, C-NO+DEPARTMENT y, 

Y, = YfJ 

4. Substitute known data values. For 
each node that was marked because of a data 
value we now substrtute the node variable wrth 
the value m all predicates m which rt occurs In 
our example we substrtute MATH for z5 in the 
first alternative, and for y, III the second 
alternative We obtain 

2* = x1 
2* = x3 
z3 NAME+MAJOR Z4 

MATH = 2, 

and 
y, ENO-hSTUDENT y, 

y, ENO-GOURSE y3 

Y, = Y3 
Y, = Y, 
y, C-NOhDEPARTMENT y, 

MATH = y, 

5. Eliminate equality predicates. Next, 
we ehmmate all the mstantratrons of the equalrty 

predicate one by one, after we perform the 
necessary substrtutrons m the other predicates 
In our example, we obtain 

z1 NAME+MAJOR MATH 

and 
y2 ENO+STUDENT y, 

y2 ENO+COURSE ys 

ys C-NO-bDEPARTMENT MATH 

6. Determine free V8ri8bien and 
construct querier. Finally, we combme the 
predicates mto a formula through multrple 
conjunctions In this formula, variables of nodes 
that were marked m the mrtral step (or variables 
of nodes connected by srmrlarrty arcs to nodes 

marked m the mrtral step) are considered free 
variables (m our example, z1 and yr) All other 
variables are considered exrstentral (m our 
example, y2 and ys) The final querres that 
correspond to the tokens STUDENT, and MATH 

are as follows (we use notatron which I 
somewhat less mathematrcal that that 
mtroduced m Sectron 3) 

ietzbe from domain PERSON-NAME 
retrieve (z) where 
zir~~~~of~~~~~~~having 

MAJORMATH 
and 

letz be from domatn PERSON-NAME 
letybe fkom domaIn 

ENROLLMENT-NUMBER 
let .z be from domain 

COURSE-NUMBER 
retrieve (2) where 
yiu ENOofENROLLMENThaving 

STUDENT 2 and 
yir EN0 OfENROLLMENT having 

COURSE t and 
t is C-NO of COURSE having 

DEPARTMENTMATH 

Thus, the two mterpretatrons of the tokens 
STUDENT and MATH are ‘retrieve the names of 
all students who are Math maJors. and .retrleve 
the names of all students who are enrolled m 
Math courses. The correspondmg answers are 

NAME 

BROWN 

SMITH 

and 
NAME 

BROWN 

KLEIN 
SMITH 

As another example, consider the tokens 
STUDENT, MATH and CSIOI Again, there will be 
two mterpretatrons, however, one interpretation 
will instantiate a predicate that will falsify the 
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query 

MATH is DEPARTMENT of COURSE having 
C-NO CSlOl 

The other alternative will retrieve all the Math 
majors enrolled m CSlOl 

As a third example, the tokens STUDENT, 
MAJOR and cslol ~111 be Interpreted as a query 
with two free variables, to retrieve the names 
and majors of all the students who are enrolled 
in CSlOl 

let z be from domain PERSON-NAME 
let y be from domain 

ENROLLMENT-NUMBER 

let z be from domain 
ACADEMIC-DISCIPLINE 

retrieve (2,~) where 
MISNAME of STUDENT having 

MAJOR zand 
yis ENO of ENROLLMENT having 

STUDENT zand 
yis ENO of ENROLLMENT having 

COURSE CSlOl 

The answer 1s 
NAME MAJOR 

KLEIN COMPSCI 

SMITH MATH 

Notice that our process handles single tokens 
satlsfactordy If the token 1s a metadata value, 
the process will produce a query to retrieve all 
the values of a domain For example, the token 
COURSE results in 

let z be from domain 
COURSE-NUMBER 

retrieve (2~) 

which will list all course numbers A single 
token which IS a data value generates no 
predicates, and therefore results m no operation 
(The user should be prompted for more 
mformation ) 

Sets of tokens that include no metadata values 
require no special handling either Because they 
contam database values only, they generate 
queries without any free variables These 
proposrt:ons are answered by TRUE or FALSE 
For example, the tokens KLEIN, ~~101 and A are 
interpreted with the followmg proposltlon 

let 2 be from domain 
ENROLLMENT-NUMBER 

retrieve () where 
Z~SENO of ENROLLMENT having 

STUDENTKLEIN and 
zis ENO of ENROLLMENT having 

COURSE csioi and 
zis ENO of ENROLLMENT having 

GRADEA 

Its answer is 
TRUE 

Sometimes, a set of tokens may include both a 
domain name and a database value from this 
domam (the domain node 1s then marked twice) 
This presents no problems, as the usual process 
will Instantiate a variable for this node and then 
bmd it to the particular data value The fmal 
effect will be as if the domain token was not 
included 

5. Resolving Ambiguities 
As already mentioned, a given set of tokens 

may be connected with several mmlmum 
spanning trees, which ~111 lead to several 
different queries The given set of tokens IS then 
called ambrguous We dlstmgmsh between three 
kinds of amblgmty 

Multiple trees for the same nodes. 
The set of marked nodes (obtained from the 
given tokens) may be connected with more 
than one mmlmum spanning tree The 
example which demonstrated the process 
was of this kmd 

Alternative sets of nodes. A given data 
token may belong to more than one domain 
Together with the nodes marked by the 
remaining tokens, each of the possible 
domain nodes forms a valid set of marked 
nodes For example, BROWN may be known 
as both PERSON-NAME and COLOR, which, 
considered together with the attribute CAR, 
may lead to either .a11 cars owned by 
Brown., or ‘all brown cars’ 

Multiple interpretations for the same 
tree. Several values may be from the same 
domain, which IS then marked several times 

127 



In such cases, several interpretations are Amblgmtles of the first kmd are handled with 
possible even for the same tree For 
example, COURSE, BROWN and KLEIN could 
be interpreted as the courses m which ecther 
student IS enrolled, or as the courses m 
which both are enrolled 

There are three ways to approach amblgultles, 
and our methods here combme all three 

1 Determine correct interpretation. The 
most desirable soIutlon IS, of course, a 
procedure which selects a smgle 
interpretation as the correct one 
Unfortunately, it 1s often impossible to 
justify any particular interpretation over 
the others A less ambltlous (but more 
feasible) approach IS to eliminate certain 
interpretations as incorrect, and perhaps 
rank the remammg interpretations for 
hkehhood of being correct 

‘2 Interact with the user. Alternatively, 
we may try to approach the user for further 
clarlflcatlon This method 1s usually simpler 
and often cheaper, though sometimes the 
user may be unable to offer substantial 
assistance For example, the user may be 
asked to dlsamblguate a token (.IS BROWN 

a COLOR or a PERSON-NAME?") Or the 
system may only request more tokens, m 
the hope that they will strengthen certam 
alternatives, and possibly mvahdate others 
Or the user may be offered to select from 
several different mterpretatlons of his token 
set 

3 Pursue multiple interpretations. 
Finally, d the number of alternatives IS 
relatively small, the system could pursue 
them all and present their outcome to the 
user for his decision 

When the user enters a token, the system looks 
It up immediately m the lexicon If multiple 
entries are found for this token, then the system 
displays the different entrles and requests the 
user to select among them Thus, amblgultles of 
the second kmd are resolved instantly with user 
assistance 

a prune-and-rank procedure, which discards 
some interpretations and then ranks the 
remammg interpretations for likelihood of being 
correct The pruning phase 1s based on the 
followmg observation Whenever a domain node 
IS used m the spanning tree, an assumption IS 
made that the semantics of the attribute nodes 
which it connects are similar This 1s a risky 
assumption Sometimes the risk 1s low m our 
example, the attributes C-NO and COURSE have 
almost identical meanings However, GPA and 
UNITS have very little m common This suggests 
that mterpretatlons that contam fewer such 
connections are more likely to be correct 
Consequently, given two interpretations we will 
prefer the one that makes the least number of 
such “JoIns” Thus, among all mmlmum 
spanning trees we prefer those that have the 
smallest number of slmllarlty arcs, and discard 
the others Our ranking of the remaining 
acceptable trees 1s based on their stze the 
smaller the tree, the more likely Its 
interpretation 1s the correct one This measure 
IS based on the observation that unlikely 
interpretations require more intermediate 
concepts to connect the set of tokens provided 
by the user, resultmg m larger trees In the 
example that demonstrated the process, each of 
the two trees that were pursued has one such 
‘Jam”, but the first tree (‘retrieve the names of 
all students who are Math maJors”) 1s smaller 
and IS therefore ranked before the second 
(‘retrieve the names of ail students who are 
enrolled m Math courses”) Several other trees 
are discarded altogether because they make more 
‘Joins” (e g “retrieve the names of all students 
whose GPA 1s identical to the units of some 
Math coursem)4 After this procedure 1s 
performed, the different queries are presented to 
the user as possible mterpretatlons of his tokens, 
and he IS asked to select one If he declines, they 
are attempted sequentially, m their order of 
likelihood 

‘Some extensions of the relatlonal model use the 
concept of role, to dlstmgulsh between sttrlbutes that are 
of the same domam, but still express dflerent semantics 
As this feature ehmmates the risk of .Joms”, our 
selectlon procedure under such a model ~111 be based on 
sne only 
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The last kind of ambiguity is the most difficult 
to resolve. Consider the tokens DEPARTMENT, 

BROWN and KLEIN (where the last two are both 
from domain PERSON-NAME) and the minimum 
spanning tree that connects them through 
STUDENT,ENO,COURSE,COURSE-NUMBER and 
C-NO. The interpretation is to retrieve the 
departments which offer courses in which these 
students are enrolled. However, several 
variations are possible here, and they retrieve 
different sets of departments: those which enroll 
either BROWN or KLEIN; those which enroll both; 
and those which enroll both in the axme course. 
To understand these alternatives, assume the 
tokens DEPARTMENT and BROWN and the 
tokens DEPARTMENT and KLEIN are considered 
separately. For each pair of tokens a chain of 
variables is instantiated over the path that 
connects them. In considering the three tokens 
together, we may choose to keep the chains 
separate, or we may identify some of the 
corresponding variables. The first interpretation 
is for separate chains; the second identifies the 
two DEPARTMENT variables; and the third also 
identifies the two COURSE variables. In such 
cases we adopt the safer approach of not 
identifying any of the variables. The effect is as 
if the user repeated the query twice: first with 
BROWN and then with KLEIN. It is also possible 
to show all the different interpretations to the 
user and have him select one. 

corresponds to the structured attribute that 
many database management systems introduce 
to handle composed keys (for example, [lo]). 

With simple extensions, the power of this naive 
query language can be increased. One example 
are arithmetic comparisons. Given the tokens 
NAME, GPA, > and 3.0, the following query will 
be generated: 

(z NAhIE+GPA y) I\ (y > 3.0). 

Another simple extension will allow users to 
refer to attribute names by example. A user 
who wants to know the numbers of math courses 
that give 3 units of credit, but does not know 
the token C-NO, will be able to supply instead an 
example of a course number he knows, e.g. CSIOI 
(to indicate that CSIOI is only an example, it 
should be prefixed by -). A token set that will 
accomplish this request is: -CS~OI, MATH, 3, 
UNITS. Note that the last token serves only as 
reinforcement; a proper interpretation will also 
be produced without it. 

6. Extensions and 
Implementation 
Considerations 

Until now we have assumed that all relations 
have simple keys. However, no significant 
modifications are required to handle composed 
keys. In addition to the attribute nodes for 
every component of the key, the dependency 
graph should include an extra node for the 
composed key, with dependency arcs to each 
component node, as well as to the other 
attributes of the relation. Thus, if in the 
database UNIVERSITY, relation ENROLLMENT did 
not have the key attribute ENO, but instead the 
composed key (STUDENT,COURSE), we would 
introduce a new node for the composed key, and 
the dependency graph would be exactly like the 
one obtained before. This extra node 

The query interpretation mechanism described 
here may be implemented with any relational 
database management system. The only 
modification needed is to add a lexicon feature 
(see below). As the dependency language queries 
produced by the interpreter are easy to translate 
into other query languages, this interface can be 
implemented to produce queries in a language 
already supported by the system. Note that the 
database itself is never modified, except for the 
additional relation LEXICON, and all other 
applications and user interfaces are unaffected 
by this mechanism. 

The relation LEXICON must not be modified by 
users; the system should update it automatically, 
to reflect user updates to other relations. This is 
similar to the way that secondary indexes are 
handled in some relational systems (for example, 
(91). A similar device was used by the relational 

interface BAROQUE, to provide a semantic 
network view of relational databases, and thus 
offer elaborate browsing functions [7/. The cost 
of this relation, in terms of the additional space 
to store this relation and the additional 
computation for its initialization and its 
continuous update, is comparable to the cost of a 
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secondary index on every database attribute 
Except, of course, that there IS no need to store 
numbers m the lexicon, as their domain 1s 
apparent, usually, numbers account for a 
substantial part of the database If the required 
storage IS still prohlbltlve, it IS possible to 
implement the lexicon only m part, by mvertmg 
on selected attributes only Thus, tokens of 
certain domains will not be recognized, and the 
system will have to extract the domain 
mformatlon by means of a dialogue 

One dlfflculty that must be consldered 1s that 
the algorithm for fmdmg mmlmum spanning 
trees in a graph 1s known to be 
NP-Complete [2] However, 1ts actual 
complexity can be controlled quite tightly by the 
followmg restrlctlons First, we may limit the 
number of tokens users are expected to provide, 
so that the number of marked nodes does not 
exceed 4 or 5 This restrlctlon 1s quite safe, as 
the type of requests anticipated from users of 
this interface normally would not involve very 
many tokens (note that tokens which are from 
the same domain only mark a single node, so 
token sets can actually be much larger) Second, 
we may limit our search to spanning trees which 
require at most 2 or 3 unmarked nodes to 
connect any two marked nodes (I e sets of 
tokens which can only be connected by long 
paths of unmarked nodes are considered 
disconnected) Again, this IS a reasonable 
assumption, as the slgmfrcance of a possible 
assoclatlon between two tokens decreases rapidly 
with the number of links necessary to connect 
them (note that m such cases, the process may 
be retried if the user provides an addltlonal 
token to help associate the previous tokens) 
Finally, we may develop heurlstlc methods which 
construct spanning trees that are not necessarily 
mmlmal, but are compact enough to provide a 
reasonable basis for an interpretation 

7. Conclusion 
We have described a new kind of user-database 

interface which requires neither a formal 
language, nor any understanding of the 
organization of the database Our mechanism 
performs a task which may be called intelligent 
conclude a request from a set of tokens By 

returning its interpretations of token set 
requests, it also mstructs users m the proper 
application of the formal language 

Of course, the ‘language. of tokens IS not 
complete in any sense a large number of 
requests cannot be phrased with tokens alone 
Still, tokens enable naive users to express a 
substantial number of popular queries m an 
extremely simple and Informal way The 
combmatlon of our token interpreter with a 
standard query interface, will result m a very 
effective interface 

Our methods for interpreting a set of tokens 
sometimes require that the user be consulted, 
but most of the time we preferred to interpret 
the tokens provided by the user m some simple 
default way Another possible dlrectlon, which IS 
currently under mvestigatlon, IS to strengthen 
the interactive capablhtles of the interface 
Thus, m effect the interface will start with the 
tokens, and then help the user construct ha 
query Such a dialogue-based interface ~111 
remove some of the uncertamtles that are part 
of our token mterpretatlon methods Also, It 
will allow the user to specify a richer set of 
requests 
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