
EFFICIENTLY SUPPORTING PROCEDURES IN RELATIONAL
DATABASE SYSTEMS +

Timos K. Sellis
Department of Computer Scaence

and Systems Research Center
Unaverszty of Maryland

College Park, MD 20742

Abstract

We examme an extended relational database sys-
tem which supports database procedures as full
fledged oblects In particular, we focus on the
problems of query processmg and efficient support
for database procedures First, a varlatlon to the
original INGRES decomposltlon algorithm 1s
presented Then, we examme the idea of storing
results of previously processed procedures m secon-
dary storage (cachrng) Using a cache, the cost of
processmg a query can be reduced by preventing
multiple evaluations of the same procedure Prob-
lems associated with cache orgamzatlons, such as
replacement pohcles and vahdatlon schemes are
examined Another means for reducing the execu-
tion cost of queries 1s mdexmg A new mdexmg
scheme for cached results, Partial Indexing, 1s pro-
posed and analyzed

+ Tlus research was sponsored by the U S Air Force Office of
Sclentrfic Research Grant 83-0254 while the author was at
the Umverslty of Cahforma, Berkeley, and partlaly by the
NatIonal Science Foundation under Grant CDR-85-00108

PermIssIon to copy wIthout fee all or part of this material 1s granted
provided that the copies are not made or chstnbuted for direct
commercial advantage, the ACM copyright notice and the title of
the pubhcatlon and its date appear, and notlce 1s given that copymg
1s by permIssIon of the Association for Computmg Machinery To
copy otherwIse, or to republish, requires a fee and/or specfic
perrmsslon

0 1987 ACM O-89791-236-5/87/0005/0278 7%

1. Introduction

Recent developments m the design of data-
base systems include proposals for several exten-
sions to the basic model of relational database sys-
tems Systems based on the ObJect Oriented Pro-
gramming paradigm [DERR86,COPE84], systems
that provide support for storing both knowledge
and data [ZANI85,ULLM85,JARK84] (also called
Expert Database Systems [KERS84,KERS86]) and
finally systems that have certain extenslblhty capa-
blhtles [CARE86,BAT086,MOHA86,STON86b],
have been proposed m an attempt to make DBMSs
capable of supportmg other than the tradltlonal
busmess apphcatlons Mam targets of such sys-
tems are Engineering and Artificial Intelligence
apphcatlons [GUTT84,KERS84,BAT085,KERS86]

Clearly, all proposals will need some kmd of
extended relational query language to support a
high level user interface Examples of such
languages are GEM [ZANI83], POSTQUEL
iSTON86b] and DATALOG [MORR86] Because
of their extended capablhtles, such languages need
special support for the efficient execution of
queries For example, languages supportmg recur-
sive queries need speclahzed algorithms to process
recursion [BANC86,IOAN86a] Query processmg
algorithms need to be modified m light of all such
extensions The purpose of this paper 1s to discuss
some query processmg issues that arise m extended
relational database systems Although we concen-
trate on a specific query language which 1s an
extension to QUEL [STON76], the dlscusslon should
apply to other languages as well

Previous work m the area of processmg
queries m extended relational DBMSs has focused
on optlmlzmg the execution of new types of opera-
tions such as transitive closure queries
[GUTT84,IOAN86b,VALD86], general recursive
queries [BANC86,IOAN86a], deduction

278

[GRAN81,ULLM85], multiple-statement operations
[SELL85,SELL86b], etc Physical and conceptual
modelmg, concurrency control and crash recovery
are some of other well known DBMS problems
[ULLM82] Th e solutions to many of these prob-
lems can still be used m extended relational DBMS
environments However, performance Will
deteriorate due to the complexity of the new opera-
tlons The goal of this paper 1s to examme ways of
lmprovmg the performance by provldmg more
sophlstlcated optimization tactics More
specifically, we concentrate on the problem of
query processing Issues that deal with user mter-
faces, physlcal and conceptual modelmg, con-
sistency m a multiple user environment and robust-
ness, are exammed m more detail m [STON86b] m
the context of the design of a new DBMS
(POSTGRES) bemg developed at the Umverslty of
Cahforma, Berkeley

This paper 1s orgamzed as follows Section 2
presents the language QUEL+ and Illustrates &s
use with some examples Then, m sectlon 3 we
briefly examme the problem of query processmg by
presentmg a varlatlon to the INGRES decomposl-
tlon algorithm [WONG76] along with some posse-
ble improvements Sections 4 and 5 present the
mam contrlbutlons of this paper We focus on
schemes that improve the performance of the sys-
tem, like caching and mdexmg Finally, we con-
clude m section 6 by summarlzmg the dlscusslon of
this paper and pomtmg out interesting future
research problems

2. The Query Language QUEL+

QUEL+ [STON85] 1s an extension to QUEL,
the query language deslgned for INGRES
[STON76] Th ere are two major extensions made
to QUEL

a) repetitive execution of commands, and

b) storing query language commands m relation
fields

The first extension allows the user to Implement
iteration using the query language itself mstead of
escaping to a general purpose programming
language In EQUEL/C [ALLM76] for example,
the programmer can embed INGRES commands m
C programs and therefore can Implement Iteration
through the lteratlve constructs of C The second
feature follows the paradigm of LISP and allows
the uniform treatment of data and control mfor-
matlon, or procedures m [STON85], where the
latter 1s implemented using database commands
(database procedures) Stonebraker et al give m

[STON85] a detailed dlscuszuon of the language
We review here the second extension since it will
serve as the basis for our presentation

It was first proposed m [STON84] that QUEL
commands be stored m relation fields m the same
way data 1s stored m relations For srmphcrty,
these fields are thought of as variable length
strmgs In INGRES, relation fields can be accessed
mdlvldually through the dot () operator For
example, given a relation EMP (name, salary, mgr) ,
with the obvious meamngs for the three fields,
EMP mgr accesses the manager names recorded m
EMP Extendmg these semantics, it will be assumed
that accessmg a relation field contammg QUEL
commands (QUEL field) lmphes the ezecutton of
the commands that are stored m the field The
commands stored m QUEL fields are not necessarily
the same for all tuples, as It will be soon demon-
strated through an example

Processmg QUEL fields amounts to evaluatmg
the commands that are stored m these fields The
problem of efficiently evaluatmg the contents of
QUEL fields has been studled m [SELL851 and
[SELL86b] Here, our focus 1s the problem of pro-
cessmg QUEL+ queries Before we proceed to dls-
cuss that problem however, we present an example
of QUEL+

A relation EMP (name salary, mgr, hobbies)
1s grven, where name, salary and mgr are con-
ventional fields while hobbies is a field of type
QUEL We use hobbies to retrreve data on the
various hobbles of employees In addrtron, we
assume that the followmg relations exist m the sys-
tem

SOFTBALL(name,position performance)
SOCCER(name,position,goals,performance)
MUSIC(name instrument performance)

Assume also the instance of the EMP relation as
shown m Figure 1 (we use SFT for SOFTBALL, SCR
for SOCCER and MUS for MUSIC)

The QUEL syntax 1s extended using the mul-
teple dot notation borrowed from Zamolo’s GEM
language [ZANI83,ZANI84] For example, one can
retrieve the performance of Jones m all his hobbles
as follows

retrieve (Et@ hobbies performance)
where EMP name = “Jones”

The number of dots that can be used depends on
the relation nestmg level With the use of the mul-
tiple dot notatron, QUEL+ allows the user to actu-
ally “navigate” through relations usmg QUILL fields

279

Lam 1 80 1 Moore

hobbies
retrieve (8FT position,

SFT performance)
where SFT name = ‘Rifws’

retrieve (SFT position,
SFT performance)

where SFT name = wJones”
retrieve (SCR position,

SCR performance)
where 8CR name = .Jonesl

retrieve (MJS all)
where MJS name = ‘Lam’

1 I I I J

Figure 1: Relation EMP

as links between the accessed tuples

Clearly, the result of evaluatmg (“matercalrz-
Ing”) a QUEL field 1s a set of relatrons, or m gen-
eral a set of tuples These sets are themselves
database obJects (relations) QUEL+ provrdes rela-
tion level operators allowing a user to use set
operations as well (such as set equality, set mequal-
ity, union, intersection, etc) For example, one
may wish to get all pairs of employees that play m
the same posrtrons and with the same performance
m their hobbles The above query can then be for-
mulated as

range of EMP,EMPl is EMP
retrieve (EMP name,EMPl name)
where EMP name # FMPl name
and EW hobbies == FMPl hobbies

where == 1s the set equality operator Issues
involved m the rmplementatron of such operators
are drscussed m more detail m [SELL86b]

After revrewmg the structure and semantics of
QUEiL+, turn we now to examme the problem of
query processing

3. Processing QUEL+

This section presents a query processmg algo-
rithm that INGRES can use to evaluate QUEL+
queries First, rt drscusses how the orrgmal decom-
position algorithm of Wong and Youssefi
[WONG76] was extended to handle queries m rela-
tion fields and the extended relation level opera-
tors Then, some possible rmprovements are sug-
gested and explained through examples A com-
plete drscussron of the algorithm can be found m
[SELL86b]

3.1. Extended Decomposition

Figure 2 shows a diagram of the extended
decomposltron algorithm as suggested m
[STON85] The modrficatrons done to the orlgmal
Wong-Youssefl algorithm can be summarized as
follows

a) All one-variable clauses except those that
include a multrple dot reference or a relation
level operator are processed first The reason 1s
that clauses mvolvmg extended operators can-
not be processed efficiently For example, none
of the followmg two clauses

EMP hobbies position = Ucatchern
or

FMP hobbies == constant rekztron -
should be processed first because that would
imply the materialization of the hobbles
entries of d employees, which 1s very expen-
sive An exception to that 1s the case where an
index exists on FMP hobbies position This
case IS drscussed m more detail m sectron 5

b) An extra step is required to check d all QUEL
field entries have been materrahaed Materrah-
zatron 1s done by passing the queries found m
the QUEL field to a second INGRES process
which m turn returns the result relation(s)
The decomposrtron algorithm contmues process-
mg one-variable clauses and materrahzmg
QUEL fields until no more such fields are left
unevaluated

Figure 2 Extended Decomposltlon Strategy [STON85]
(OVQP One Varrable Query Processor)

280

c) In [WONG76] the crlterlon for selectmg a rela-
tlon to iterate over m the case of tuple substltu-
tlon, 1s the size of the relations The presence
of QUEL fields makes this criterion ineffective
Not only the number of tuples but the cost for
materlahzmg the correspondmg QUEL fields
should be considered The reason 1s that during
tuple substltutlon, each tuple variable will be
replaced with specific field values read from the
relation In case of QUEL fields these values are
the materlahzatlon results Therefore the crl-
terion for selecting a relation to iterate over
will generally be a function of the size of the
relation and the characterlstlcs of the matenal-
lzed objects One of these characterlstlcs which
1s of maJor importance 1s the ablhty of the sys-
tem to keep materlahzed oblects m secondary
storage, 1 e caching This aspect 1s treated m
more detail m section 4

The extended decomposltlon algorithm delays
materlahzmg a QUEL field until there IS nothing
else that the conventional query processor can do
Even tuple substltutlon must be done first, the rea-
son being that checking a condltlon that mvolves
multiple dot references lmphes a loop over all
tuples m the relation During that loop QUEL
fields are materialized and checked through lower
level fields Generally, the absence of any mforma-
tlon about the contents of relations m QUEL fields
makes optlmlzatlon very hard, if not lmposslble
In the next section we discuss one possible Improve-
ment through saving the results of materlahzmg
QUEL fields (cachrng), m this case, the contents of
QUEL fields are known and conventional cardmal-
lty estlmatlon methods [SELI79] can be used to
estimate the cost of the various processmg stra-
tegies

3.2. Improvements to Extended Decomposi-
tion

In this subsection some possible Improve-
ments to the algorithm presented above are exam-
med First, we give some rules that can be applied
m general, then, some other special case transfor-
mations that can be used are outlined

The first general rule as, suggested above, 1s
to process one-variable clauses and do reduction as
the mltlal Wong-Youssefi algorithm proposes
[WONG76] This will certainly be the best thmg
to do independent of the number of relations or
QUJSL field materlahzatlons that will follow The
problem arises when tuple substltutlon 1s necessary
We motivate our proposal using an example

Assume that in the E,MP relation the hobbles
field produces a relation, which itself has a field
performance that also produces a relation as a
result and the field we are interested m 1s the
location field of that last relation We also
assume the existence of another relation
DEFT (name, mgr, location) The query 1s

retrieve (EMP name,DEPT name)
where F&P hobbies performance location

= DEFT location
and EMP mgr = DEFT mgr

The question that arises here 1s over which relation
to iterate domg tuple substltutlon The mam idea
behind tuple substltutlon IS to introduce single
variable selection clauses as early as possible
Using such clauses relation sizes are reduced and,
consequently, the number of materlahzatlons that
will be needed IS also lower For example, m the
above query tuple substltutlon should be done over
DEPT independently of the sizes of the two rela-
tions The reason 1s that tuple substltutlon will
create some one-variable clauses which can then be
used to restrict the number of F.MP tuples that need
to be considered for materlahzatlon of their fields
In general, an algorithm that selects a relation to
iterate over attempts to mmlmlze the total number
of tuple substltutlons required, assuming the most
expensive processing lies m QUEL field materlahza-
tlons Such an algorithm 1s formally discussed m
[SELL86b]

We now describe a different technique that
can be used to improve the performance of the
query processor m some special cases The basic
idea 1s that when an entry from a QUEL field 1s
matermhzed, the query that has to be processed
next 1s known More specifically, the structure of
the query 1s known and through that the optlmlzer
can identify access structures that may be desirable
m order to speed up processing For example, m
the query

retrieve (EMP name,DEPT name)
where EMP hobbles performance average=10
and EMP mgr=DEPT mgr
and EMP hobbies leader=DEPT mgr

the query processor will choose to tuple substitute
over DEPT, and after detaching one-variable
clauses and substltutmg F&P with TEMP, the new
query will be

retrieve (TEMP name,constant-11
where TEMP hobbies performance average=10
and TEW hobbies leader=constant-2

At this point the query processor will start

281

materiahzmg entrees from the hobbies field of
TF%P Let TEMPT be the result of materrahzmg a
specrfic entry of hobbies, then the type of queries
that will have to be processed for each TEMP tuple
will be

retrieve (constant-3 constant-l)
where TEWl performance average=10
and TEMPl leader=constant-2

From that last query one can observe that depend-
mg on the size of TEMPl it may be beneficial to
build a secondary mdex on leader so that the
second quahficatron clause can be processed
efficiently This structure will be bmlt m the pro-
cess of producing TEMPT (on the fly) and no extra
time need be spent at the trme the last of the
above queries wrll be evaluated Dynamic creation
of indexes or imposing other structures on relations
(like sortmg) has also been used m conventional
query processmg [YOUS78,KOOI82] However, a
difference 1s that m the QUEL+ environment no
srgmficant addrtronal cost need be spent on creat-
mg the mdex At the same time a result of a
materrahzatron 1s produced and stored m a tem-
porary relation, some adequate orgamzatron 1s
chosen or a secondary mdexmg structure 1s built

In the same sprrrt we describe another optrm-
rzatron technique that can be used to reduce the
cost of processing a query Clearly, one wants to
materrahze QUEL fields and produce results that
will be used subsequently m the course of process-
mg a given query However, m some cases, not all
queries stored m QUEL fields will give relevant
mformatron For example, consider the relation
EMP(name, salary, mgr, hobbles) of the previous
sectron, and the query

retrieve (EMP name)
where EMF’ hobbies instrument = “violin”

When the various entrres m the hobbies field are
materrahzed, only those queries that mvolve m
then result a field instrument should be
evaluated In our example, the queries that
retrieve data from the SOFTBALL and SOCCER rela-
tions should not be evaluated Moreover, even If
the query in hobbies retrieves many fields from
the MUSIC or any other relation that mcludes a
field instrument, the contents of the materlahzed
relations should be restricted to contam only the
mformatron that 1s absolutely necessary, m this
caSe the instrument field We should also notlce
here that the same Idea exists m conventional
query processmg as well m the form of proJectrons
made to restrrct sizes of mtermedrate results

[WONG76,SELI79]

The above technique tries to reduce the
amount of space reqmred for storing materrahzed
objects However, there are some cases where no
space at all need be allocated for materrahzatron
This 1s the case where a QUEL field contams a sm-
gle retrieve or define view command In this
special (but very common case) there 1s no need to
even produce the result of the command Conven-
tronal query modrficatron [STON75] can be used
For example, consider the followmg query

retrieve (EMP hobbies position)
where EKP hobbles average I 15

where the hobbles field of the EMP relation con-
tams one of the followmg QUEL expressrons

or

ie

retrieve (SOCCER all)
where SOCCER name = conetant

retrieve (SOFTBALL all)
where SOFTBALL name = constant

all employees have at most one hobby Then
the given query can be transformed to

retrieve (REL position)
where REL average < 15
and REL name = constant

where REL 1s either SOCCER or SOFTBALL Thrs
transformatron not only prevents the query proces
sor from materrahzmg relations, but rt also allows
the optrmlzer to have more mformatron on the
structure of the query, and therefore to process It,
with a better access plan It 1s also possrble to gen-
eralize thus technique to handle multrple statements
[SELL86b]

This concludes our presentatron of the extended
decomposrtron algorrthm for processmg QUEL+
queries In addltlon to the basic algorithm, we
presented some less general tactics that can be used
to improve the performance of the query processor
In the two sectrons that follow two other issues
that are of srgmficant Importance to query process-
mg are drscussed, namely cochzng and rndexzng of
the results of QUEL fields

4. Caching Materialbed QUEL Fields

As It was seen m the previous section,
materlahzmg an entry of type QUEL amounts to
executing, possrbly several, QUEL queries Hence,
rt will be generally very slow to perform this
operatron every time a QUEL field 1s accessed This
section examines ways to make QUEL+ processmg
more efficient through the use of a cache

282

4.1. What is Caching?

We mentloned at several points m the prevl-
ous sections that one way to avoid evaluating the
same QUEL field entries multiple times 1s cachrng
By caching we mean computmg the values of QUEL
fields and storing them m some specifically assigned
area of secondary storage This computation can
be done either at the time tuples are inserted m
relations or the first time they are referenced We
will call the former precompvtatzon of QUEL field
entries smce It occurs before even the content of
the specific field 1s accessed However, our focus
here 1s on the latter case which 1s more natural
The basic idea 1s to keep m secondary storage
materialized objects that are frequently used m
queries Under that formulation, the caching prob-
lem 1s conceptually the same aa the well known
caching problem m operating systems [MATT70]
Notice also, that the cache can be used not only for
materlahzed QUEL fields but for generally holding
the results of any query issued by the user These
can be saved because either the same query may be
given by a user frequently or they can be used to
answer other queries [FINK82,LARS85,SELL86a]

The caching problem introduces several sub-
problems to be solved The followmg list 1s the set
of issues that will be discussed m this section

a) Whrch query results to cache?

b) What algorrthm should be ueed for the replace-
ment of cache entnesQ

c) How to check the wal~d~ty of a cached object9

We will assume that the general model of the cache
1s a hmlted area m secondary storage where entries
of the form

(Qid,Query-expression,Result)

are stored f&d 1s some unique identifier,
Query-expression is some canonical representa-
tion for queries, e g query graphs [WONG76], and
Result 1s the relation resulting after executing the
query or set of queries that were found m some
QUEL field and described by the second field
(Query-expression) The followmg three subsec-
tions give answers to each of questions (a) through

(4
4.2. Which Query Results to Cache?

Depending on the mformatlon known about
the queries, the system can decide whether a result
1s worth caching or not For a given materlahza-
tlon result R, this declslon will be generally based
on the frequency of references to R, the frequency
of updating the relations used to build R and the

costs for computmg, storing and usmg R
Specifically, Table 1 shows the list of parameters to
the caching problem

Cachmg Problem Parameters

C Size allocated for the cache
r, Probability of referencmg result R,
US Probablhty of updatmg R,
M, Cost of producmg R, (matenallzatlon)
S, Cost of wrltmg R, In the cache
K Cost of usmg R, from the cache

IR,I Size of R,
IN Cost of mvahdatmg a cache entry

Table 1 Cachmg Problem Parameters

C 1s the number of disk pages allocated for the
cache r, and u, are the probablhtles of referencing
and updating respectively a result R, M, 1s the
cost of materlahzmg the QUEL field that gives the
result R, while S, and U, are the costs of wrltmg to
and reading from the cache R, respectively
Finally, It will be assumed that mvahdatmg an
object m the cache incurs a cost IN Given these
parameters, we now describe various alternatives
for the problem of selecting which results to cache
Depending on the amount of storage allocated for
the cache, we differentiate between two cases
Unbounded and Bounded Space

l Unbounded Space

In this case C= co and therefore the declslon to
cache a result R,, 1s local, that is, It depends only
on the values of parameters associated with R,
Since each object 1s examined mdlvldually,
ut+ r,= 1 will hold The criterion 1s baaed on com-
paring the cost of processing R, without usmg the
cache with the correspondmg cost assuming that R,
will be cached Let the two costs be denoted by
NC, and YC, respectively In the case where no
caching 1s used, the result must be produced at
each reference by materlahzmg the correspondmg
QUJ3L field Hence the total cost will be

NC, = r, M,

In the case where caching IS used, a result 1s stored
m the cache and 1s invalidated each time an update
to the database has some effect on It The first
retrieval after a series of updates will have to re-
materlahze a query affected by those updates In
order to compute the cost YC% we will differentiate
between the followmg four cases for the types of
two consecutive requests

283

4

b)

4

4

Read-Update In this case the result 1s mvah-
dated because of the update, the contrlbutlon
to the total cost bemg

r, u, IN (1)

Read-Read In this case the result 1s simply
read from the cache with total cost

rs f, v, (2)

Update-Update The cost here 1s due to domg
only the mvahdatlon of the cached entry, that
1s

u, u, IN (3)

Update-Read This 1s the case where the oblect
must be re-materialized and stored m the
cache The total cost will be

us r, (M+ 4) (4)

Hence for the case where the cache IS used, the cost
of processing will be

YC, = r, u, IN+ r, r, U,+ u, u, IN+ u, r, (M,+ S,)

or, since r,+ u,= 1,

I”‘, = u, IN+ r, [rs V,+ u, (M,+S,)]

Comparmg now YC, and NC, we can identify the
cases where it 1s worth cachmg result R, That
happens when NC, > YC, Usmg the formulas
extracted above, and assummg that S,=l and
IN=1 (one page access 1s needed to cache or
mvahdate an object), we can see that this 1s true d

I I \ I

lM>(i.+ [+]I
Checking the above condltlon will determine If the
result of a given QUJZL field materlahxatlon should
be kept m the cache

l Bounded Space
This case 1s more reahstlc than the previous, m the
sense that some hmlted space on secondary storage
1s allocated for caching Hence, m this case C 1s
some finite number of disk blocks In contrast to
the crlterlon used for Unbounded Space, all objects
to be cached must be considered Let M be the
number of results to be cached Each obJect R, has
reference and update probablhtles, r, and u, respec-
tlvely Smce many results can now be affected by
the same update to a base relation, It can no longer
be assumed that r,+ u,= 1 We wdl however state
the followmg property that holds m this case

C h+ 4= 1
I

The formulae derived above for the case of usmg
the cache are still vahd There 1s an addltlonal
constramt that must be imposed here, and that has
do with space hmltatlons This restrlctlon mdl-
cates that the total space occupied by cached
results cannot be more than C Given all these
parameters we formulate now the problem of cach-
mg m the case of Bounded Space

Let A IN+ { O,l} b e an allocatton fun&on
(IN denotes the set of mteger numbers) A result
R, will be cached If A(z)= 1, if A(n)= 0, R, wdl be
dlscarded after it IS used Hence m the hfetlme of
the system, result R, ~111 contrlbute

I

W
m,= NC

If A(t)= 1

I If A(r)=0

to the total processmg cost The optimal caching
pohcy ~111 be to cache some of the M objects so
that the total cost 1s mmlmal and the space
required 1s less than the allowed fragment on
secondary storage In other words, we seek a func-
tlon A such that

1s mmlmal
1-l

subject to the constramt

gl A(t)lR,I I C

This problem of optimal allocation has been shown
to be NP-complete (see [CHAN77] for a slmdar
problem) However, almost ldentlcal constraints
have to be satisfied m the vrew rndemng problem
that Roussopoulos examined m the context of
lmprovmg the performance of view based queries
[ROUS82a,ROUS82b] In [ROUS82a], he defines a
state model to formulate the above allocation prob-
lem and then gives an A* algorithm that finds a
near-optimal allocation We will not go here mto
the details of that algorithm, the reader IS referred
to (ROUS82al for a rigorous and detalled presenta-
tlon of the techmque

The output of the A* algorithm ldentlfies
which results are worth keeping m the cache
Hence, this approach 1s meaningful only m the case
where all QUEL fields are materlahzed m advance
and a declslon IS made on which of them should be
cached Clearly, that pohcy may not be always the
best to use Perlodlcally the system may re-run
the same algorithm and use statlstlcs acquired dur-
mg the execution of various queries and updates
Even for objects not cached, the system may keep

284

some statlstlcs and recompute the allocation func-
tlon A so that new results can get a chance to be
stored m the cache Due to the very high cost of
the A* algorithm though, such a solution 1s
undesirable The next subsection provides some
mslght for better approaches

In summary, the above two cases shared the
fact that the reference and update probablhtles for
the various obJects were known m advance In the
most general case, the values of the above parame-
ters are not known and the system must be able to
dynamically adapt its cachmg behavlour, so that
the contents of the cache always reflect the most
frequently used and/or costly results We will not
present here a specml algorithm for the case where
no statlstlcs are available The followmg subsec-
tlon discusses that Issue m the context of the
replacement pohcles that can be used for the cache

4.3. Replacement Algorithm

The problem of selectmg a pohcy for replac-
mg objects m the cache, is abstractly formulated as
follows

A state 8 of the cache 1s the set of objects that
are stored m it <RI,&, ,R,,> along with
some statlstlcal mformatlon associated with each
R, We ~111 assume here that this mformatlon 1s

4 The time smce R, was last referenced

2
Probablhty of updating R,

IR,i
Cost of producing R, (matenahzatlon)
Size of R,

and that the cost of wrltmg and reading an
object from the cache is equal to the size of that
oblect Let S and R be the set of all possible
states and results to cache, respectively Then, a
replacement polacy P, 1s a function P SXR+ S
that, given a state 8 for the cache and a newly
materlahzed result R,, decides

a) If R, should be cached, and
b) m case the answer to (a) 1s posltlve but there
1s not enough free space m the cache to accom-
modate R,, which other result(s) should be dls-
carded to free the space needed

In operatmg systems an optimal page buffer
replacement pohcy 1s one that uses the whole (past
and future) pattern of references to decide on
which pages should be cached (see algorithm OPT
m wTT70]) This algorithm 1s not practical
though, unless one can predict with high probabll-
lty the future behavlour of the system The closest
approxlmatlon IS the LRU (Least Recently Used)

algorithm which selects to discard the object with
maximum time smce last reference In the area of
database management systems, the same pohcy can
be used m the design of buffer managers DeWltt
and Chou give m a recent article [CHOU85] an
analysis of these algorithms m a database envlron-
ment

In our cachmg problem, an obJect R, 1s
cached mdependently of its parameters, as long as
space can be allocated to store R, m the cache If
this 1s not the case, then some result(s) must be
dlscarded to free the space needed for stormg R,
There are generally two approaches one can take

a) We can first try to approximate the parameters
of Table 1 usmg the statlstlcs the system has
acquired The sizes IR,I and the materlahzatlon
costs M, are given since the obJects have been
computed already The update probablhty u, IS
also easy to derive, assuming that the probablh-
ties of updatmg base relations are given What
remains to be provided 1s the probablhty of
referencmg a result as well as the probablhty of
updatmg the result, m the case where the fre-
quencles with which base relations are updated
are not known For obJects already m the
cache, these probablhtles can be estimated from
the reference patterns already observed For
new results, one can predict the reference pat-
tern If the query processmg algorithm 1s known
For example, m the case of processmg a Jam, if
It 1s known that either nested loops or merge
scan wdl be used, we can predict the way QUEL
fields are accessed, and therefore have a rough
estimate for the needed probablhtles

b) A different approach 1s to consider the values of
given parameters only and try to approximate
the optimal pohcy with an LRU-like pohcy
However, m the general case LRU will not
work We propose the derlvatlon of some
experimental formula rank(M,,u,,t,j R,I) which
would rank obJects accordmg to the values of
their associated parameters, given some weights
and scaling factors The lowest ranked
object(s) should be dlscarded at a point where
space 1s needed Examples of rank are

(1) rank(W,u,,t,,!R,I) = M

ObJects with low M, values should be dlscarded
to free space for objects with high materlahza-
tlon costs

(2) rank(W,u,,t,,bSI) = f
I

Pure LRU algorithm based on the time since

285

last reference

(3) r~nk(M,,~*,LlR,I) = $

Very frequently updated results are not worth
cachmg

(4) rank(M,,u,,t,jR,l) = iR,I

Small obJects should be discarded m case larger
ones need be cached

Trying to generalize rank by combmmg all four
functions we suggest the followmg function for
rank

rank(M,~,,dR,I) = ;1;(44+ %JR*I)

+ w,+lR,l
I

This formula 1s the simplest one that can be dev-
ised and mcorporates m an easy way the effects of
the various parameters The specific format was
chosen to agree with formulas (1) through (4) of
section 4 2 The first factor 1s based on the fact
that updates require matermhzatlon of objects as
well as storing the results m the cache The second
part simply Introduces the LRU-hke behavlour
How to derive the weights wl, w2 and w3 1s an
interesting open problem and should be attacked
through extensive experlmentatlon

4.4. Checking the Validity of Cached Objects

Cached results of materlahzed QUEL field
entries may become invalid when the relations used
to compute these results are modified Checking
the validity of the cached obJects amounts to Iden-
tifying which results are affected from a given
update When such a result R, 1s found to be
affected, one of two actions can take place

4

b)

One can simply invalidate the correspondmg
entry of the cache The next query that tries
to use the result, will find It mvahdated and
will have to re-evaluate the associated query
This 1s the scheme assumed m the analysis of
the previous subsection

One can use the updates performed to the
underlying relations and propagate them to
all cached entries affected by these updates
Update propagation algorithms are described
m various articles and m different contexts
[BUNE’IS,ADIB80,KUNG84,BLAK86]

In our environment however, the second approach
suffers from two very serious drawbacks First, It
1s the case that between two references to a specific

cached result many updates to underlying relations
may be performed Clearly, for each of these
updates slgmficant effort will be spent domg propa-
gation of the updates The second drawback 1s due
to the fact that updates may be propagated to
bring up to date entries that may never be used m
the future Clearly, a good caching scheme will
discard these results and replace them with others
more frequently used which makes any effort to
propagate updates useless We take the approach
that entries must be brought up to date on
demand, that is, the next time the specific entry 1s
requested m a query Then the system can either
rncrementally propagate the modlficatlons, assum-
mg that we keep the updates m some kmd of a log
[ROUS86], or simply re-evaluate the query That
1s an optlmlzatlon question and depends on the
specific characterlstlcs of the query and the
updates

Finally, the problem of detecting which
cached results are affected by a given set of
updates must be addressed [STON86a] presents a
detaled dlscusslon of the problem and the pro-
posed solutions Two approaches to solve the
problem are described m detail One 1s based on
physical locking of data involved m queries with
cached results (Basrc Lockcng) while the other one
1s based on checking predicate expressions affected
by the updates (Predrcate Indesang) These
schemes share the same properties with physical
and predicate locking respectively
[GRAY78,ESWA76] as used m concurrency control
The interested reader 1s referred to [STONSSa]

Performance analysis results m (STON86a],
show that It 1s not possible to choose one ample-
mentatlon to support efficiently any cache based
environment Dependmg on the probablhty of
updating base relations and the number of cached
entries that overlap (m the sense that their read
sets share some tuples from base relations), the
first or the second approach becomes more efficient
Basic Locking seems the most promlsmg because of
its ease of implementation, performance in simple
environments, and extenslblhty to Jam predicates
Analysis of these schemes and mvestlgatlon of
other extensions are a topic of future research

This last subsection concludes our presenta-
tion on caching results of QUEL fields A working
version of extended INGRES has a very slmphfied
cache which performed very well m the experl-
ments of [STON85] POSTGRES [STON86b] will
be supported by a more sophlstlcated caching
scheme which will use LRU for replacement and

286

Basic Locking for checkmg the vahdlty of the
entries

5. Indexing Results of QUEL Fields

Imagme a query that 1s frequently asked and
has the followmg form

retrieve (!ZMP name)
where EMP hobbies average < constant

One would most probably like to bmld an mdex on
ENP hobbles average m the same way mdexes are
built on simple attributes However, there 1s a
difficulty m usmg conventional indexing schemes to
index results of QUEL fields This would require
the materlahzatlon of & entries m the QUEL field
and, moreover, materlahzatlon must be done when
a new tuple with a QUEL field 1s inserted For
example, If a new employee tuple 1s inserted m the
E,MP relation the hobbies field must be processed,
the result cached If possible and the index on
EMP hobbies average must be updated with the
new values This mdexmg scheme suffers from two
serious drawbacks First, insertion time increases
slgmficantly since it 1s no longer a simple addltlon
of a tuple m a relation, but the execution of (possl-
bly) many queries as well, the ones stored m QUEL
fields In particular, m the case of queries mvolv-
mg clauses with multi-dot expresslons, response
time may mcrease drastically Second, by precom-
putmg QUEL field entrles the system materializes
all objects and therefore spends a lot of time (and
possibly space m the cache) m processing field
entries that may be never referenced m the future

Another proposal that overcomes the above
problems 1s presented here The mam idea 1s to
have the index reflect only values that have been
seen m the past and not all possible ones Through
this scheme, it IS expected to achieve better perfor-
mance m cases where the same set of queries 1s fre-
quently asked We are also wlllmg to pay some
penalty to update the index m the case where the
set of queries changes Given a field, the structure
to be described contams mformatlon on all values
of that field that appear solely m results of matetr-
abed entrles These results do not have to exist m
the cache, they can exist m the index even If the
object that mcluded them has been flushed out of
the cache In these cases, the index simply shows
that some QUEL fields, even if not currently
materialized, can produce the specific values stored
Moreover, some extra mformatlon 1s associated
with the Index, mformatlon that characterizes the
class of tuples that are mdexed In summary, the
indexing scheme proposed 1s a partzal rndex m the

sense that it mdexes only a part of the relation

Let us use an example to motivate the dlscus-
slon on partial mdexes that follows The relation
EMP(name, salary,mgr hobbies) of section 2 has
an index defined on EMP hobbies average The
tuples currently m EMP are (SFT stands for SOFT-
BALL)

pitcher 8

pitcher 4

Assume also that there 1s a unique tuple Identifier
TID associated with each tuple m the E,MP relation,
with value 100,101 and 102 for the first, second
and third tuple respectively These values are
stored m the EMP relation but are not vlslble to the
user The results of the second and third tuple
have been materlahzed and stored m the cache
That 1s mdlcated m the above relation by
representing them with small relations stored m
the hobbies field of EMP Suppose the query that
has caused that materlahzatlon was

retrieve (EMP name)
where EMP salary > 20
and EMP hobbies average c 6

and was processed by scannmg EMP and materlahz-
mg only the hobbies fields of employees with
salary more than 20K The index on
EMP hobbies average was of no use because no
entries mere matermhzed before the above query
was executed However, after the execution of the
query the mdex will be as shown m Figure 3
Notice that this index table differs m two ways
from conventional mdexes First, there may be
more than one average value for the 8ame TID
value This cannot be true m conventional rela-
tions because all fields carry a single value (First
Normal Form [uLLM82]) Second, there 1s a predl-
cate associated with the index (salary > 20)
This predicate uses only non-QUEL fields and 1s a
simple way to Identify the kmd of tuples mdexed
by the given mdex That predicate IS also used to
decide If an mdex 1s useful m answermg a given
query For example, a future query that mcludes a

287

Figure 3: Partlal Index

restrlctlon on EMP hobbies average and refer-
ences employees with salarles more than Z, with
2>20, can use the mdex to avoid a full scan of
EMP However, for ~5 20 the relation must be
scanned and the entries with salary values under
20 will be matenahzed As a side effect, the mdex
table and the correspondmg predicate will be
updated

In [SELL86b] we present m detail the operai
tlons on a partial mdex (e g searching or updatmg
the index) We will not go mto the detruls here
due to space hmltatlons Instead, we would like to
mention another possible use of partial indexes
Many times users issue all their queries through
specific views that they have defined over base rela-
tions Users are not allowed to keep materialized
versions of the views m the system because of its
high space cost, but they still would hke queries to
execute fast Indexes on base relations will be help-
ful for that However, these mdexes contam more
mformatlon than what these users need, namely an
mdex only on the result of the vaew matetralitatron
A partial mdex seems like a clean solution to that
problem The predicate part will be static smce It
will be the predicate that defines the view, but
querying and updating will be performed under the
guldelmes outlined above This idea can also be
extended to normal relations, smce these are spe-
cial cases of views Usmg partial indexes, better
performance can be achieved by allowmg the mdex
to keep mformatlon only on frequently accessed
data

6. Summary

This paper first presented the language
QUJSL+ and its capablhtles Then, an extended
decomposltlon algorithm based on the INGRES
query processing algorithm was proposed The
extensions made were mainly due to the fact that
one new operation was Introduced, namely the

materlahzatlon of QUEL fields We showed how
the fact that materlahzatlon 1s a very expensive
operation 1s taken mto account Also, some special
case strategies were discussed that aim at reducing
the sizes of materlahzed results

Caching was then proposed as a way to avoid
evaluating the queries found m QUEL fields more
than once Several issues associated with caching
were discussed Among others, replacement poh-
cles, mvahdatlon algorithms and pohcles that
decide which objects to cache were examined m
detail The dlscusslon shows that caching IS essen-
tial m the QUEiL+ environment and various solu-
tions to the above problems can be derived once
the cached oblect characterlstlcs are known HOW
to compute these characterlstlcs and how to adapt
the system caching pohcles according to these
statlstlcs 1s a very interesting open problem

Lastly, a new mdexmg technique, Partial
Indexing, was proposed to provide efficient access
to results of QUEL field matenahzatlons A partial
mdex 1s a combmatlon of both a conventional
mdex table and a predicate Predicates character-
ize the set of tuples that can be accessed through
the correspondmg mdex tables We also described
how the system can check if an mdex 1s useful m
processing a given query and what are the neces-
sary operations to mamtam a partial mdex when
queries and updates are performed

As interesting future work m that area we
view the attempt to implement and experiment
with the ideas presented m this paper As men-
tioned m section 4, POSTGRES will support
QUEL+ and caching will be used to improve per-
formance Slmulatlons are under development for
an analysis of the various caching scheme alterna-
tives Finally, we are currently mvestlgatmg the
efficient support of partial mdlces not only for a
QUEL+ environment but for a conventional
environment as well

Acknowledgements I would like to thank my advl-
sor Prof Michael Stonebraker for glvmg me the
opportumty to work m the area of database pro-
cedures and the anonymous referees for their com-
ments which greatly improved the presentation of
the ideas

7. References

[ADIB80] Adlba, ME and Lindsay, B G ,
‘Databaee .%apshots”, Proceedings of
the 6th International Conference on
Very Large Data Bases, Montreal,

288

[ALLM76]

[BANC86]

[BAT0851

[BAT0861

[BLAK86]

[BUNE79]

[CARE861

[CHAN77]

[CHOU85]

[COPE841

October 1980

Allman, E et al, ‘%QUEL Reference
ManualR, Umverslty of Cahfornia,
Technical Report UCB/ERL, Berkeley,
CA, 1976

Banclllhon, F , and Ramakrlshnan, R ,
“An Amateur’8 Introductton to Recur-
8tve Query Processmg”, Proceedmgs of
the 1986 ACM-SIGMOD International
Conference on the Management of
Data, Washington, DC, May 1986

Batory, D S and Kim, W, “Modeltng
Concept8 for VLSI CAD ObJecte”,
ACM Transactions on Database Sys-
tems, (10) 3, September 1985

Batory, D S , et al, “GENESIS A
Reconjigurable Database Management
System”, Umverslty of Texas at Aus-
tm, Technical Report TR-86-07, Aus-
tm, TX, March 1986

Blakeley, J A Larson, P and
Tompa, F W, “Effi crently Updatrng
Materlalrzed Views”, Proceedings of
the 1986 ACM-SIGMOD International
Conference on the Management of
Data, Washington, DC, May 1986

Buneman, 0 P and Clemons, E K ,
‘%fficlently Monrtor;ng Relational
Databases”, ACM Transactions on
Database Systems, (4) 3, September
1979

Carey, M , et al, “Object and File
Management :n the EXODUS Eztenel-
ble Database System”, University of
Wisconsin at Madison, Technical
Report, Madison, WI, March 1986

Chandy, K M , “Models of Dgatrtbuted
Systems”, Proceedings of the 3rd
Internatlonal Conference on Very
Large Data Bases, Tokyo, October
1977

Chou, H and Dewitt, D J , “An
Evaluataon of Buffer Management
Strategree for Relatronal Database Sys-
tems”, Proceedmgs of the 11th Inter-
national Conference on Very Large
Data Bases, Stockholm, August 1985

Copeland, G and Maler, D , “Makrng
Smalltalk a Database Sy8temrt,
Proceedmgs of the 1984 ACM-
SIGMOD International Conference on

[DERR86]

[ESWA76]

[FINK821

[GRAN81]

[GRAY781

[GUTT84]

[IOANSSa]

the Management of Data, Boston, MA,
June 1984

Derrett, N P et al, “An ObJect-
0r:ented Approach to Data Manage-
ment”, Proceedmgs of the 1986 IEEE
Spring Compcon Conference,

Eswaran, K P et al, ‘The Notrons of
Consistency and Predacate Locks an a
Database System”, Commumcatlons of
the ACM, (19) 11, 1976

Fmkelstem, S , “Common Expressron
Analyet in Database Applzcatrone”,
Proceedmgs of the 1982 ACM-
SIGMOD International Conference on
the Management of Data, Orlando,
FL, June 1982

Grant, J and Mmker, J , “Opt:mlra-
tton tn Deductrve and Conventzonal
Relatronal Database Systems”, m
“Advances In Data Base Theory” , vol
1, H Gallave, J Mmker and J-M
Nlcolas, Eds , Plenum Press, New
York, 1981

Gray, J N , “Notes on Data Base
Operatrng Systems”, IBM Research,
Technical Report RJ-2254, San Jose,
CA, August 1978

Guttman, A, “‘New Features for Rela-
tronal Database System8 to Support
CAD Appltcakone”, PhD Thesis,
University of Cahforma, Berkeley,
June 1984

Ioanmdls, Y , “Proceae~ng Recursron
an Deductrve Database Systems”, PhD
Thesis, University of California,
Berkeley, July 1986

[IOAN86b) “On the Computatron of the Z’ransrtrve
Closure of Relatronal Operators”,
Proceedmgs of the 12th International
Conference on Very Large Data Bases,
Kyoto, Japan, August 1986

[JARK84] Jarke, M , Clifford, J and Vasslhou,
Y , “An Opttmrtcng PROLOG Front-
end to a Relatconal Query System”,
Proceedings of the 1984 ACM-
SIGMOD International Conference on
the Management of Data, Boston, MA,
June 1984

[KERS84] Kershberg, L , Editor, Proceedmge of
the First Intetnatronal Workshop on
Ezpert Database Systems, Klawah Is1 ,

289

[KJ3RS86]

[KOOI82]

[KUNG84]

[LARS85]

[MATT70]

[MOHA86]

[MORR86]

[ROSE801

[ROUS82a]

[ROUS82b]

[ROUSSS]

SC, October 1984

Kershberg, L , Editor, Proceedtngs of
the Fgret Internatronal Conference on
Expert Database Systems, Charleston,
SC, Apnl, 1986
Kool, R and Frankfurth, D , ‘(Query
Optrmrzatron rn INGRES”, Database
Engmeermg, (6) 3, September 1982

Kung, R et al, “Heurrstrc Search $11
Data Base Systema”, m [KERS84]

Larson, P and Yang, H , “Computrng
Quertes from Dertved Relations”,
Proceedings of the 11th Internatlonal
Conference on Very Large Data Bases,
Stockholm, August 1985

Mattson, R L et al, “Evaluatton Tech-
nrquee for Storage Hzerarchres”, IBM
Systems Journal, (9) 2, 1970

Mohan, C , “STARBURST An Exten-
cable Relahonal DBMS”, Panel Dlscus-
slon on Extenalble Database Systems,
Proceedings of the 1986 ACM-
SIGMOD Internatlonal Conference on
the Management of Data, Washmgton,
DC, May 1986

Morris, K , et al, “Desrgn Overvrew of
the NAIL! System”, Stanford Umver-
slty, Technical Report STAN-CS-86-
1108, Stanford, CA, May 1986

Rosenkrante, D J and Hunt, H B ,
“Processing Conlunctlve Predleates
and Queraea’, Proceedmgs of the 6th
International Conference on Very
Large Data Bases, Montreal, October
1980

Roussopoulos, N , “Vtew Indexrng an
Relatronal Databaeecr”, ACM Transac-
tions on Database Systems, (7) 2, June
1982

Roussopoulos, N , “The Logteal Access
Path Schema of a Database”, IEEE
Transactions on Software Engmeermg,
(8) 6, November 1982

Roussopoulos, N and Kang, H , “Prel-
amrnary Deesgn of ADMS* A
Workstatron-Matnframe Integrated
Architecture for Databaee Management
Systems”, Umverslty of Maryland,
Technical Report, College Park, MD,
February 1986

[SELI79]

[SELL851

[SELLSSal

[SELL86b]

[STON75]

[STON76]

[STON84]

[STON85]

Sehnger, P et al, “Acce88 Path Selec-
tton in a Relatronal Data Base Sys-
tem”, Proceedmgs of the 1979 ACM-
SIGMOD International Conference on
the Management of Data, Boston, MA,
June 1979

Selhs, T and Shapiro, L , “Opttmrta-
tlon of Extended Database Languages,,,
Proceedmgs of the 1985 ACM-
SIGMOD Internatlonal Conference on
the Management of Data, Austin, TX,
May 1985

Selhs, T , “Global Query Optrmlza-
t(on”, Proceedings of the 1986 ACM-
SIGMOD International Conference on
the Management of Data, Washington,
DC, May 1986

Sells, T , “Optrmtzatzon of Extended
Relatronal Databaee Systems”, PhD
Thesis, University of California,
Berkeley, July 1986

Stonebraker, M , UImplementatron of
Integrrty Constrarntcr and Vtews by
Query Mod$catron”, Proceedings of
the 1975 ACM-SIGMOD International
Conference on the Management of
Data, San Jose, CA, June 1975

Stonebraker, M et al, “The Design
and Implementatton of INGRES”,
ACM Transactions on Database Sys-
tems, (1) 3, September 1976

Stonebraker, M et al, “Quel as a Data
Type”, Proceedings of the 1984
ACM-SIGMOD International Confer-
ence on the Management of Data, Bos-
ton, MA, June 1984

Stonebraker, M et al, “Extendmg a
Data Base System with Procedures”,
Umverslty of Cahforma, Technical
Report UCB/ERL/M85/59, Berkeley,
CA, July 1985

[STON86a] Stonebraker, M , Selhs, T and Han-
.-, E, “Rule Indezrng Implementa-
ttotas rn Database Systems”, m
[KERS86]

[STON86b] Stonebraker, M and Rowe, L , “The
Deeagn of POSTGRES”, Proceedmgs
of the 1986 ACM-SIGMOD Interna-
tlonal Conference on the Management
of Data, Washmgton, DC, May 1986

290

[ULLM82]

[ULLM85]

[VALD86]

[WONG76]

vOUS78]

[ZANI83]

[ZANI84]

[ZANI85]

Ullman, J , HPrlnclples of Database
Systems” , Computer Science Press,
1982

Ullman, J , “Implementation of Loga-
cal Query Languages for Data Bases,,,
Proceedings of the 1985 ACM-
SIGMOD International Conference on
the Management of Data, Austm, TX,
May 1985

Valdurlez, P and Boral, H , “Evalua-
tron of Recuretve Querres Ustng Joan
IndIces”, in [KERS86]

Wong, E and Youssefi K , “Decompo-
ectlon A Strategy for Query Procees-
rngn, ACM Transactions on Database
Systems, (1) 3, September 1976

Youssefi, K , “Query Processrng for a
Relatronal Database Syetem”‘, PhD
Thesis, University of California,
Berkeley, 1978

zan1010, c , “The Databaee Language
GEM,,, Proceedmgs of the 1983
ACM-SIGMOD International Confer-
ence on the Management of Data, San
Jose, CA, May 1983

Zaniolo, C , “PROLOG A Database
Query Language for all Seaeons”, m
[KERS84]

Zaniolo, C , “The Repreeentatron and
Deductrve Retrreval of Complez
Objects”, Proceedings of the 11th
International Conference on Very
Large Data Bases, Stockholm, August
1985

291

