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Abstract 

We examme an extended relational database sys- 
tem which supports database procedures as full 
fledged oblects In particular, we focus on the 
problems of query processmg and efficient support 
for database procedures First, a varlatlon to the 
original INGRES decomposltlon algorithm 1s 
presented Then, we examme the idea of storing 
results of previously processed procedures m secon- 
dary storage (cachrng) Using a cache, the cost of 
processmg a query can be reduced by preventing 
multiple evaluations of the same procedure Prob- 
lems associated with cache orgamzatlons, such as 
replacement pohcles and vahdatlon schemes are 
examined Another means for reducing the execu- 
tion cost of queries 1s mdexmg A new mdexmg 
scheme for cached results, Partial Indexing, 1s pro- 
posed and analyzed 
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1. Introduction 

Recent developments m the design of data- 
base systems include proposals for several exten- 
sions to the basic model of relational database sys- 
tems Systems based on the ObJect Oriented Pro- 
gramming paradigm [DERR86,COPE84], systems 
that provide support for storing both knowledge 
and data [ZANI85,ULLM85,JARK84] (also called 
Expert Database Systems [KERS84,KERS86]) and 
finally systems that have certain extenslblhty capa- 
blhtles [CARE86,BAT086,MOHA86,STON86b], 
have been proposed m an attempt to make DBMSs 
capable of supportmg other than the tradltlonal 
busmess apphcatlons Mam targets of such sys- 
tems are Engineering and Artificial Intelligence 
apphcatlons [GUTT84,KERS84,BAT085,KERS86] 

Clearly, all proposals will need some kmd of 
extended relational query language to support a 
high level user interface Examples of such 
languages are GEM [ZANI83], POSTQUEL 
iSTON86b] and DATALOG [MORR86] Because 
of their extended capablhtles, such languages need 
special support for the efficient execution of 
queries For example, languages supportmg recur- 
sive queries need speclahzed algorithms to process 
recursion [BANC86,IOAN86a] Query processmg 
algorithms need to be modified m light of all such 
extensions The purpose of this paper 1s to discuss 
some query processmg issues that arise m extended 
relational database systems Although we concen- 
trate on a specific query language which 1s an 
extension to QUEL [STON76], the dlscusslon should 
apply to other languages as well 

Previous work m the area of processmg 
queries m extended relational DBMSs has focused 
on optlmlzmg the execution of new types of opera- 
tions such as transitive closure queries 
[GUTT84,IOAN86b,VALD86], general recursive 
queries [BANC86,IOAN86a], deduction 
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[GRAN81,ULLM85], multiple-statement operations 
[SELL85,SELL86b], etc Physical and conceptual 
modelmg, concurrency control and crash recovery 
are some of other well known DBMS problems 
[ULLM82] Th e solutions to many of these prob- 
lems can still be used m extended relational DBMS 
environments However, performance Will 
deteriorate due to the complexity of the new opera- 
tlons The goal of this paper 1s to examme ways of 
lmprovmg the performance by provldmg more 
sophlstlcated optimization tactics More 
specifically, we concentrate on the problem of 
query processing Issues that deal with user mter- 
faces, physlcal and conceptual modelmg, con- 
sistency m a multiple user environment and robust- 
ness, are exammed m more detail m [STON86b] m 
the context of the design of a new DBMS 
(POSTGRES) bemg developed at the Umverslty of 
Cahforma, Berkeley 

This paper 1s orgamzed as follows Section 2 
presents the language QUEL+ and Illustrates &s 
use with some examples Then, m sectlon 3 we 
briefly examme the problem of query processmg by 
presentmg a varlatlon to the INGRES decomposl- 
tlon algorithm [WONG76] along with some posse- 
ble improvements Sections 4 and 5 present the 
mam contrlbutlons of this paper We focus on 
schemes that improve the performance of the sys- 
tem, like caching and mdexmg Finally, we con- 
clude m section 6 by summarlzmg the dlscusslon of 
this paper and pomtmg out interesting future 
research problems 

2. The Query Language QUEL+ 

QUEL+ [STON85] 1s an extension to QUEL, 
the query language deslgned for INGRES 
[STON76] Th ere are two major extensions made 
to QUEL 

a) repetitive execution of commands, and 

b) storing query language commands m relation 
fields 

The first extension allows the user to Implement 
iteration using the query language itself mstead of 
escaping to a general purpose programming 
language In EQUEL/C [ALLM76] for example, 
the programmer can embed INGRES commands m 
C programs and therefore can Implement Iteration 
through the lteratlve constructs of C The second 
feature follows the paradigm of LISP and allows 
the uniform treatment of data and control mfor- 
matlon, or procedures m [STON85], where the 
latter 1s implemented using database commands 
(database procedures) Stonebraker et al give m 

[STON85] a detailed dlscuszuon of the language 
We review here the second extension since it will 
serve as the basis for our presentation 

It was first proposed m [STON84] that QUEL 
commands be stored m relation fields m the same 
way data 1s stored m relations For srmphcrty, 
these fields are thought of as variable length 
strmgs In INGRES, relation fields can be accessed 
mdlvldually through the dot ( ) operator For 
example, given a relation EMP (name, salary, mgr) , 
with the obvious meamngs for the three fields, 
EMP mgr accesses the manager names recorded m 
EMP Extendmg these semantics, it will be assumed 
that accessmg a relation field contammg QUEL 
commands (QUEL field) lmphes the ezecutton of 
the commands that are stored m the field The 
commands stored m QUEL fields are not necessarily 
the same for all tuples, as It will be soon demon- 
strated through an example 

Processmg QUEL fields amounts to evaluatmg 
the commands that are stored m these fields The 
problem of efficiently evaluatmg the contents of 
QUEL fields has been studled m [SELL851 and 
[SELL86b] Here, our focus 1s the problem of pro- 
cessmg QUEL+ queries Before we proceed to dls- 
cuss that problem however, we present an example 
of QUEL+ 

A relation EMP (name salary, mgr, hobbies) 
1s grven, where name, salary and mgr are con- 
ventional fields while hobbies is a field of type 
QUEL We use hobbies to retrreve data on the 
various hobbles of employees In addrtron, we 
assume that the followmg relations exist m the sys- 
tem 

SOFTBALL(name,position performance) 
SOCCER(name,position,goals,performance) 
MUSIC(name instrument performance) 

Assume also the instance of the EMP relation as 
shown m Figure 1 (we use SFT for SOFTBALL, SCR 
for SOCCER and MUS for MUSIC) 

The QUEL syntax 1s extended using the mul- 
teple dot notation borrowed from Zamolo’s GEM 
language [ZANI83,ZANI84] For example, one can 
retrieve the performance of Jones m all his hobbles 
as follows 

retrieve (Et@ hobbies performance) 
where EMP name = “Jones” 

The number of dots that can be used depends on 
the relation nestmg level With the use of the mul- 
tiple dot notatron, QUEL+ allows the user to actu- 
ally “navigate” through relations usmg QUILL fields 
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Lam 1 80 1 Moore 

hobbies 
retrieve (8FT position, 

SFT performance) 
where SFT name = ‘Rifws’ 

retrieve (SFT position, 
SFT performance) 

where SFT name = wJones” 
retrieve (SCR position, 

SCR performance) 
where 8CR name = .Jonesl 

retrieve (MJS all) 
where MJS name = ‘Lam’ 

1 I I I J 

Figure 1: Relation EMP 

as links between the accessed tuples 

Clearly, the result of evaluatmg (“matercalrz- 
Ing”) a QUEL field 1s a set of relatrons, or m gen- 
eral a set of tuples These sets are themselves 
database obJects (relations) QUEL+ provrdes rela- 
tion level operators allowing a user to use set 
operations as well (such as set equality, set mequal- 
ity, union, intersection, etc) For example, one 
may wish to get all pairs of employees that play m 
the same posrtrons and with the same performance 
m their hobbles The above query can then be for- 
mulated as 

range of EMP,EMPl is EMP 
retrieve (EMP name,EMPl name) 
where EMP name # FMPl name 
and EW hobbies == FMPl hobbies 

where == 1s the set equality operator Issues 
involved m the rmplementatron of such operators 
are drscussed m more detail m [SELL86b] 

After revrewmg the structure and semantics of 
QUEiL+, turn we now to examme the problem of 
query processing 

3. Processing QUEL+ 

This section presents a query processmg algo- 
rithm that INGRES can use to evaluate QUEL+ 
queries First, rt drscusses how the orrgmal decom- 
position algorithm of Wong and Youssefi 
[WONG76] was extended to handle queries m rela- 
tion fields and the extended relation level opera- 
tors Then, some possible rmprovements are sug- 
gested and explained through examples A com- 
plete drscussron of the algorithm can be found m 
[SELL86b] 

3.1. Extended Decomposition 

Figure 2 shows a diagram of the extended 
decomposltron algorithm as suggested m 
[STON85] The modrficatrons done to the orlgmal 
Wong-Youssefl algorithm can be summarized as 
follows 

a) All one-variable clauses except those that 
include a multrple dot reference or a relation 
level operator are processed first The reason 1s 
that clauses mvolvmg extended operators can- 
not be processed efficiently For example, none 
of the followmg two clauses 

EMP hobbies position = Ucatchern 
or 

FMP hobbies == constant rekztron - 
should be processed first because that would 
imply the materialization of the hobbles 
entries of d employees, which 1s very expen- 
sive An exception to that 1s the case where an 
index exists on FMP hobbies position This 
case IS drscussed m more detail m sectron 5 

b) An extra step is required to check d all QUEL 
field entries have been materrahaed Materrah- 
zatron 1s done by passing the queries found m 
the QUEL field to a second INGRES process 
which m turn returns the result relation(s) 
The decomposrtron algorithm contmues process- 
mg one-variable clauses and materrahzmg 
QUEL fields until no more such fields are left 
unevaluated 

Figure 2 Extended Decomposltlon Strategy [STON85] 
(OVQP One Varrable Query Processor) 
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c) In [WONG76] the crlterlon for selectmg a rela- 
tlon to iterate over m the case of tuple substltu- 
tlon, 1s the size of the relations The presence 
of QUEL fields makes this criterion ineffective 
Not only the number of tuples but the cost for 
materlahzmg the correspondmg QUEL fields 
should be considered The reason 1s that during 
tuple substltutlon, each tuple variable will be 
replaced with specific field values read from the 
relation In case of QUEL fields these values are 
the materlahzatlon results Therefore the crl- 
terion for selecting a relation to iterate over 
will generally be a function of the size of the 
relation and the characterlstlcs of the matenal- 
lzed objects One of these characterlstlcs which 
1s of maJor importance 1s the ablhty of the sys- 
tem to keep materlahzed oblects m secondary 
storage, 1 e caching This aspect 1s treated m 
more detail m section 4 

The extended decomposltlon algorithm delays 
materlahzmg a QUEL field until there IS nothing 
else that the conventional query processor can do 
Even tuple substltutlon must be done first, the rea- 
son being that checking a condltlon that mvolves 
multiple dot references lmphes a loop over all 
tuples m the relation During that loop QUEL 
fields are materialized and checked through lower 
level fields Generally, the absence of any mforma- 
tlon about the contents of relations m QUEL fields 
makes optlmlzatlon very hard, if not lmposslble 
In the next section we discuss one possible Improve- 
ment through saving the results of materlahzmg 
QUEL fields (cachrng), m this case, the contents of 
QUEL fields are known and conventional cardmal- 
lty estlmatlon methods [SELI79] can be used to 
estimate the cost of the various processmg stra- 
tegies 

3.2. Improvements to Extended Decomposi- 
tion 

In this subsection some possible Improve- 
ments to the algorithm presented above are exam- 
med First, we give some rules that can be applied 
m general, then, some other special case transfor- 
mations that can be used are outlined 

The first general rule as, suggested above, 1s 
to process one-variable clauses and do reduction as 
the mltlal Wong-Youssefi algorithm proposes 
[WONG76] This will certainly be the best thmg 
to do independent of the number of relations or 
QUJSL field materlahzatlons that will follow The 
problem arises when tuple substltutlon 1s necessary 
We motivate our proposal using an example 

Assume that in the E,MP relation the hobbles 
field produces a relation, which itself has a field 
performance that also produces a relation as a 
result and the field we are interested m 1s the 
location field of that last relation We also 
assume the existence of another relation 
DEFT (name, mgr, location) The query 1s 

retrieve (EMP name,DEPT name) 
where F&P hobbies performance location 

= DEFT location 
and EMP mgr = DEFT mgr 

The question that arises here 1s over which relation 
to iterate domg tuple substltutlon The mam idea 
behind tuple substltutlon IS to introduce single 
variable selection clauses as early as possible 
Using such clauses relation sizes are reduced and, 
consequently, the number of materlahzatlons that 
will be needed IS also lower For example, m the 
above query tuple substltutlon should be done over 
DEPT independently of the sizes of the two rela- 
tions The reason 1s that tuple substltutlon will 
create some one-variable clauses which can then be 
used to restrict the number of F.MP tuples that need 
to be considered for materlahzatlon of their fields 
In general, an algorithm that selects a relation to 
iterate over attempts to mmlmlze the total number 
of tuple substltutlons required, assuming the most 
expensive processing lies m QUEL field materlahza- 
tlons Such an algorithm 1s formally discussed m 
[SELL86b] 

We now describe a different technique that 
can be used to improve the performance of the 
query processor m some special cases The basic 
idea 1s that when an entry from a QUEL field 1s 
matermhzed, the query that has to be processed 
next 1s known More specifically, the structure of 
the query 1s known and through that the optlmlzer 
can identify access structures that may be desirable 
m order to speed up processing For example, m 
the query 

retrieve (EMP name,DEPT name) 
where EMP hobbles performance average=10 
and EMP mgr=DEPT mgr 
and EMP hobbies leader=DEPT mgr 

the query processor will choose to tuple substitute 
over DEPT, and after detaching one-variable 
clauses and substltutmg F&P with TEMP, the new 
query will be 

retrieve (TEMP name,constant-11 
where TEMP hobbies performance average=10 
and TEW hobbies leader=constant-2 

At this point the query processor will start 
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materiahzmg entrees from the hobbies field of 
TF%P Let TEMPT be the result of materrahzmg a 
specrfic entry of hobbies, then the type of queries 
that will have to be processed for each TEMP tuple 
will be 

retrieve (constant-3 constant-l) 
where TEWl performance average=10 
and TEMPl leader=constant-2 

From that last query one can observe that depend- 
mg on the size of TEMPl it may be beneficial to 
build a secondary mdex on leader so that the 
second quahficatron clause can be processed 
efficiently This structure will be bmlt m the pro- 
cess of producing TEMPT (on the fly) and no extra 
time need be spent at the trme the last of the 
above queries wrll be evaluated Dynamic creation 
of indexes or imposing other structures on relations 
(like sortmg) has also been used m conventional 
query processmg [YOUS78,KOOI82] However, a 
difference 1s that m the QUEL+ environment no 
srgmficant addrtronal cost need be spent on creat- 
mg the mdex At the same time a result of a 
materrahzatron 1s produced and stored m a tem- 
porary relation, some adequate orgamzatron 1s 
chosen or a secondary mdexmg structure 1s built 

In the same sprrrt we describe another optrm- 
rzatron technique that can be used to reduce the 
cost of processing a query Clearly, one wants to 
materrahze QUEL fields and produce results that 
will be used subsequently m the course of process- 
mg a given query However, m some cases, not all 
queries stored m QUEL fields will give relevant 
mformatron For example, consider the relation 
EMP(name, salary, mgr, hobbles) of the previous 
sectron, and the query 

retrieve (EMP name) 
where EMF’ hobbies instrument = “violin” 

When the various entrres m the hobbies field are 
materrahzed, only those queries that mvolve m 
then result a field instrument should be 
evaluated In our example, the queries that 
retrieve data from the SOFTBALL and SOCCER rela- 
tions should not be evaluated Moreover, even If 
the query in hobbies retrieves many fields from 
the MUSIC or any other relation that mcludes a 
field instrument, the contents of the materlahzed 
relations should be restricted to contam only the 
mformatron that 1s absolutely necessary, m this 
caSe the instrument field We should also notlce 
here that the same Idea exists m conventional 
query processmg as well m the form of proJectrons 
made to restrrct sizes of mtermedrate results 

[WONG76,SELI79] 

The above technique tries to reduce the 
amount of space reqmred for storing materrahzed 
objects However, there are some cases where no 
space at all need be allocated for materrahzatron 
This 1s the case where a QUEL field contams a sm- 
gle retrieve or define view command In this 
special (but very common case) there 1s no need to 
even produce the result of the command Conven- 
tronal query modrficatron [STON75] can be used 
For example, consider the followmg query 

retrieve (EMP hobbies position) 
where EKP hobbles average I 15 

where the hobbles field of the EMP relation con- 
tams one of the followmg QUEL expressrons 

or 

ie 

retrieve (SOCCER all) 
where SOCCER name = conetant 

retrieve (SOFTBALL all) 
where SOFTBALL name = constant 

all employees have at most one hobby Then 
the given query can be transformed to 

retrieve (REL position) 
where REL average < 15 
and REL name = constant 

where REL 1s either SOCCER or SOFTBALL Thrs 
transformatron not only prevents the query proces 
sor from materrahzmg relations, but rt also allows 
the optrmlzer to have more mformatron on the 
structure of the query, and therefore to process It, 
with a better access plan It 1s also possrble to gen- 
eralize thus technique to handle multrple statements 
[SELL86b] 

This concludes our presentatron of the extended 
decomposrtron algorrthm for processmg QUEL+ 
queries In addltlon to the basic algorithm, we 
presented some less general tactics that can be used 
to improve the performance of the query processor 
In the two sectrons that follow two other issues 
that are of srgmficant Importance to query process- 
mg are drscussed, namely cochzng and rndexzng of 
the results of QUEL fields 

4. Caching Materialbed QUEL Fields 

As It was seen m the previous section, 
materlahzmg an entry of type QUEL amounts to 
executing, possrbly several, QUEL queries Hence, 
rt will be generally very slow to perform this 
operatron every time a QUEL field 1s accessed This 
section examines ways to make QUEL+ processmg 
more efficient through the use of a cache 
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4.1. What is Caching? 

We mentloned at several points m the prevl- 
ous sections that one way to avoid evaluating the 
same QUEL field entries multiple times 1s cachrng 
By caching we mean computmg the values of QUEL 
fields and storing them m some specifically assigned 
area of secondary storage This computation can 
be done either at the time tuples are inserted m 
relations or the first time they are referenced We 
will call the former precompvtatzon of QUEL field 
entries smce It occurs before even the content of 
the specific field 1s accessed However, our focus 
here 1s on the latter case which 1s more natural 
The basic idea 1s to keep m secondary storage 
materialized objects that are frequently used m 
queries Under that formulation, the caching prob- 
lem 1s conceptually the same aa the well known 
caching problem m operating systems [MATT70] 
Notice also, that the cache can be used not only for 
materlahzed QUEL fields but for generally holding 
the results of any query issued by the user These 
can be saved because either the same query may be 
given by a user frequently or they can be used to 
answer other queries [FINK82,LARS85,SELL86a] 

The caching problem introduces several sub- 
problems to be solved The followmg list 1s the set 
of issues that will be discussed m this section 

a) Whrch query results to cache? 

b) What algorrthm should be ueed for the replace- 
ment of cache entnesQ 

c) How to check the wal~d~ty of a cached object9 

We will assume that the general model of the cache 
1s a hmlted area m secondary storage where entries 
of the form 

(Qid,Query-expression,Result) 

are stored f&d 1s some unique identifier, 
Query-expression is some canonical representa- 
tion for queries, e g query graphs [WONG76], and 
Result 1s the relation resulting after executing the 
query or set of queries that were found m some 
QUEL field and described by the second field 
(Query-expression) The followmg three subsec- 
tions give answers to each of questions (a) through 

(4 
4.2. Which Query Results to Cache? 

Depending on the mformatlon known about 
the queries, the system can decide whether a result 
1s worth caching or not For a given materlahza- 
tlon result R, this declslon will be generally based 
on the frequency of references to R, the frequency 
of updating the relations used to build R and the 

costs for computmg, storing and usmg R 
Specifically, Table 1 shows the list of parameters to 
the caching problem 

Cachmg Problem Parameters 

C Size allocated for the cache 
r, Probability of referencmg result R, 
US Probablhty of updatmg R, 
M, Cost of producmg R, (matenallzatlon) 
S, Cost of wrltmg R, In the cache 
K Cost of usmg R, from the cache 

IR,I Size of R, 
IN Cost of mvahdatmg a cache entry 

Table 1 Cachmg Problem Parameters 

C 1s the number of disk pages allocated for the 
cache r, and u, are the probablhtles of referencing 
and updating respectively a result R, M, 1s the 
cost of materlahzmg the QUEL field that gives the 
result R, while S, and U, are the costs of wrltmg to 
and reading from the cache R, respectively 
Finally, It will be assumed that mvahdatmg an 
object m the cache incurs a cost IN Given these 
parameters, we now describe various alternatives 
for the problem of selecting which results to cache 
Depending on the amount of storage allocated for 
the cache, we differentiate between two cases 
Unbounded and Bounded Space 

l Unbounded Space 

In this case C= co and therefore the declslon to 
cache a result R,, 1s local, that is, It depends only 
on the values of parameters associated with R, 
Since each object 1s examined mdlvldually, 
ut+ r,= 1 will hold The criterion 1s baaed on com- 
paring the cost of processing R, without usmg the 
cache with the correspondmg cost assuming that R, 
will be cached Let the two costs be denoted by 
NC, and YC, respectively In the case where no 
caching 1s used, the result must be produced at 
each reference by materlahzmg the correspondmg 
QUJ3L field Hence the total cost will be 

NC, = r, M, 

In the case where caching IS used, a result 1s stored 
m the cache and 1s invalidated each time an update 
to the database has some effect on It The first 
retrieval after a series of updates will have to re- 
materlahze a query affected by those updates In 
order to compute the cost YC% we will differentiate 
between the followmg four cases for the types of 
two consecutive requests 
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4 

b) 

4 

4 

Read-Update In this case the result 1s mvah- 
dated because of the update, the contrlbutlon 
to the total cost bemg 

r, u, IN (1) 

Read-Read In this case the result 1s simply 
read from the cache with total cost 

rs f, v, (2) 

Update-Update The cost here 1s due to domg 
only the mvahdatlon of the cached entry, that 
1s 

u, u, IN (3) 

Update-Read This 1s the case where the oblect 
must be re-materialized and stored m the 
cache The total cost will be 

us r, (M+ 4) (4) 

Hence for the case where the cache IS used, the cost 
of processing will be 

YC, = r, u, IN+ r, r, U,+ u, u, IN+ u, r, (M,+ S,) 

or, since r,+ u,= 1, 

I”‘, = u, IN+ r, [rs V,+ u, (M,+S,)] 

Comparmg now YC, and NC, we can identify the 
cases where it 1s worth cachmg result R, That 
happens when NC, > YC, Usmg the formulas 
extracted above, and assummg that S,=l and 
IN=1 (one page access 1s needed to cache or 
mvahdate an object), we can see that this 1s true d 

I I \ I 

lM>(i.+ [+]I 
Checking the above condltlon will determine If the 
result of a given QUJZL field materlahxatlon should 
be kept m the cache 

l Bounded Space 
This case 1s more reahstlc than the previous, m the 
sense that some hmlted space on secondary storage 
1s allocated for caching Hence, m this case C 1s 
some finite number of disk blocks In contrast to 
the crlterlon used for Unbounded Space, all objects 
to be cached must be considered Let M be the 
number of results to be cached Each obJect R, has 
reference and update probablhtles, r, and u, respec- 
tlvely Smce many results can now be affected by 
the same update to a base relation, It can no longer 
be assumed that r,+ u,= 1 We wdl however state 
the followmg property that holds m this case 

C h+ 4= 1 
I 

The formulae derived above for the case of usmg 
the cache are still vahd There 1s an addltlonal 
constramt that must be imposed here, and that has 
do with space hmltatlons This restrlctlon mdl- 
cates that the total space occupied by cached 
results cannot be more than C Given all these 
parameters we formulate now the problem of cach- 
mg m the case of Bounded Space 

Let A IN+ { O,l} b e an allocatton fun&on 
(IN denotes the set of mteger numbers) A result 
R, will be cached If A(z)= 1, if A(n)= 0, R, wdl be 
dlscarded after it IS used Hence m the hfetlme of 
the system, result R, ~111 contrlbute 

I 

W 
m,= NC 

If A(t)= 1 

I If A(r)=0 

to the total processmg cost The optimal caching 
pohcy ~111 be to cache some of the M objects so 
that the total cost 1s mmlmal and the space 
required 1s less than the allowed fragment on 
secondary storage In other words, we seek a func- 
tlon A such that 

1s mmlmal 
1-l 

subject to the constramt 

gl A(t)lR,I I C 

This problem of optimal allocation has been shown 
to be NP-complete (see [CHAN77] for a slmdar 
problem) However, almost ldentlcal constraints 
have to be satisfied m the vrew rndemng problem 
that Roussopoulos examined m the context of 
lmprovmg the performance of view based queries 
[ROUS82a,ROUS82b] In [ROUS82a], he defines a 
state model to formulate the above allocation prob- 
lem and then gives an A* algorithm that finds a 
near-optimal allocation We will not go here mto 
the details of that algorithm, the reader IS referred 
to (ROUS82al for a rigorous and detalled presenta- 
tlon of the techmque 

The output of the A* algorithm ldentlfies 
which results are worth keeping m the cache 
Hence, this approach 1s meaningful only m the case 
where all QUEL fields are materlahzed m advance 
and a declslon IS made on which of them should be 
cached Clearly, that pohcy may not be always the 
best to use Perlodlcally the system may re-run 
the same algorithm and use statlstlcs acquired dur- 
mg the execution of various queries and updates 
Even for objects not cached, the system may keep 
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some statlstlcs and recompute the allocation func- 
tlon A so that new results can get a chance to be 
stored m the cache Due to the very high cost of 
the A* algorithm though, such a solution 1s 
undesirable The next subsection provides some 
mslght for better approaches 

In summary, the above two cases shared the 
fact that the reference and update probablhtles for 
the various obJects were known m advance In the 
most general case, the values of the above parame- 
ters are not known and the system must be able to 
dynamically adapt its cachmg behavlour, so that 
the contents of the cache always reflect the most 
frequently used and/or costly results We will not 
present here a specml algorithm for the case where 
no statlstlcs are available The followmg subsec- 
tlon discusses that Issue m the context of the 
replacement pohcles that can be used for the cache 

4.3. Replacement Algorithm 

The problem of selectmg a pohcy for replac- 
mg objects m the cache, is abstractly formulated as 
follows 

A state 8 of the cache 1s the set of objects that 
are stored m it <RI,&, ,R,,> along with 
some statlstlcal mformatlon associated with each 
R, We ~111 assume here that this mformatlon 1s 

4 The time smce R, was last referenced 

2 
Probablhty of updating R, 

IR,i 
Cost of producing R, (matenahzatlon) 
Size of R, 

and that the cost of wrltmg and reading an 
object from the cache is equal to the size of that 
oblect Let S and R be the set of all possible 
states and results to cache, respectively Then, a 
replacement polacy P, 1s a function P SXR+ S 
that, given a state 8 for the cache and a newly 
materlahzed result R,, decides 

a) If R, should be cached, and 
b) m case the answer to (a) 1s posltlve but there 
1s not enough free space m the cache to accom- 
modate R,, which other result(s) should be dls- 
carded to free the space needed 

In operatmg systems an optimal page buffer 
replacement pohcy 1s one that uses the whole (past 
and future) pattern of references to decide on 
which pages should be cached (see algorithm OPT 
m wTT70]) This algorithm 1s not practical 
though, unless one can predict with high probabll- 
lty the future behavlour of the system The closest 
approxlmatlon IS the LRU (Least Recently Used) 

algorithm which selects to discard the object with 
maximum time smce last reference In the area of 
database management systems, the same pohcy can 
be used m the design of buffer managers DeWltt 
and Chou give m a recent article [CHOU85] an 
analysis of these algorithms m a database envlron- 
ment 

In our cachmg problem, an obJect R, 1s 
cached mdependently of its parameters, as long as 
space can be allocated to store R, m the cache If 
this 1s not the case, then some result(s) must be 
dlscarded to free the space needed for stormg R, 
There are generally two approaches one can take 

a) We can first try to approximate the parameters 
of Table 1 usmg the statlstlcs the system has 
acquired The sizes IR,I and the materlahzatlon 
costs M, are given since the obJects have been 
computed already The update probablhty u, IS 
also easy to derive, assuming that the probablh- 
ties of updatmg base relations are given What 
remains to be provided 1s the probablhty of 
referencmg a result as well as the probablhty of 
updatmg the result, m the case where the fre- 
quencles with which base relations are updated 
are not known For obJects already m the 
cache, these probablhtles can be estimated from 
the reference patterns already observed For 
new results, one can predict the reference pat- 
tern If the query processmg algorithm 1s known 
For example, m the case of processmg a Jam, if 
It 1s known that either nested loops or merge 
scan wdl be used, we can predict the way QUEL 
fields are accessed, and therefore have a rough 
estimate for the needed probablhtles 

b) A different approach 1s to consider the values of 
given parameters only and try to approximate 
the optimal pohcy with an LRU-like pohcy 
However, m the general case LRU will not 
work We propose the derlvatlon of some 
experimental formula rank(M,,u,,t,j R,I) which 
would rank obJects accordmg to the values of 
their associated parameters, given some weights 
and scaling factors The lowest ranked 
object(s) should be dlscarded at a point where 
space 1s needed Examples of rank are 

(1) rank(W,u,,t,,!R,I) = M 

ObJects with low M, values should be dlscarded 
to free space for objects with high materlahza- 
tlon costs 

(2) rank(W,u,,t,,bSI) = f 
I 

Pure LRU algorithm based on the time since 
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last reference 

(3) r~nk(M,,~*,LlR,I) = $ 

Very frequently updated results are not worth 
cachmg 

(4) rank(M,,u,,t,jR,l) = iR,I 

Small obJects should be discarded m case larger 
ones need be cached 

Trying to generalize rank by combmmg all four 
functions we suggest the followmg function for 
rank 

rank(M,~,,dR,I) = ;1;(44+ %JR*I) 

+ w,+lR,l 
I 

This formula 1s the simplest one that can be dev- 
ised and mcorporates m an easy way the effects of 
the various parameters The specific format was 
chosen to agree with formulas (1) through (4) of 
section 4 2 The first factor 1s based on the fact 
that updates require matermhzatlon of objects as 
well as storing the results m the cache The second 
part simply Introduces the LRU-hke behavlour 
How to derive the weights wl, w2 and w3 1s an 
interesting open problem and should be attacked 
through extensive experlmentatlon 

4.4. Checking the Validity of Cached Objects 

Cached results of materlahzed QUEL field 
entries may become invalid when the relations used 
to compute these results are modified Checking 
the validity of the cached obJects amounts to Iden- 
tifying which results are affected from a given 
update When such a result R, 1s found to be 
affected, one of two actions can take place 

4 

b) 

One can simply invalidate the correspondmg 
entry of the cache The next query that tries 
to use the result, will find It mvahdated and 
will have to re-evaluate the associated query 
This 1s the scheme assumed m the analysis of 
the previous subsection 

One can use the updates performed to the 
underlying relations and propagate them to 
all cached entries affected by these updates 
Update propagation algorithms are described 
m various articles and m different contexts 
[BUNE’IS,ADIB80,KUNG84,BLAK86] 

In our environment however, the second approach 
suffers from two very serious drawbacks First, It 
1s the case that between two references to a specific 

cached result many updates to underlying relations 
may be performed Clearly, for each of these 
updates slgmficant effort will be spent domg propa- 
gation of the updates The second drawback 1s due 
to the fact that updates may be propagated to 
bring up to date entries that may never be used m 
the future Clearly, a good caching scheme will 
discard these results and replace them with others 
more frequently used which makes any effort to 
propagate updates useless We take the approach 
that entries must be brought up to date on 
demand, that is, the next time the specific entry 1s 
requested m a query Then the system can either 
rncrementally propagate the modlficatlons, assum- 
mg that we keep the updates m some kmd of a log 
[ROUS86], or simply re-evaluate the query That 
1s an optlmlzatlon question and depends on the 
specific characterlstlcs of the query and the 
updates 

Finally, the problem of detecting which 
cached results are affected by a given set of 
updates must be addressed [STON86a] presents a 
detaled dlscusslon of the problem and the pro- 
posed solutions Two approaches to solve the 
problem are described m detail One 1s based on 
physical locking of data involved m queries with 
cached results (Basrc Lockcng) while the other one 
1s based on checking predicate expressions affected 
by the updates (Predrcate Indesang) These 
schemes share the same properties with physical 
and predicate locking respectively 
[GRAY78,ESWA76] as used m concurrency control 
The interested reader 1s referred to [STONSSa] 

Performance analysis results m (STON86a], 
show that It 1s not possible to choose one ample- 
mentatlon to support efficiently any cache based 
environment Dependmg on the probablhty of 
updating base relations and the number of cached 
entries that overlap (m the sense that their read 
sets share some tuples from base relations), the 
first or the second approach becomes more efficient 
Basic Locking seems the most promlsmg because of 
its ease of implementation, performance in simple 
environments, and extenslblhty to Jam predicates 
Analysis of these schemes and mvestlgatlon of 
other extensions are a topic of future research 

This last subsection concludes our presenta- 
tion on caching results of QUEL fields A working 
version of extended INGRES has a very slmphfied 
cache which performed very well m the experl- 
ments of [STON85] POSTGRES [STON86b] will 
be supported by a more sophlstlcated caching 
scheme which will use LRU for replacement and 
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Basic Locking for checkmg the vahdlty of the 
entries 

5. Indexing Results of QUEL Fields 

Imagme a query that 1s frequently asked and 
has the followmg form 

retrieve (!ZMP name) 
where EMP hobbies average < constant 

One would most probably like to bmld an mdex on 
ENP hobbles average m the same way mdexes are 
built on simple attributes However, there 1s a 
difficulty m usmg conventional indexing schemes to 
index results of QUEL fields This would require 
the materlahzatlon of & entries m the QUEL field 
and, moreover, materlahzatlon must be done when 
a new tuple with a QUEL field 1s inserted For 
example, If a new employee tuple 1s inserted m the 
E,MP relation the hobbies field must be processed, 
the result cached If possible and the index on 
EMP hobbies average must be updated with the 
new values This mdexmg scheme suffers from two 
serious drawbacks First, insertion time increases 
slgmficantly since it 1s no longer a simple addltlon 
of a tuple m a relation, but the execution of (possl- 
bly) many queries as well, the ones stored m QUEL 
fields In particular, m the case of queries mvolv- 
mg clauses with multi-dot expresslons, response 
time may mcrease drastically Second, by precom- 
putmg QUEL field entrles the system materializes 
all objects and therefore spends a lot of time (and 
possibly space m the cache) m processing field 
entries that may be never referenced m the future 

Another proposal that overcomes the above 
problems 1s presented here The mam idea 1s to 
have the index reflect only values that have been 
seen m the past and not all possible ones Through 
this scheme, it IS expected to achieve better perfor- 
mance m cases where the same set of queries 1s fre- 
quently asked We are also wlllmg to pay some 
penalty to update the index m the case where the 
set of queries changes Given a field, the structure 
to be described contams mformatlon on all values 
of that field that appear solely m results of matetr- 
abed entrles These results do not have to exist m 
the cache, they can exist m the index even If the 
object that mcluded them has been flushed out of 
the cache In these cases, the index simply shows 
that some QUEL fields, even if not currently 
materialized, can produce the specific values stored 
Moreover, some extra mformatlon 1s associated 
with the Index, mformatlon that characterizes the 
class of tuples that are mdexed In summary, the 
indexing scheme proposed 1s a partzal rndex m the 

sense that it mdexes only a part of the relation 

Let us use an example to motivate the dlscus- 
slon on partial mdexes that follows The relation 
EMP(name, salary,mgr hobbies) of section 2 has 
an index defined on EMP hobbies average The 
tuples currently m EMP are (SFT stands for SOFT- 
BALL) 

pitcher 8 

pitcher 4 

Assume also that there 1s a unique tuple Identifier 
TID associated with each tuple m the E,MP relation, 
with value 100,101 and 102 for the first, second 
and third tuple respectively These values are 
stored m the EMP relation but are not vlslble to the 
user The results of the second and third tuple 
have been materlahzed and stored m the cache 
That 1s mdlcated m the above relation by 
representing them with small relations stored m 
the hobbies field of EMP Suppose the query that 
has caused that materlahzatlon was 

retrieve (EMP name) 
where EMP salary > 20 
and EMP hobbies average c 6 

and was processed by scannmg EMP and materlahz- 
mg only the hobbies fields of employees with 
salary more than 20K The index on 
EMP hobbies average was of no use because no 
entries mere matermhzed before the above query 
was executed However, after the execution of the 
query the mdex will be as shown m Figure 3 
Notice that this index table differs m two ways 
from conventional mdexes First, there may be 
more than one average value for the 8ame TID 
value This cannot be true m conventional rela- 
tions because all fields carry a single value (First 
Normal Form [uLLM82]) Second, there 1s a predl- 
cate associated with the index (salary > 20) 
This predicate uses only non-QUEL fields and 1s a 
simple way to Identify the kmd of tuples mdexed 
by the given mdex That predicate IS also used to 
decide If an mdex 1s useful m answermg a given 
query For example, a future query that mcludes a 
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Figure 3: Partlal Index 

restrlctlon on EMP hobbies average and refer- 
ences employees with salarles more than Z, with 
2>20, can use the mdex to avoid a full scan of 
EMP However, for ~5 20 the relation must be 
scanned and the entries with salary values under 
20 will be matenahzed As a side effect, the mdex 
table and the correspondmg predicate will be 
updated 

In [SELL86b] we present m detail the operai 
tlons on a partial mdex (e g searching or updatmg 
the index) We will not go mto the detruls here 
due to space hmltatlons Instead, we would like to 
mention another possible use of partial indexes 
Many times users issue all their queries through 
specific views that they have defined over base rela- 
tions Users are not allowed to keep materialized 
versions of the views m the system because of its 
high space cost, but they still would hke queries to 
execute fast Indexes on base relations will be help- 
ful for that However, these mdexes contam more 
mformatlon than what these users need, namely an 
mdex only on the result of the vaew matetralitatron 
A partial mdex seems like a clean solution to that 
problem The predicate part will be static smce It 
will be the predicate that defines the view, but 
querying and updating will be performed under the 
guldelmes outlined above This idea can also be 
extended to normal relations, smce these are spe- 
cial cases of views Usmg partial indexes, better 
performance can be achieved by allowmg the mdex 
to keep mformatlon only on frequently accessed 
data 

6. Summary 

This paper first presented the language 
QUJSL+ and its capablhtles Then, an extended 
decomposltlon algorithm based on the INGRES 
query processing algorithm was proposed The 
extensions made were mainly due to the fact that 
one new operation was Introduced, namely the 

materlahzatlon of QUEL fields We showed how 
the fact that materlahzatlon 1s a very expensive 
operation 1s taken mto account Also, some special 
case strategies were discussed that aim at reducing 
the sizes of materlahzed results 

Caching was then proposed as a way to avoid 
evaluating the queries found m QUEL fields more 
than once Several issues associated with caching 
were discussed Among others, replacement poh- 
cles, mvahdatlon algorithms and pohcles that 
decide which objects to cache were examined m 
detail The dlscusslon shows that caching IS essen- 
tial m the QUEiL+ environment and various solu- 
tions to the above problems can be derived once 
the cached oblect characterlstlcs are known HOW 
to compute these characterlstlcs and how to adapt 
the system caching pohcles according to these 
statlstlcs 1s a very interesting open problem 

Lastly, a new mdexmg technique, Partial 
Indexing, was proposed to provide efficient access 
to results of QUEL field matenahzatlons A partial 
mdex 1s a combmatlon of both a conventional 
mdex table and a predicate Predicates character- 
ize the set of tuples that can be accessed through 
the correspondmg mdex tables We also described 
how the system can check if an mdex 1s useful m 
processing a given query and what are the neces- 
sary operations to mamtam a partial mdex when 
queries and updates are performed 

As interesting future work m that area we 
view the attempt to implement and experiment 
with the ideas presented m this paper As men- 
tioned m section 4, POSTGRES will support 
QUEL+ and caching will be used to improve per- 
formance Slmulatlons are under development for 
an analysis of the various caching scheme alterna- 
tives Finally, we are currently mvestlgatmg the 
efficient support of partial mdlces not only for a 
QUEL+ environment but for a conventional 
environment as well 
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