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Abstract

We examine an extended relational database sys-
tem which supports database procedures as full
fledged objects In particular, we focus on the
problems of query processing and efficient support
for database procedures First, a varnation to the
original INGRES decomposition algorithm 1s
presented Then, we examine the idea of storing
results of previously processed procedures 1n secon-
dary storage (caching) Using a cache, the cost of
processing a query can be reduced by preventing
multiple evaluations of the same procedure Prob-
lems associated with cache orgamzations, such as
replacement policies and validation schemes are
examined Another means for reducing the execu-
tion cost of queries 1s indexing A new indexing
scheme for cached results, Partial Indexing, 1s pro-
posed and analyzed
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1. Introduction

Recent developments in the design of data-
base systems include proposals for several exten-
sions to the basic model of relational database sys-
tems Systems based on the Object Oriented Pro-
gramming paradigm [DERR86,COPE84|, systems
that provide support for storing both knowledge
and data [ZANI85ULLM85,JARKS84] (also called
Expert Database Systems [KERS84,KERS86)) and
finally systems that have certain extensibihity capa-
bilities ~ [CARE86,BAT0O86,MOHA86,STONS6b],
have been proposed in an attempt to make DBMSs
capable of supporting other than the traditional
business applications Main targets of such sys-
tems are Engineering and Artificial Intelligence
applications [GUTT84, KERS84,BATO85,KERS86]

Clearly, all proposals will need some kind of
extended relational query language to support a
high level user interface Examples of such
languages are GEM [ZANI83], POSTQUEL
[STONS86b] and DATALOG [MORRS86| Because
of their extended capabilities, such languages need
special support for the efficient execution of
queries For example, languages supporting recur-
sive queries need specialized algorithms to process
recursion [BANC86,J0AN86a] Query processing
algorithms need to be modified 1n hght of all such
extensions The purpose of this paper 1s to discuss
some query processing lssues that arise in extended
relational database systems Although we concen-
trate on a specific query language which 1s an
extension to QUEL [STONT76], the discussion should
apply to other languages as well

Previous work 1n the area of processing
queries 1 extended relational DBMSs has focused
on optimizing the execution of new types of opera-

tions such as transitive closure  queries
[GUTT84,J0AN86b,VALD86|, general recursive
queries [BANCS86,I0ANS86a], deduction



[GRANS81,ULLMS85|, multiple-statement operations
[SELL85,SELL86b]|, etc Physical and conceptual
modeling, concurrency control and crash recovery
are some of other well known DBMS problems
[ULLM82] The solutions to many of these prob-
lems can still be used 1n extended relational DBMS
environments However, performance will
deteriorate due to the complexity of the new opera-
tions The goal of this paper 1s to examine ways of
improving the performance by providing more
sophisticated optimization tactics More
specifically, we concentrate on the problem of
query processing Issues that deal with user inter-
faces, physical and conceptual modeling, con-
sistency in a multiple user environment and robust-
ness, are examined in more detail in [STON86b] 1n
the context of the design of a new DBMS
(POSTGRES) being developed at the University of
Califorma, Berkeley

This paper 1s orgamzed as follows Section 2
presents the language QUEL+ and illustrates its
use with some examples Then, in section 3 we
briefly examine the problem of query processing by
presenting a variation to the INGRES decomposi-
tion algorithm [WONG76] along with some possi-
ble improvements Sections 4 and 5 present the
main contributions of this paper We focus on
schemes that improve the performance of the sys-
tem, hke caching and indexing Finally, we con-
clude 1n section 6 by summarizing the discussion of
this paper and pointing out interesting future
research problems

2. The Query Language QUEL+

QUEL+ [STONBSS] 1s an extension to QUEL,
the query language designed for INGRES
[STON76] There are two major extensions made

to QUEL
a) repetitive execution of commands, and

b) storing query language commands 1n relation
fields

The first extension allows the user to implement
iteration using the query language 1tself instead of
escaping to a general purpose programming
language In EQUEL/C [ALLM76| for example,
the programmer can embed INGRES commands in
C programs and therefore can 1mplement 1teration
through the 1iterative constructs of C The second
feature follows the paradigm of LISP and allows
the uniform treatment of data and control infor-
mation, or procedures i [STON85|, where the
latter 1s 1mplemented using database commands
(database procedures) Stonebraker et al give n
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[STON85| a detailed discussion of the language
We review here the second extension since 1t will
serve as the basis for our presentation

It was first proposed 1n [STON84] that QUEL
commands be stored in relation fields in the same
way data 1s stored mn relations For simpheity,
these fields are thought of as variable length
strings In INGRES, relation fields can be accessed
individually through the dot () operator For
example, given a relation EMP(name,salary,mgr),
with the obvious meamings for the three fields,
EMP mgr accesses the manager names recorded in
EMP Extending these semantics, 1t will be assumed
that accessing a relation field containing QUEL
commands (QUEL field) implies the ezecution of
the commands that are stored in the field The
commands stored 1n QUEL fields are not necessarily
the same for all tuples, as 1t will be soon demon-
strated through an example

Processing QUEL fields amounts to evaluating
the commands that are stored in these fields The
problem of efficiently evaluating the contents of
QUEL fields has been studied in [SELL85] and
[SELL86b] Here, our focus 1s the problem of pro-
cessing QUEL+ queries Before we proceed to dis-
cuss that problem however, we present an example
of QUEL+

A relation EMP(name salary,mgr, hobbies)
15 given, where name, salary and mgr are con-
ventional fields while hobbies 1s a field of type
QUEL We use hobbies to retrieve data on the
various hobbies of employees In addition, we
assume that the following relations exist 1n the sys-
tem

SOFTBALL (name, position performance)
SOCCER (name, position, goals, performance)
MUSIC(name instrument performance)

Assume also the instance of the EMP relation as
shown 1n Figure 1 (we use SFT for SOFTBALL, SCR
for SOCCER and MUS for MUSIC)

The QUEL syntax 1s extended using the mul-
tiple dot notation borrowed from Zaniolo’s GEM
language [ZANI83,ZANI84] For example, one can
retrieve the performance of Jones in all his hobbies
as follows

retrieve (EMP hobbies performance)
where EMP name = "Jones"

The number of dots that can be used depends on
the relation nesting level With the use of the mul-
tiple dot notation, QUEL+ allows the user to actu-
ally “navigate” through relations using QUEL fields



lobbies
(SFT position,

SFT performance)
SFT name = "Riggs"
(SFT position,

SFT performance)
SFT name = *Jones"
(SCR positvion,

SCR performance)
SCR name = "Jones"
(MUS all)
MUS name =

R30S LS2laLY

Riggs 20 Smith { retrieve

where
retrieve

Jones 30 Smith

where
retrieve

where

retrieve
where

Lam 80 Moore

*Lam"

Figure 1: Relation EMP

as hinks between the accessed tuples

Clearly, the result of evaluating ("matertaliz-
ing") a QUEL field 1s a set of relations, or n gen-
eral a set of tuples These sets are themselves
database objects (relations) QUEL+ provides rela-
tion level operators allowing a user to use set
operations as well (such as set equality, set inequal-
ity, union, ntersection, etc) For example, one
may wish to get all pairs of employees that play in
the same positions and with the same performance
i their hobbies The above query can then be for-
mulated as

range of EMP EMP1 is EMP
retrieve (EMP name,EMP1 name)
where EMP name # EMP1 name

and EMP hobbies == EMP1 hobbies

where == 1s the set equality operator Issues
involved mn the implementation of such operators
are discussed 1n more detail in [SELL86b]

After reviewing the structure and semantics of
QUEL+, turn we now to examine the problem of
query processing

3. Processing QUEL+

This section presents a query processing algo-
nthm that INGRES can use to evaluate QUEL+
queries First, 1t discusses how the original decom-
position algorithm of Wong and Youssefi
[WONG76] was extended to handle queries 1n rela-
tion fields and the extended relation level opera-
tors Then, some possible improvements are sug-
gested and explained through examples A com-
plete discussion of the algorithm can be found in
[SELL86D]
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3.1. Extended Decomposition

Figure 2 shows a diagram of the extended
decomposition  algorithm as  suggested 1n
[STON85] The modifications done to the original
Wong-Youssefi algorithm can be summarized as
follows

a) ANl one-varable clauses except those that
mclude a multiple dot reference or a relation
level operator are processed first The reason 1s
that clauses involving extended operators can-
not be processed efficiently For example, none
of the following two clauses

EMP hobbies position = *catcher"”
or
EMP hobbies

constant_relation

should be processed first because that would
mmply the maternahzation of the hobbies
entries of gll employees, which 1s very expen-
sive An exception to that 1s the case where an
index exists on EMP hobbies position This
case 18 discussed 1n more detail in section 5

An extra step 1s required to check 1if all QUEL
field entries have been materialized Materiah-
zation 18 done by passing the queries found n
the QUEL field to a second INGRES process
which 1 turn returns the result relation(s)
The decomposition algorithm continues process-
ing one-variable clauses and materializing
QUEL fields until no more such fields are left
unevaluated

b)

QUELA- Query

Process one variable clauses
which do not contaln relation k
or multiple dot operators

Reduction algorithm
Are there relations
terialize?

[ Qualification variable froe? Yes % ma

l}b Yes

tDo tuple submtutlon] [Materlallze 3 mmlonl

Pass to extended
for relation MOVQ:
operator evaluation

]

Figure 2 Extended Decomposition Strategy [STONSS5]
(OVQP One Variable Query Processor)




c) In [WONG?76] the criterion for selecting a rela-
tion to iterate over 1n the case of tuple substitu-
tion, 1s the size of the relations The presence
of QUEL fields makes this criterion ineffective
Not only the number of tuples but the cost for
materializing the corresponding QUEL fields
should be considered The reason is that during
tuple substitution, each tuple variable will be
replaced with specific field values read from the
relation In case of QUEL fields these values are
the materialization results Therefore the cri-
terion for selecting a relation to 1iterate over
will generally be a function of the size of the
relation and the characteristics of the material-
1zed objects One of these characteristics which
1s of major 1mportance 1s the ability of the sys-
tem to keep materialized objects in secondary
storage, 1 e caching This aspect 1s treated in
more detail 1n section 4

The extended decomposition algorithm delays
materializing a QUEL field until there 1s nothing
else that the conventional query processor can do
Even tuple substitution must be done first, the rea-
son being that checking a condition that involves
multiple dot references 1mplies a loop over all
tuples 1n the relation During that loop QUEL
fields are materiahzed and checked through lower
level fields Generally, the absence of any informa-
tion about the contents of relations in QUEL fields
makes optimization very hard, if not impossible
In the next section we discuss one possible improve-
ment through saving the results of materializing
QUEL fields (caching), 1n this case, the contents of
QUEL fields are known and conventional cardinal-
1ty estimation methods [SELI79] can be used to
estimate the cost of the various processing stra-
tegles

3.2. Improvements to Extended Decomposi-
tion

In this subsection some possible i1mprove-
ments to the algorithm presented above are exam-
med First, we give some rules that can be applied
in general, then, some other special case transfor-
mations that can be used are outhined

The first general rule as, suggested above, 1s
to process one—variable clauses and do reduction as
the 1mitial Wong-Youssefi algorithm proposes
[WONG76] This will certainly be the best thing
to do independent of the number of relations or
QUEL field materializations that will follow The
problem arises when tuple substitution 1s necessary
We motivate our proposal using an example
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Assume that in the EMP relation the hobbies
field produces a relation, which itself has a field
performance that also produces a relation as a
result and the field we are interested in 1s the
location field of that last relation We also
assume the existence of another relation
DEPT (name,mgr, location) The query s

retrieve (EMP name,DEPT name)
where EMP hobbies performance location
= DEPT location

and EMP mgr = DEPT mgr

The question that arises here 1s over which relation
to 1terate doing tuple substitution The main 1dea
behind tuple substitution 18 to introduce single
variable selection clauses as early as possible
Using such clauses relation sizes are reduced and,
consequently, the number of materializations that
will be needed 1s also lower For example, in the
above query tuple substitution should be done over
DEPT independently of the sizes of the two rela-
tions The reason 1s that tuple substitution will
create some one-variable clauses which can then be
used to restrict the number of EMP tuples that need
to be considered for materiahzation of their fields
In general, an algorithm that selects a relation to
iterate over attempts to minimize the total number
of tuple substitutions required, assuming the most
expensive processing lies in QUEL field materiahza-
tions Such an algorithm 1s formally discussed 1n
[SELL86b)

We now describe a different techmique that
can be used to improve the performance of the
query processor in some special cases The basic
idea 1s that when an entry from a QUEL field 1s
materialized, the query that has to be processed
next 15 known More specifically, the structure of
the query 1s known and through that the optimizer
can 1dentify access structures that may be desirable
1n order to speed up processing For example, n
the query

retrieve (EMP name,DEPT name)

vhere EMP hobbies performance average=10
and EMP mgr=DEPT mgr

and EMP hobbies leader=DEPT mgr

the query processor will choose to tuple substitute
over DEPT, and after detaching one-variable
clauses and substituting EMP with TEMP, the new
query will be

retrieve (TEMP name,constant-1)
where TEMP hobbies performance average=1i0
and TEMP hobbies leader=constant-2

At this point the query processor will start



materializing entries from the hobbies field of
TEMP Let TEMP1 be the result of materializing a
specific entry of hobbies, then the type of queries
that will have to be processed for each TEMP tuple
will be

retrieve (constant-3 constant-1)
where TEMP1 performance average=i0
and TEMP1 leader=constant-2

From that last query one can observe that depend-
ing on the size of TEMP1 1t may be beneficial to
build a secondary index on 1leader so that the
second qualification clause can be processed
efficiently This structure will be built 1n the pro-
cess of producing TEMP1 (on the fly) and no extra
time need be spent at the time the last of the
above queries will be evaluated Dynamic creation
of indexes or 1mposing other structures on relations
(hke sorting) has also been used n conventional
query processing [YOUS78 KOOI82] However, 2
difference 1s that in the QUEL+ environment no
significant additional cost need be spent on creat-
ing the index At the same time a result of a
materialization 1s produced and stored in a tem-
porary relation, some adequate organization 1s
chosen or a secondary indexing structure s bult

In the same spirit we describe another optim-
1zation technique that can be used to reduce the
cost of processing a query Clearly, one wants to
materialize QUEL fields and produce results that
will be used subsequently 1n the course of process-
ing a given query However, 1n some cases, not all
queries stored 1n QUEL fields will give relevant
information For example, consider the relation
EMP (name, salary,mgr, hobbies) of the previous
section, and the query

retrieve (EMP name)
where EMP hobblies instrument = “violin"

When the various entries 1n the hobbies field are
materialized, only those queries that involve in
their result a field instrument should be
evaluated In our example, the queries that
retrieve data from the SOFTBALL and SOCCER rela-
tions should not be evaluated Moreover, even 1If
the query in hobbies retrieves many fields from
the MUSIC or any other relation that includes a
field 1instrument, the contents of the materialized
relations should be restricted to contamn only the
information that 1s absolutely necessary, mm this
case the instrument field We should also notice
here that the same 1dea exists in conventional
query processing as well in the form of projections
made to restrict sizes of intermediate results
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[WONG76,SELI79)

The above techmique tries to reduce the
amount of space required for storing materialized
objects However, there are some cases where no
space at all need be allocated for materialhization
This 1s the case where a QUEL field contains a sin-
gle retrieve or define view command In this
special (but very common case) there 1s no need to
even produce the result of the command Conven-
tional query modification [STON75] can be used
For example, consider the following query

retrieve (EMP hobbies position)
where EMP hobbies average < 1§

where the hobbies field of the EMP relation con-
tains one of the following QUEL expressions

retrieve (SOCCER all)

where SOCCER name = constant
or

retrieve (SOFTBALL all)

where SOFTBALL name = constant

1e all employees have at most one hobby Then

the given query can be transformed to

retrieve (REL position)
where REL average < 15
and REL name = constant

where REL 1s either SOCCER or SOFTBALL This
transformation not only prevents the query proces-
sor from materializing relations, but 1t also allows
the optimizer to have more information on the
structure of the query, and therefore to process 1t
with a better access plan It 1s also possible to gen-

eralize this technique to handle multiple statements
[SELL86b]

This concludes our presentation of the extended
decomposition algorithm for processing QUEL+
quertes In addition to the basic algorithm, we
presented some less general tactics that can be used
to 1mprove the performance of the query processor
In the two sections that follow two other 1ssues
that are of significant 1mportance to query process-
Ing are discussed, namely caching and indezing of
the results of QUEL fields

4. Caching Materialized QUEL Fields

As 1t was seen 1n the previous section,
materalizing an entry of type QUEL amounts to
executing, possibly several, QUEL queries Hence,
1t will be generally very slow to perform this
operation every time a QUEL field 1s accessed This
section examines ways to make QUEL+ processing
more efficient through the use of a cache



4.1. What is Caching?

We mentioned at several points 1n the previ-
ous sections that one way to avoid evaluating the
same QUEL field entries multiple times 1s caching
By caching we mean computing the values of QUEL
fields and storing them in some specifically assigned
area of secondary storage This computation can
be done either at the time tuples are inserted
relations or the first time they are referenced We
will call the former precomputation of QUEL field
entries since 1t occurs before even the content of
the specific field 1s accessed However, our focus
here 1s on the latter case which i1s more natural
The basic 1dea 1s to keep in secondary storage
materialized objects that are frequently used n
queries Under that formulation, the caching prob-
lem 1s conceptually the same as the well known
caching problem 1n operating systems [MATT70]
Notice also, that the cache can be used not only for
materialized QUEL fields but for generally holding
the results of any query 1ssued by the user These
can be saved because either the same query may be
given by a user frequently or they can be used to
answer other queries [FINK82,LARS85,SELL86a]

The caching problem introduces several sub-
problems to be solved The following list 1s the set
of 1ssues that will be discussed in this section

a) Which query results to cache?

b) What algorithm should be used for the replace-
ment of cache entries?

¢) How to check the validity of a cached object?

We will assume that the general model of the cache
1s a limited area 1n secondary storage where entries
of the form

(Qid,Query_expression,Result)

are stored Qid 1s some umque 1dentifier,
Query_expression s some canonical representa-
tion for queries, e g query graphs [WONG?76], and
Result 1s the relation resulting after executing the
query or set of queries that were found mm some
QUEL field and described by the second field
(Query_expression) The following three subsec-
tions give answers to each of questions (a) through
(c)

4.2. Which Query Results to Cache?

Depending on the information known about
the queries, the system can decide whether a result
1s worth caching or not For a given materializa-
tion result R, this decision will be generally based
on the frequency of references to R, the frequency
of updating the relations used to build R and the
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costs for computing, storing and using R
Specifically, Table 1 shows the list of parameters to
the caching problem

Cachln& Problem Parameters

¢ Size allocated for the cache
7, Probability of referencing result R,

U, Probability of updating R,

M,  Cost of producing R, (materiahzation)
S Cost of writing R, 1n the cache

U, Cost of using R, from the cache

|R]  Size of R,

IN  Cost of mmvalidating a cache entry

Table 1 Caching Problem Parameters

C 15 the number of disk pages allocated for the
cache r, and u, are the probabilities of referencing
and updating respectively a result R, M, 1s the
cost of materializing the QUEL field that gives the
result R, while S, and U, are the costs of writing to
and reading from the cache R, respectively
Finally, 1t will be assumed that invahdating an
object 1n the cache incurs a cost IN Given these
parameters, we now describe various alternatives
for the problem of selecting which results to cache
Depending on the amount of storage allocated for
the cache, we differentiate between two cases
Unbounded and Bounded Space

e Unbounded Space

In this case C=o00 and therefore the decision to
cache a result F,, 1s local, that 1s, 1t depends only
on the values of parameters associated with R,
Since each object 1s examined individually,
u,+r,=1 will hold The cniterion 1s based on com-
paring the cost of processing R, without using the
cache with the corresponding cost assuming that E,
will be cached Let the two costs be denoted by
NC, and YC, respectively In the case where no
caching 1s used, the result must be produced at
each reference by materializing the corresponding
QUEL field Hence the total cost will be

NC, = r, M,

In the case where caching 1s used, a result 1s stored
1n the cache and 1s invalidated each time an update
to the database has some effect on 1t The first
retrieval after a series of updates will have to re-
materialize a query affected by those updates In
order to compute the cost YC, we will differentiate
between the following four cases for the types of
two consecutive requests



a) Read-Update In this case the result 1s invali-
dated because of the update, the contribution
to the total cost being

r,u, IN 1)

b) Read-Read In this case the result 1s simply
read from the cache with total cost

rl rf U‘ (2)

¢) Update-Update The cost here 1s due to doing
only the invahidation of the cached entry, that
18

u, u, IN (3)

d) Update-Read This 1s the case where the object
must be re-materialized and stored in the
cache The total cost will be

u, r, (M+ S,) (4)

Hence for the case where the cache 1s used, the cost
of processing will be

YC, = r,u, IN+ r, r, U+ u, u, IN+ u, r, (M,+S,)
or, since r,+u,=1,

YC, = u, IN+ 1, [r, U+ u, (M4 S))]
Comparing now YC, and NC, we can 1dentify the
cases where 1t 1s worth caching result E, That
happens when NC,>YC, Using the formulas
extracted above, and assuming that S,=1 and

IN=1 (one page access 1s needed to cache or
invalidate an object), we can see that this 1s true 1f

_L..l]
r‘

Checking the above condition will determine if the
result of a given QUEL field materiahzation should
be kept 1n the cache

M, > U+

e Bounded Space

This case 18 more realistic than the previous, 1n the
sense that some llmited space on secondary storage
15 allocated for caching Hence, 1n this case C 1s
some finite number of disk blocks In contrast to
the criterion used for Unbounded Space, all objects
to be cached must be considered Let M be the
number of results to be cached Each object R, has
reference and update probabihties, r, and u, respec-
tively Since many results can now be affected by
the same update to a base relation, 1t can no longer
be assumed that r,4+u,=1 We will however state
the following property that holds in this case
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2 (rt+ ul)= 1

The formulas derived above for the case of using

the cache are still vaid There 1s an additional
constraint that must be imnosed here, and that has

CRAISLIGLNNY BA2GY 2288 DU LIPS RIS, &Q ¥ias 18S

do with space hmitations This restriction ndi-
cates that the total space occupied by cached
results cannot be more than C Given all these
parameters we formulate now the problem of cach-
ing 1n the case of Bounded Space

MN_. fn1 PR
Let A N— 1Vl be an allocatio

n funclion
(IN denotes the set of integer numbers) A result
R, will be cached if A(z)=1, 1f A(:)=0, R, will be
discarded after 1t 1s used Hence 1n the lhfetime of

the system, result R, will contribute

YO, if A(t)=1
NC, if A()=0
to the total processing cost The optimal caching
policy will be to cache some of the M objects so
that the total cost 1s mimimal and the space
required 1s less than the allowed fragment on
secondary storage In other words, we seek a func-
tion A such that

M

> TC,

tmm]

-

1s minimal

subject to the constraint

M

Y ApIRI< €

sx=1
This problem of optimal allocation has been shown
to be NP-complete (see [CHAN77] for a sumlar
problem) However, almost identical constraints
have to be satisfied in the view sndezsng problem
that Roussopoulos examined in the context of
mmproving the performance of view based queries
[ROUS822,ROUS82b] In [ROUS82a|, he defines a
state model to formulate the above allocation prob-
lem and then gives an A* algorithm that finds a
near-optimal allocation We will not go here into
the details of that algorithm, the reader 1s referred
to [ROUS82a| for a rigorous and detailed presenta-
tion of the technique

The output of the A* algorithm identifies
which results are worth keeping 1n the cache
Hence, this approach 1s meaningful only 1n the case
where all QUEL fields are materialized in advance
and a decision 1s made on which of them should be
cached Clearly, that policy may not be always the
best to use Periodically the system may re-run
the same algorithm and use statistics acquired dur-
g the execution of various queries and updates
Even for objects not cached, the system may keep



some statistics and recompute the allocation func-
tion A so that new results can get a chance to be
stored in the cache Due to the very high cost of
the A* algorithm though, such a solution 1s
undesirable The next subsection provides some
nsight for better approaches

In summary, the above two cases shared the
fact that the reference and update probabilities for
the various objects were known 1n advance In the
most general case, the values of the above parame-
ters are not known and the system must be able to
dynamically adapt 1ts caching behaviour, so that
the contents of the cache always reflect the most
frequently used and/or costly results We will not
present here a special algorithm for the case where
po statistics are available The following subsec-
tion discusses that issue 1 the context of the
replacement policies that can be used for the cache

4.3. Replacement Algorithm

The problem of selecting a policy for replac-
g objects 1n the cache, 1s abstractly formulated as
follows

A state s of the cache 1s the set of objects that
are stored 1 1t < R,,R,, ,R,> along with
some statistical information associated with each
R, We will assume here that this information 1s

t The time since R, was last referenced
u,  Probability of updating R,
M,  Cost of producing R, (materiahzation)
|R,| Size of R,

and that the cost of wnting and reading an
object from the cache 1s equal to the size of that
object Let S and R be the set of all possible
states and results to cache, respectively Then, a
replacement policy P, 1s a function P SXR— S
that, given a state s for the cache and a newly
materialized result R,, decides

a) if R, should be cached, and

b) 1n case the answer to (a) 1s positive but there
1s not enough free space in the cache to accom-
modate R,, which other result(s) should be dis-
carded to free the space needed

In operating systems an optimal page buffer
replacement policy 1s one that uses the whole (past
and future) pattern of references to decide on
which pages should be cached (see algorithm OPT
in [MATT70]) This algorithm is not practical
though, unless one can predict with high probabil-
1ty the future behaviour of the system The closest
approximation 1s the LRU (Least Recently Used)
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algorithm which selects to discard the object with
maximum time since last reference In the area of
database management systems, the same policy can
be used in the design of buffer managers DeWitt
and Chou give i a recent article [CHOU85] an
analysis of these algorithms i1n a database environ-
ment

In our caching problem, an object E, 1s
cached independently of its parameters, as long as
space can be allocated to store R, in the cache If
this 1s not the case, then some result(s) must be
discarded to free the space needed for storing F,
There are generally two approaches one can take

a) We can first try to approximate the parameters
of Table 1 using the statistics the system has
acquired The sizes |R,| and the materiahzation
costs M, are given since the objects have been
computed already The update probability u, 1s
also easy to derive, assuming that the probabih-
ties of updating base relations are given What
remamns to be provided 1s the probabihty of
referencing a result as well as the probability of
updating the result, in the case where the fre-
quencies with which base relations are updated
are not known For objects already in the
cache, these probabilities can be estimated from
the reference patterns already observed For
new results, one can predict the reference pat-
tern 1if the query processing algorithm 1s known
For example, 1n the case of processing a jomn, 1If
1t 18 known that either nested loops or merge
scan will be used, we can predict the way QUEL
fields are accessed, and therefore have a rough
estimate for the needed probabilities

A different approach 1s to consider the values of
given parameters only and try to approximate
the optimal pohicy with an LRU-hke policy
However, 1n the general case LRU will not
work We propose the derivation of some
experimental formula rank(M,u,,t,|R,|) which
would rank objects according to the values of
their associated parameters, given some weights
and scaling factors The lowest ranked
object(s) should be discarded at a pomnt where
space 1s needed Examples of rank are

(1) rank(M,,u,,t,,IR,l) = M

Objects with low M, values should be discarded
to free space for objects with high materiahza-
tion costs

(2)

Pure LRU algornithm based on the time since

rank(M,u,t,|R|) = tL



last reference

1
(8) rank(M,u,t|R|) = -
1
Very frequently updated results are not worth
caching

(4) rank(M,,u,,t,,lRJ) = |Rl|

Small objects should be discarded 1n case larger
ones need be cached

Trymg to generalize rank by combining all four
functions we suggest the following function for
rank

rank(Mv“ntangl) = ui(wlM,-{'- wAR,I)
+ wy-|R)

This formula 1s the simplest one that can be dev-
1sed and 1ncorporates in an easy way the effects of
the various parameters The specific format was
chosen to agree with formulas (1) through (4) of
section 4 2 The first factor 1s based on the fact
that updates require materialization of objects as
well as storing the results in the cache The second
part sumply mtroduces the LRU-like behaviour
How to derive the weights w;, w, and ws 1s an
interesting open problem and should be attacked
through extensive experimentation

4.4. Checking the Validity of Cached Objects

Cached results of materialized QUEL field
entries may become 1invalid when the relations used
to compute these results are modified Checking
the validity of the cached objects amounts to 1den-
tifying which results are affected from a given
update When such a result R, 1s found to be
affected, one of two actions can take place

a) One can simply mvahdate the corresponding
entry of the cache The next query that tries
to use the result, will find 1t invahdated and
will have to re-evaluate the associated query
This 1s the scheme assumed 1n the analysis of
the previous subsection

One can use the updates performed to the
underlying relations and propagate them to
all cached entries affected by these updates
Update propagation algorithms are described
in varnious articles and 1n different contexts
[BUNE79,ADIB80,KUNG84,BLAKS86|

In our environment however, the second approach
suffers from two very serious drawbacks First, 1t
15 the case that between two references to a specific
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cached result many updates to underlying relations
may be performed Clearly, for each of these
updates significant effort will be spent doing propa-
gation of the updates The second drawback 1s due
to the fact that updates may be propagated to
bring up to date entries that may never be used 1n
the future Clearly, a good caching scheme will
discard these results and replace them with others
more frequently used which makes any effort to
propagate updates useless We take the approach
that entries must be brought up to date on
demand, that 1s, the next time the specific entry 1s
requested in a query Then the system can either
sncrementally propagate the modifications, assum-
ing that we keep the updates in some kind of a log
[ROUSS86], or simply re-evaluate the query That
1s an optimzation question and depends on the

spectfic characteristics of the query and the
updates
Finally, the problem of detecting which

cached results are affected by a given set of
updates must be addressed [STONB86a| presents a
detailed discussion of the problem and the pro-
posed solutions Two approaches to solve the
problem are described in detall One 1s based on
physical locking of data involved in queries with
cached results (Bastc Locking) while the other one
1s based on checking predicate expresstons affected

by the updates (Predicate Indexing) These
schemes share the same properties with physical
and predicate locking respectively

[GRAY78,ESWAT76] as used 1 concurrency control
The interested reader 1s referred to [STON86a]

Performance analysis results in [STONS86a,
show that 1t 1s not possible to choose one 1mple-
mentation to support efficiently any cache based
environment Depending on the probabihty of
updating base relations and the number of cached
entries that overlap (in the sense that their read
sets share some tuples from base relations), the
first or the second approach becomes more efficient
Basic Locking seems the most promising because of
its ease of implementation, performance in simple
environments, and extensibility to join predicates
Analysis of these schemes and investigation of
other extensions are a topic of future research

This last subsection concludes our presenta-
tion on caching results of QUEL fields A working
version of extended INGRES has a very sumphified
cache which performed very well in the expen-
ments of [STON85] POSTGRES [STON86b] wll
be supported by a more sophisticated caching
scheme which will use LRU for replacement and



Basic Locking for checking the validity of the
entries

5. Indexing Results of QUEL Fields

Imagine a query that 1s frequently asked and
has the following form

retrieve (EMP name)
where EMP hobbies average < conslant

One would most probably like to build an index on
EMP hobbies average 1n the same way indexes are
built on simple attributes However, there 15 a
difficulty 1n using conventional indexing schemes to
mndex results of QUEL fields This would require
the materialization of gll entries in the QUEL field
and, moreover, materialization must be done when
a new tuple with a QUEL field 1s inserted For
example, 1f a new employee tuple 1s inserted 1n the
EMP relation the hobbies field must be processed,
the result cached if possible and the index on
EMP hobbies average must be updated with the
new values This indexing scheme suffers from two
serious drawbacks First, insertion time increases
significantly since 1t 1s no longer a sumple addition
of a tuple 1n a relation, but the execution of (possi-
bly) many queries as well, the ones stored in QUEL
fields In particular, in the case of queries involv-
ing clauses with multi~dot expressions, response
time may increase drastically Second, by precom-
puting QUEL field entries the system materializes
all objects and therefore spends a lot of time (and
possibly space 1n the cache) i processing field
entries that may be never referenced in the future

Another proposal that overcomes the above
problems 1s presented here The main 1dea 15 to
have the index reflect only values that have been
seen 1n the past and not all possible ones Through
this scheme, 1t 1s expected to achieve better perfor-
mance 1n cases where the same set of queries 1s fre-
quently asked We are also willing to pay some
penalty to update the index in the case where the
set of queries changes Given a field, the structure
to be described contains information on all values
of that field that appear solely 1n results of mater:-
alized entries These results do not have to exist 1n
the cache, they can exist 1n the index even 1f the
object that included them has been flushed out of
the cache In these cases, the index simply shows
that some QUEL fields, even 1f not currently
materiahized, can produce the specific values stored
Moreover, some extra mformation 1s associated
with the index, information that characterizes the
class of tuples that are indexed In summary, the
indexing scheme proposed 1s a partial indez 1n the
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sense that 1t indexes only a part of the relation

Let us use an example to motivate the discus-
ston on partial indexes that follows The relation
EMP (name, salary,mgr hobbies) of section 2 has
an index defined on EMP hobbies average The
tuples currently in EMP are (SFT stands for SOFT-
BALL)

name D& hobbies
Riggs 20 Smith | retrieve (SFT position,
SFT average)
where SFT name = “Riggs*
Jones 30 Smith
catcher 4
pitcher 8
Felps 40 Moore
catcher 6
pitcher 4

Assume also that there 1s a umque tuple 1dentifier
TID associated with each tuple 1n the EMP relation,
with value 100,101 and 102 for the first, second
and third tuple respectively These values are
stored 1n the EMP relation but are not visible to the
user The results of the second and third tuple
have been materialized and stored in the cache
That 1s indicated 1in the above relation by
representing them with small relations stored in
the hobbvies field of EMP Suppose the query that
has caused that materialization was

retrieve (EMP name)
where EMP salary > 20
and EMP hobbies average < 6

and was processed by scanning EMP and materializ-
ng only the hobbdies fields of employees with
salary more than 20K The 1ndex on
EMP hobbies average was of no use because no
entries were materiahized before the above query
was executed However, after the execution of the
query the index will be as shown in Figure 3
Notice that this index table differs in two ways
from conventional indexes First, there may be
more than one average value for the same TID
value This cannot be true 1n conventional rela-
tions because all fields carry a single value (First
Normal Form [ULLM82]) Second, there 1s a pred-
cate associated with the index (salary > 20)
This predicate uses only non-QUEL fields and 1s a
simple way to identify the kind of tuples indexed
by the given index That predicate 1s also used to
decide 1if an index 1s useful 1n answering a given
query For example, a future query that mcludes a



|sa.la.rv > 20
average L T
4 101
4 102
B 102
8 101

Figure 3: Partial Index

restriction on EMP hobbies average and refer-
ences employees with salaries more than z, with
2>20, can use the idex to avoid a full scan of
EMP However, for <20 the relation must be
scanned and the entries with salary values under
20 will be materialized As a side effect, the index
table and the corresponding predicate will be
updated

In [SELL86b] we present in detail the opera-
tions on a partial index (e g searching or updating
the index) We will not go into the detais here
due to space hmitations Instead, we would like to
mention another possible use of partial indexes
Many times users 1ssue all their queries through
specific views that they have defined over base rela-
tions Users are not allowed to keep materialized
versions of the views 1n the system because of 1ts
high space cost, but they still would hike queries to
execute fast Indexes on base relations will be help-
ful for that However, these indexes contain more
information than what these users need, namely an
index only on the result of the view matersalization
A partial index seems like a clean solution to that
problem The predicate part will be static since 1t
will be the predicate that defines the view, but
querying and updating will be performed under the
guidelines outhned above This 1dea can also be
extended to normal relations, since these are spe-
cial cases of views Using partial indexes, better
performance can be achieved by allowing the index
to keep information only on frequently accessed
data

6. Summary

This paper first presented the language
QUEL+ and 1ts capabihities Then, an extended
decomposition algorithm based on the INGRES
query processing algorithm was proposed The
extensions made were mainly due to the fact that
one new operation was introduced, namely the
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materiahzation of QUEL fields We showed how
the fact that materiahization 1s a very expensive
operation 1s taken 1nto account Also, some special
case strategies were discussed that aim at reducing
the si1zes of materialized results

Caching was then proposed as a way to avoid
evaluating the queries found in QUEL fields more
than once Several 1ssues associated with caching
were discussed Among others, replacement poli-
cies, wnvahdation algorithms and polcies that
decide which objects to cache were examined in
detall The discussion shows that caching 1s essen-
tial 1n the QUEL+ environment and various solu-
tions to the above problems can be derived once
the cached object characteristics are known How
to compute these characteristics and how to adapt
the system caching policies according to these
statistics 1s a very interesting open problem

Lastly, a new indexing technique, Partial
Indexing, was proposed to provide efficient access
to results of QUEL field materializations A partial
index 18 a combination of both a conventional
index table and a predicate Predicates character-
1ze the set of tuples that can be accessed through
the corresponding index tables We also described
how the system can check if an index 1s useful 1n
processing a given query and what are the neces-
sary operations to maimntain a partial mmdex when
queries and updates are performed

As 1nteresting future work in that area we
view the attempt to implement and experiment
with the 1deas presented in this paper As men-
tioned m section 4, POSTGRES will support
QUEL+ and caching will be used to improve per-
formance Simulations are under development for
an analysis of the various caching scheme alterna-
tives Finally, we are currently investigating the
efficient support of partial indices not only for a
QUEL+ environment but for a conventional
environment as well
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