
Vertical Partitioning for Database Design:
A Graphical Algorithm

Shamkant B. Navathe and Minyoung Ra

Database Systems Research and Development Center
Computer and Information Science Department

University of Florida
Gainesville, Florida 32611

ABSTRACT

Vertical partitioning is the process of
subdividing the attributes of a relation or a record
type, creating fragments. Previous approaches have
used an iterative binary partitioning method which is
based on clustering algorithms and mathematical cost
functions. In this paper, however, we propose a new
vertical partitioning algorithm using a graphical
technique. This algorithm starts from the attribute
affinity matrix by considering it as a complete graph.
Then, forming a linearly connected spanning tree, it
generates all meaningful fragments simultaneously by
considering a cycle as a fragment. We show its
computational superiority. It provides a cleaner
alternative without arbitrary objective functions and
provides an improvement over our previous work on
vertical partitioning.

1.. Introduction

The partitioning of a global schema into
fragments can be performed in two different ways:
vertical partitioning and horizontal partitioning [Ceri
841. This paper is concerned with vertical
partitioning.

Vertical partitioning is the process that
divides a global object which may be a single relation
or more like a universal relation into groups of their

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific pemG.sion.

B 1989 ACM 0-89791-317-5/89/ooO5/0440 $1.50

attributes, called vertical fragments [Nava 84, Nava
85, Corn 871. It is used during the design of a
database to enhance the performance of transactions
[Nava 841. In order to obtain improved performance,
fragments must closely match the requirements of
the transactions. Vertical partitioning has a variety of
applications wherever the match between data and
transactions can affect performance. That includes
partitioning of individual files in centralized
environments, data distribution in distributed
databases, dividing data among different levels of
memory hierarchies, and so on.

Hoffer and Severance [Hoff 751 measure the
affinity between pairs of attributes and try to cluster
attributes according to their pairwise affinity by using
the bond energy algorithm (BEA) developed in
[McCo 721.

Navathe, et. al. [Nava 841 extend the results
of Hoffer and Severance and propose a two phase
approach for vertical partitioning. During the first
phase, they use the given input parameters in the
form of an attribute usage matrix and transactions, to
construct the attribute affinity matrix on which
clustering is performed. After clustering, iterative
binary partitioning is attempted, first with an
empirical objective function. The process is continued
until no further partitioning results. During the
second phase, the fragments can be further refined by
incorporating estimated cost factors weighted on the
basis of the type of problem being solved.

Cornell and Yu [Corn 871 apply the work of
[Nava 841 to relational databases. They propose an
algorithm which decreases the number of disk
accesses to obtain an optimal binary partitioning.
They show how knowledge of specific physical factors
may be incorporated into the fragmentation
methodology to yield better overall performance.

440

Ceri, Pernici and Wiederhold [Ceri 881
extend Navathe, et. al.‘s work by considering it as a
DIVIDE tool and by adding a CONQUER tool.
Their CONQUER tool again extends the same basic
approach in the direction of adding details about
operations and physical accesses similar to [Corn 871.
This approach is focussed on the decomposition of
the design process into several design subproblems
and provides no algorithmic improvement in the
process of vertical partitioning itself.

In all algorithms that we have surveyed, the
binary partitioning technique has been used for
partitioning afrer clustering attributes. Thus binary
partitioning is required to be repeated until all
meaningful fragments are determined. It is also
necessary that clustering be repeated at each iteration
after clustering two new affinity matrices
corresponding to the newly generated fragments.

In this paper we propose a new vertical
partitioning algorithm which has less computational
complexity and generates all meaningful fragments
simultaneously by using a graphical method. This
approach is based on the fact that all pairs of
attributes in a fragment have high “within jkagment
aJinity” but low “between fragment aflnity”. Section 2

deals with preliminaries. In Section 3, the algorithm
and its analysis are presented. Section 4 describes the
application of the proposed approach, and Section 5
gives the conclusion.

2. Preliminaries

2.1 Overview

The algorithm that we propose starts from
the attribute affinity (AA) matrix, which is generated
from the attribute usage matrix using the same
method as that of our previous approach [Nava 841.
The attribute usage matrix represents the use of
attributes in important transactions. Each row refers
to one transaction; the “1” entry in a column
indicates that the transaction “uses” the
corresponding attributes. Whether the transaction
retrieves or updates the relation can also be captured
by another column vector with R and U entries for
retrieval and update. That information may be used
by an empirical objective function as in [Nava 841.
The attribute usage matrix for 10 attributes and 8
transactions is shown in Figure 1. Attribute affinity
is defined as

Attribute usage matrix Type
Number of
accesses per
timeperiod

Tsl 2 3 4 5 6 7 8 9 10

: tL10000 ooolol?oo R
Acc1=25

10 R Acc2=50

E
0001010001 Acc3=25
0100001 1 0 0 R” Acc4=35

T5 1 1 10101110 u Acc5=25
T6 1

z
ooolooo~:

Acc6=25

x~~zz8:
:: Act 7 = 25

11 u Acc8=15

Fig. 1 Attribute usage matrix

Attributes 1 2 3 4 5 6 7 8 9 10

1
i s 25 1:: 75 115 ;z : 25 z:: a” 25 ii 1:; 75 115 z :

4

i

7: 2: 1: ii 7: iz 5: 2: I; ii

5:
0 15 40” 40” 0 0 4i

7
i ;: 1: 75 115 72:

0 5:
0

2

ii 15 : 25 E 1E 75
:55 0

115 75 15 0

10 0 0 15 0 40 0 0 15 40

Fig.2 Attribute aflkity (AA) matrix

441

affj = X aCJ&j

kar

where ac+ is the number of accesses of transaction
k referencing both attributes i and j. The summation
occurs over all transactions that belong to the set of
important transactions 7. This definition of attribute
affinity measures the strength of an imaginary bond
between the two attributes, predicated on the fact
that attributes are used together by transactions.
Based on this definition of attribute affinity, the
attribute affinity matrix is defined as follows: It is an
n x n matrix for the n-attribute problem whose (ij)
element equals affij. Figure 2 shows the attribute
affinity matrix which was formed from the Figure 1.
A diagonal element AA(i,i) equals the sum of the
elements in the attribute usage matrix for the column
which represents ai. This is reasonable since it shows
the “strength” of that attribute in terms of its use by
all transactions.

A note about the attributes: in this proposed
technique as well as in the previous techniques, the
set of attributes considered may be

(a) the universal set of attributes in the whole
database.

(b) the set of attributes in a single relation (or
record type).

By using (a), the fragments generated may be
interpreted as relations or record types. By using (b),
fragments of a single relation are generated.

In previous approaches, they apply a
clustering algorithm to the AA matrix. In our present
approach, however, we consider the AA matrix as a
complete graph called the ajjinity graph in which an
edge value represents the affinity between the two

Fig. 3 Affinity graph after excluding zero-valued edges

442

attributes. Then, forming a linearly connected
spanning tree, the algorithm generates all meaningful
fragments in one iteration by considering a cycle as
a fragment. A “linear& connected” tree has only two
ends. Figure 3 shows the affinity graph corresponding
to the AA matrix of Figure 2 after excluding zero-
valued edges. Note that the AA matrix serves as a
data structure for the affinity graph.

The major advantages of the proposed
method over that in [Nava 841 are that:

(a) There is no need for iterative binary
partitioning. The major weakness of iterative
binary partitioning is that at each step two
new problems are generated increasing the
complexity; furthermore, termination of the
algorithm is dependent on the discriminating
power of the objective function.

(b) The method requires no objective function.
The empirical objective functions in [Nava
841 were selected after some trial and error
experimentation to see that they possess a
good discriminating power. Although
reasonable, they constitute an arbitrary
choice. This arbitrariness has been eliminated
in the proposed methodology.

2.2 Definitions and notations

We shall use the following notation and
terminology in the description of our algorithm.

A,B,C ,... denotes nodes.
a,b,c ,... denotes edges.
p(e) denotes the affinity value of an edge e.
primitive cycle denotes any cycle in the
affinity graph.
affinity cycle denotes a primitive cycle that
contains a cycle node. In this paper we
assume that a cycle means an affinity cycle,
unless otherwise stated.
cycle completing edge denotes a “to be
selected” edge that would complete a cycle.
cycle node is that node of the cycle
completing edge, which was selected earlier.
former edge denotes an edge that was selected
between the last cut and the cycle node.
cycle edge is any of the edges forming a cycle.
extension of a cycle refers to a cycle being
extended by pivoting at the cycle node.

The above definitions are used in the
proposed algorithm to process the affinity graph and
to generate possible cycles from the graph. They will
become clearer when we explain them in Section 2.3.
Each cycle gives rise to a vertical fragment. The
intuitive explanation of why such a procedure yields
meaningful fragments can be given only after we fully
describe the algorithm in Section 3 of the paper.

2.3 Fundamental concepts

Based on the above definitions we would like
to explain the mechanism of forming cycles. For
example, in Figure 4, suppose edges a and b were
selected already and c was selected next. At this time,
since c forms a primitive cycle, we have to check if
it is an affinity cycle. This can be done by checking
the possibility of a cycle. PossibiZity of a cycfe results
from the condition that no former edge exists, or
p(former edge) <= p(al1 the cycle edges). The
primitive cycle a,b,c is an affinity cycle because it has
no former edge and satisfies the possibility of a cycle.
Therefore the primitive cycle a,b,c is marked as a
candidate partition and node A becomes a cycle
node.

cycle node

Fig. 4 Cycle and extension

Now let us explain how the extension of a
cycle is performed. In Figure 4, after the cycle node
is determined, suppose edge d was selected. At this
time, d is checked as a potential edge for extension.
It can be done by checking the possibility of
extension of the cycle by d. Possibility of extension
results from the condition of p(edge being constiered
or cycle completing edge) > = p(any one of the cycle
edges). Thus the old cycle a,b,c is extended to the
new cycle a,b,d,f if the edge d under consideration, or
the cycle completing edge f, satisfies the possibility of

443

extension which is: p(d) or p(f) >= minimum of
(p(a),p@),p(c)). Now the process is continued:
suppose e was selected as the next edge. But we
know from the definition of the extension of a cycle
that e cannot be considered as a potential extension
because the primitive cycle d,b,e does not include
the cycle node A. Hence it is discarded and the
process is continued.

The next concept that we wish to explain
corresponds to the relationship between a cycle and
a partition. There are two cases in partitioning.

(1) Creating a partition with a new edge.
In the event that the edge selected next for

inclusion (e.g. d in Figure 4) was not considered
before, we call it a new edge. If a new edge by itself
does not satisfy the possibility of extension, then we
continue to check an additional new edge called cycle
completing edge (e.g. fin Figure 4) for the possibility
of extension. In Figure 4, new edges d and f would
potentially provide such a possibility of extension of
the earlier cycle formed by edges a,b,c.

If d,f meet the condition for possibility of
extension stated above (namely p(d) or p(f) >=
minimum of (p(a),p(b),p(c))), then the extended new
cycle would contain edges a,b,d,f. If the condition
were not met, we produce a cut on edge d (called
the cut edge) isolating the cycle a,b,c. This cycle can
now be considered a partition.

(2) Creating a partition with a former edge.
After cutting in (l), if there is a former edge,

then change the previous cycle node to that node
where the cut edge was incident, and check for the
possibility of extension of the cycle by the former
edge. For example, in Figure 5, suppose that a,b, and
c form a cycle with A as the cycle node, and that
there is a cut on d, and that the former edge w
exists. Then the cycle node A is changed to C
because the cut edge d originates in C. We are now
evaluating the possibility of extending the cycle a,b,c
into one that would contain the former edge w.
Hence we consider the possibility of the cycle a,b,e,w.
Assume that w or e does not satisfy the possibility of
extension, i.e., if “p(w) or p(e) >= minimum of
(p(a),p(b),p(c)) ” is not true. Then the result is the
following: i) w will be declared as a cut edge, ii) C
remains as the cycle node, and iii) a,b,c becomes a
partition. Alternately, if the possibility of extension
is satisfied, the result is: i) cycle a,b,c is extended to
cycle w,a,b,e, ii) C remains as the cycle node, and iii)
no partition can yet be formed.

cycle node

Fig. 5 Partition

Intuitively, the algorithm presented below
achieves the decision of partitioning in the following
manner. Keeping the pivot on a present cycle node,
extension of the cycle is attempted by considering
either new edges or former edges which would
expand the area under the cycle. For example, in
Figure 4 we attempted to “grow the cycle” from area
ABC to area ABCD by considering new edges d and
f. In Figure 5, we shifted the pivot from node A to
C and then attempted to grow from area ABC to
ABCW with a former edge w. The next growth of
ABCW would be attempted counterclockwise with
respect to the pivoting cycle node C by considering
edges “fomter” to w incident on node W.

3. The algorithm

An algorithm for generating the vertical
fragments by the affinity graph is described below.
Each partition of the graph generates a vertical
fragment.

3.1 Description of the algorithm

First we briefly describe the algorithm in 5
steps.

Step 1. Construct the affinity graph of the attributes
of the object being considered. Note that the
AA matrix is itself an adequate data
structure to represent this graph. No
additional physical storage of data would be
necessary.

444

2. Step

3. Step

4. Step

Step 5.

Start from any node.

Select an edge which satisfies the following
conditions:

It should be linearly connected to the
tree already constructed.
It should have the largest value among
the possible choices of edges at each
end of the tree.

This iteration will end when all nodes are
used for tree construction.

When the next selected edge forms a
primitive cycle:

If a c$le node does not exist, check for
the “possibility of a cycle” and if the
possibility exists, mark the cycle as an
affinity cycle. Consider this cycle as a
candidate partition. Go to step 3.
If a cycle node exists already, discard
this edge and go to step 3.

When the next selected edge does not form
a cycle and a candidate partition exists:
(1) If no former edge exists, check for the

possibility of extension of the cycle by
this new edge. If there is no possibility,
cut this edge and consider the cycle as
a partition. Go to step 3.

(2) If a former edge exists, change the cycle
node and check for the possibility of
extension of the cycle by the former
edge. If there is no possibility, cut the
former edge and consider the cycle as a
partition. Go to step 3.

To obtain a more detailed algorithm,
suppose that the following data structures are
used during implementation [Bras 881: The nodes
of the affinity graph are numbered from 1 to n, N =
w, ***, n}, and a symmetric matrix L gives the
weight of each edge. Three vectors are used: B,
strongest, and maxwt. B gives the sequence of
scanned nodes. For each node i c N \ B, strongest[i]
gives the node in B that is strongest with respect to
i, and maxwt[i] gives the weight from i to
strongestji]; strongest[l] and maxwt[l] are not used.
Without loss of generality we can assume that the
algorithm starts from node 1. The detailed
description of the algorithm now follows. The
algorithm uses variables with the following meaning:

p-cycle: is a binary variable which denotes
whether a primitive cycle exists.

c-node: is a binary variable which denotes
whether a cycle node exists.
f-edge: is a binary variable which denotes
whether a former edge exists.
candidateq: is a binary variable which
denotes whether an affinity cycle exists which
can potentially generate a fragment.
cycle c edge-w: is an integer variable for the
weigKt;f the cycle completing edge.
former-edge-wt: is an integer variable for the
weight of the former edge.

Procedure Make-partition(L[l..n,l..n]): set of edges
(initialize flags and variables)
B[l] <- 1
flc-l,f2c-0 (fl&Eteachrefertoanend

of the spanning tree)
p-cycle, c-node. f-edge. candidate-p <- false
pminc- 0 {minimum edge of a cycle)
(initialize vectors)
for i <- 2 to n do

strongest[i] <- 1
maxwt[i] <- L[iJ]
B[i] c- 0

end-for
repeat n-l times

max <- -1
(select the next node)
for j<-2 to n do

if maxwtu] > max and
(strongestb] = fl or strongestlj] = f2)

then max c- maxwtli]
kc-j

end-for
(adjust the pointers for checking a primitive cycle)
if strongest[k] = fl then if f2 = 0 then EL C- k

else swapfl,lT
f2<-k

else EL<-k
(check if there is a primitive cycle)

for j <- 2 to n do
if Bb]=k and c-node=false
then p-cycle c- true

if B&l] > 0 then f-edge <- true
end-for
if p-cycle = true (primitive cycle exists)
then (check if it is an affinity cycle)

if pmin >= former-edge-wt or f-edge = false
then candidates <- true

c-node <- true
else f-edge c- false

else
insert k into B, maxwt[k] <- - 00
if candidates = true
then if maxw@c] c pmin or

cycle-c-edge-wt < pmin

445

then (partition exists)
reinitialize variables
if f-edge=false
then save this partition
else change the cycle node

if former-edge-wt < pmin
then save this partition
else extend the cycle

else extend the cycle
(pmin contains the minimum edge of a cycle)
if pmin > maxwt[k] then pmin <- maxwt[k]
(rearrange vectors for next selection)
for j<-2 to n do

if L[k+j] > maxwtfi] then maxwtb] <- L[k,j]
strongestfi] < -k

end-for
end-repeat

3.2 Why does the above algorithm produce
reasonable partitioning ? (an intuitive explanation)

Now we will give the proof of the correctness
of the algorithm. The idea of the proof consists in
showing that an affinity cycle is distinguished from
other cycles in terms of the values of affinities. In
other words, it means that all edges in a cycle should
have similar affinities in contrast to other cycles.

Fig.6 Proof of reasonable partitioning

In Figure 6, suppose that a,b,c and d initially
form a cycle and that there is a cut on w. Then by
the definition of the possibility of a cycle,

P(a)9P(b)YP(c),P(d) ‘= P(w)*
Now, consider the subcycle a,b and e. Since the cycle
node A is included in this cycle,

p(e) ’ = P(w)-
Likewise,

P(f) >= p(w).
Then, because the next edge which was selected first
at node W was w, it implies that w was the largest

Fig. 7(a) Result of the first example:
start at node 9

446

edge at W. Hence
P(W) ‘= P&9.

Thus
P(a),p@),p(c),p(d),p(e),p(f) > = P(w) > =

P(g)-
At this time, if p(w) had been equal to any edge in
the cycle, then the cycle would have been extended.
Thus we can conclude that

P(a),P@),P(c)YP(d)YP(e),P(f) ’ PW
This means that all edges in the cycle a,b,c,d have
relatively similar affinities and are distinguished from
other edges (namely, w and g) which are not in the
cycle.

3.3 Examples

We will use the same example problems from
[Nava 841 to illustrate how this algorithm works and
to compare partitioning decisions. Since our
algorithm uses the same attribute affinity matrix, we
assume that it has already been completed from the
original transaction matrix and the computation of
affinities. For ease of understanding, we will refer
back to the steps of the algorithm from Section 3.1.

The attribute affinity matrix of the first
example is shown in Figure 2 and its affinity graph
after excluding the zero-valued edges appears in
Figure 3. Suppose we start at node 9 (step 2), then,
by the algorithm, edges 9-3, 9-2, and 2-8 are selected
in order (step 3). At this time, edge 8-9 cannot form
a cycle because it does not satisfy the possibility of a
cycle (step 3). Thus edge 8-3 is selected as the next
edge and it forms a candidate partition (step 4). Note
that node 3 becomes a cycle node (step 4). Then the
process is continued and edge 8-7 is selected (step 3).
Since there is a candidate partition, the possibility of
extension is checked (step 5.1). Thus the cycle 9,3,2,8
considered as a partition because edge 8-7 (edge
being considered) and 3-7 (cycle completing edge)
are both less than any of the cycle edges (step 5.1).
The relevant part of the graph is shown again in
Figure 7(a). As shown in Figure 7(a), our algorithm
generates three affinity cycles separated by edges 3-
4 and 7-8. They generate three fragments: (l&7),
(2,3,&g), (4,6,10). From that Figure, we know that
the result of our algorithm is the same as that of
[Nava 841.

To show that this algorithm does not depend
upon the starting node, let us start at node 1. By the
algorithm, the first affinity cycle is not formed until
edges l-5,5-7,7-8, 8-2, 2-9, and 9-3 are selected. The
first cycle 8,2,9,3 is identified as a candidate partition

Fig. 7(b) Result of the first example:
start at node 1

and node 8 becomes a cycle node. Then a cut occurs
on edge 3-4 because neither edge 3-4 nor edge 4-8
satisfies the possibility of extension of the cycle (step
5.1). At this time, since there is a former edge, we
have to change the cycle node to node 3 and check
for the possibility of extension of the cycle by the
former edge 7-8 (step 5.2). Thus another cut occurs
on edge 7-8 because edge 7-8 and 7-3 are both less
than any of the cycle edges. Figure 7(b) shows this
result. Thus we can conclude that the resulting
fragments are always the same irrespective of the
node from which you start.

The second example we will use is a global
relation with 20 attributes and 15 transactions. The
result of [Nava 841 partitions this relation into four
fragments in three iterations: (M%3),
(2,9,12,13,14), (3,7,10,11,17,18), (15,16,19,20). Our
algorithm, however, generates five fragments in one

447

Fig. 8 Result of the second example

iteration as shown in Figure 8: (1,5,8), (4,6), affinity matrix can be used as a symmetric matrix L.
(2,9,12,13,14), (3,7,10,11,17,18), (15,16,19,20). Note
that the algorithm starts from node 1 and the cut of

The repeat loop in the detailed description is
executed n-l times, where n denotes the number of

edge 3-2 is performed earlier than that of edge 4-7. attributes. At each iteration, selection of the next
This result shows that our algorithm can find one edge takes a time O(n). Also whether a cycle exists
more possibility of partitioning. Thus what the or not can be implemented in time of O(n) by
empirical objective function could not discriminate as scanning the vector B. Thus the algorithm takes a
a potential partitioning in [Nava 841, is actually time O(n*), which is less than that of [Nava 841,
detected by our procedure. namely, O(n* log n).

3.4 Complexity of the algorithm

Now we consider the computational
complexity. Step 1 does not affect the
computational complexity because the attribute

4. Application

This algorithm can be used effectively for

448

vertical partitioning because it overcomes the
shortcomings of binary partitioning and it does not
need any complementary algorithms such as the
SHIFT and CLUSTER procedures that are used in
[Nava 841. Furthermore, the algorithm involves no
arbitrary empirical objective functions to evaluate
candidate partitions such as those used in [Nava 841.

Also this algorithm can be used for the cost-
optimized vertical partitioning approach including
different memory level partitioning and multiple site
partitioning [Nava 841. This application is currently
being researched. We think it can be achieved by
adding and analyzing an additional graph which
contains cost information.

Another important application of this
algorithm is the mixed partitioning tool which is under
development in our D3T project. The mixed
partitioning tool that we are currently researching
will first generate a grid for a relation vertically and
horizontally, and then merge cells as much as
possible by using a cost function for determining a
fragment. We propose to implement the present
algorithm for generating the grid vertically because it
can generate all fragments of a relation
simultaneously in one iteration.

The application of the proposed algorithm is
in no way limited to just database design. The
problem of clustering the nodes of a graph on the
basis of affinity among the nodes can represent a
variety of real life problems. They range from
domains such as network design in communication to
questionnaire design in social sciences where early
work on clustering was done (e.g. see McCo 72). We
see a vast potential for applying the proposed
technique to a variety of domains.

hierarchy. By combining with the previously proposed
MULTI-ALLOCATE algorithm, this algorithm can
be used to achieve the allocation of vertical
fragments over a network. Potential application of
this algorithm can be in any domain where clustering
on the basis of affinity is possible and meaningful.

Further extension of this research will be in
the direction of developing an interactive design tool.
This design tool will allow users to make
fragmentation and allocation decisions for distributed
databases using vertical, horizontal, and mixed
partitioning. The present algorithm is being
implemented for generating the vertical partitioning
candidates in this mixed partitioning scenario.
Extension of the present work to incorporate cost
information will also be undertaken.

Acknowledgements

We thank Arunkumar Balaraman, Kamalakar
Karlapalem, Rajeev Kumar, Pedro Rivera-Vega, and
Prof. Ravi Varadarajan of the Distributed Database
Design Tool (DYr) project at the University of
Florida for their constructive criticism of this
approach. The research is supported by NSF Grant
No. IRI 8716798.

References

[Bras 881

[Ceri 841

5. Conclusion

We have described an algorithm for vertical
partitioning, which uses a graphical technique. The
major feature of this algorithm is that all fragments
are generated by one iteration in a time of O(n*)
that is more efficient than the previous approaches.
Furthermore, it does not need any arbitrary objective
function.

This algorithm can be further enhanced to
address the problem of primary/secondary memory
partitioning, or in the context of any memory

[Ceri 881

[Corn 871

Brassard, G., and Bratley, P.,
Algorithmics: Theory & Practice,
Prentice Hall, 1988.

Ceri, S., and Pelagatti, G.,
Distributed Databases: Principles
and Systems, McGraw Hill, 1984.

Ceri, S., Pernici, B., and
Wiederhold, G., “Optimization
Problems and Solution Methods
in the Design of Data
Distribution,” Working Paper,
Stanford University, 1988.

Cornell, D., and Yu, P. S., “A
Vertical Partitioning Algorithm
for Relational Databases,” Proc.
Third International Conference on
Data Engineering, Feb. 1987.

449

[Hoff 751 Hoffer, J. A, and Severance, D.
G., “The Use of Cluster Analysis
in Physical Database Design,”
Proc. First Internutionul Conference
on Vety Large Data Bases, 1975.

[M&o 721 McCormick, W. T., Schweitzer, P.
J., and White, T. W., “Problem
Decomposition and Data
Reorganization by a Clustering
Technique,” Operations Research,
20, Sep. 1972.

[Nava 841 Navathe, S. B., Ceri, S.,
Wiederhold, G., and Dou, J.,
“Vertical Partitioning Algorithms
for Database Design,” ACM Trans.
on Database Systems, Vol. 9, No.
4, Dec. 1984.

[Nava 851 Navathe, S. B., and Ceri, S., “A
Comprehensive Approach to
Fragmentation and Allocation of
Data in Distributed Databases,”
IEEE lktorial on Diwibuted
Database Management,
(Larson&A., and Rahimi,S., eds),
1985.

450

