
D A T A I N T E N S I V E P R O D U C T I O N S Y S T E M S : T H E D I P S A P P R O A C H

Timos Sellis, Chih-Chen Lin Louiqa Raschid
Department of Computer Science Department of Information Systems

and Institute for Advanced Computer Studies (UMIACS)
University of Maryland, College Park, MD 20742

Abstract

In this paper we highlight the basic approach taken
in the design of the DIPS system, and briefly
present the main contributions. These include the
use of special data structures to store rule
definitions; they are implemented using relations.
A matching algorithm uses these structures to
efficiently identify when the antecedents of produc-
tions are satisfied, making them applicable for exe-
cution. Partial match information stored in the
data structures is used by the matching algorithm.
We also describe a proposed concurrent execution
strategy for applicable productions, which sur-
passes in performance, the traditional sequential
OPS5 production execution algorithm. The
requirements for a correct, serializable execution,
based on locking, is described. An advantage of
the matching technique in DIPS is that it is fully
parallelizable, which makes it attractive for imple-
mentation in parallel computing environments.

1. Introduction

The integration of artificial intelligence (AI)
and database management (DBMS) has been the
focus of recent research [11,12]. An important
aspect of this integration is identifying functional
similarities in database processing and reasoning
with rules. This allows techniques designed for use
in either AI or DBMS technology to be tailored for
use in a functionally integrated environment.

Existing relational database systems have some
limited rule subsystems to provide integrity control
and protection. Updates are "filtered" and com-
mitted only if several user-defined constraints are
met. Updates to the database may trigger the
firing of rules, which in turn, may perform several
updates to the database. Triggers and their imple-
mentation in DBMS have been studied in various

This research was sponsored partially by the National Sci-
ence Foundation under Grant IRI-8719458 and by UMIACS.

contexts [1,2,3,7,15] and they are similar to pro-
duction rules in AI production systems [10]. The
problem of supporting rule-based reasoning
efficiently in a database environment is the focus of
our research.

In this paper, we describe the Data Intensive
Production System (DIPS), designed to efficiently
support production rules in a database environ-
ment. In DIPS, production definitions are stored
using special data structures implemented using
relations. A matching algorithm uses these struc-
tures to determine when the antecedents of produc-
tions are satisfied; these productions are then
scheduled for execution. The algorithm stores
information on partially satisfied productions, as
well, using these relational data structures. Section
2 describes production systems and section 3
describes the architecture of DIPS. The relational
data structures and the matching algorithm based
on these structures are described in section 4.

In section 5, we examine a concurrent execution
strategy for the execution of productions in DIPS.
We demonstrate the equivalence of a serial execu-
tion strategy, as in OPSh, and the proposed con-
current execution strategy and we define the
requirements for a correct, serializable execution,
based on a locking technique.

The set-oriented matching mechanism in DIPS,
together with the concurrent execution strategy,
has the potential to be very efficient if the data
base and rule base are very large. In addition, the
DIPS matching algorithm is easily parallelizable.
Using advanced database technology allows us to
provide new methods and algorithms that are fully
compatible with the relational model, yet appropri-
ate for very large production systems.

2. Production Systems and OPS5

Production systems capture problem solving
knowledge in the form of rules or productions and
provide a good characterization of the process of
reasoning using rules [10]. A production system is

52 S I G M O D RECORD, Vol. 18, No. 3, September 1989

a collection of Condition-Action statements, called
productions. The Condition part is on the left-
hand side of a production (LHS) and is satisfied by
data stored in a global database, composed of
Working Memory {WM} elements. The action part
is on the r ight-hand side (RHS) and executes
operations that can modify WM. A production
system repeatedly performs the following opera-
tions, in sequence:

Match: For each production r, determine if
LHS(r) is satisfied by the current WM
contents. If so, add the qualifying pro-
duction to the Conflict Set.

Select: Select one production out of the conflict
set; if there is no such production, halt.

Act: Perform the actions in the RHS of the
selected production. This will change the
content of the WM and as a result, addi-
tional productions may have to be fired,
or some productions may be deleted.

The OPS5 production system 18] has enjoyed
much popularity in AI research and applications.
A_n OPS5 production consists of (1) the symbol p,
(2) the name of the production, (3) the LHS, (4)
the symbol "~, and (5) the RHS actions. The fol-
lowing are two productions:

(p R1
(Emp TNaae Mike ~ Salary <S> ~Dno <D>)
(Dept ~Dno <D> ~D Toy ~Floor 1 TMgr <M>)
"~ (remove I))

(p R2
(Emp '~Name Mike I" Salary <S> ~Dno <D>)
(Dept ~'Dno <D> '~D Shoe ;Floor i 7Mgr <M>)

(r e m o v e i))
that remove Mike from the WM class Emp if he
works on the first, floor, in the Toy department
(R1) or the Shoe department (R2). The 1' symbol
is used to indicate attribute names and <x> is a
variable.

The efficiency of OPS5 [8}. has been attr ibuted
to the efficiency of the Rete algorithm and its
implementation [8.9}. Here. the database resides
entirely in virtual memory, and does not, persist
after the execution of a program. The Rete algo-
rithm exploits temporal redundancy, i.e., the exe-
cution of a single production results in very small
changes to WM. The Rete algorithm compiles the
LHS condition elements, in lexical ordering, into a
binary discrimination network. Figure 1 illustrates

the result of compiling the above two productions.

Root

Class='Emp" Class='Dept"

l l
Name=Mike Floor= 1

, ~Shoe
left.Dno=right.Dno left.Dno=right.Dno

RI is satisfied R2 is satisfied

Figure 1: The Rete Network for R1 and R2

There is a root node which receives all input
tuples. One-input nodes are used to check single
attr ibute conditions of the form a t t r op con-
s t a n t , where op6 { <,>,_< ,_> ,= ,~ }. Two-input
nodes are used to check joins of the form

left.attribute op right attribute

A tuple t is first, checked at one-input nodes to
determine if it is an Emp or a Dept tuple. If so, it
is then propagated to the successors of the qualify-
ing node of the network. In case a check is per-
formed at. a two-input node, and a matching value
is not, found at the corresponding join branch, the
tuple is queued up at the network waiting for a
future arrival of a matching tuple. When such a
tuple comes through the network, the result of the
join is a token that is propagated to the successors
of the two-input node. Finally, if a token makes it
all the way till the "bottom" of the Rete Network,
a production or set. of productions have qualified
and the system adds these productions to the
conflict, set, together with the token that caused
the production to become active.

In OPSS, productions placed in the conflict set
are executed in a serial order. In each cycle, a sin-
gle production is selected and its RHS actions are

S I G M O D R E C O R D , Vol . 18, No . 3, S e p t e m b e r 1989 53

then executed; this may result in changes to the
WM. This triggers the next match phase. Updates
to the WM are propagated through the Rete net-
work. Consequently, productions in the conflict set
may be deleted, or new productions may be added.
When several combinations of the WM elements
satisfy a single production, OPS5 stores each com-
bination as a separate instantiation of the produc-
tion in the conflict set, and each is executed
independently. Similarly, a WM element could
simultaneously satisfy several productions. Again
in OPSS, only a serial execution strategy is fol-
lowed.

3. T h e D I P S S y s t e m

The DIPS system views the task of satisfying
the LHS of a production from a DBMS perspective.
In general, we can consider the LHS as a well
formed formula describing a condition that must
be satisfied by ' the data stored in a knowledge base.
The LHS is equivalent to a retrieval operation in a
non-procedural SQL-like language or a tree of
relational algebraic operations. Satisfying the LHS
of a production is equivalent to executing a
retrieval operation against the occurrences in a
knowledge base; this approach has been the basis
of some proposals for implementing production sys-
tems in DBMS environments such as in [4] and [6].

Figure 2 shows the general architecture of
DIPS. As in OPSS, the Match/Maintenance process
(MMP) is triggered by one (or more) changes to
WM relations. The W M R e a d operation in the
figure represents this dependency. Functionally,
the MMP is similar to the Match phase of the Rete
algorithm. This process identifies productions
whose antecedents are satisfied. The process makes
use of the special COND relations that store pro-
duction definitions as well as information on par-
tially satisfied productions, as discussed in the next
section. It comprises inser t ion and de le t ion algo-
rithms that update the COND relations, as shown
by the C O N D U p d a t e operation. The MMP
identifies m a t c h i n g p a t t e r n s corresponding to
productions whose antecedents are satisfied and are
ready for execution. The patterns are placed in the
conflict, set. and this is reflected by the C S U p d a t e
operation in Figure 2. The difference between
DIPS and OPS5 is that. in the latter, the mainte-
nance of the Rete network precedes the update of
the conflict set. In DIPS, the update of the conflict,
set (C S U p d a t e) precedes the maintenance process
(C O N D U p d a t e) . This implies that productions
whose antecedents are satisfied are identified at, an

w
M
R
e

d

t Match/'
Maintenance

Process

C
0
N
D
U

!

WMUpdate :
WMread:
CONDUpdate :
CSUpdate:
CSRead:

WMUDdate

CSUpdate

iCSRead

[Concurrent Execution [
Process

WMRead

Working Memory Update
Working Memory Read
Condition Relations Update
Conflict Set Update
Conflict Set Read

Figure 2 DIPS Architecture

earlier instant (and can be executed earlier).

It is with respect to the Select and Act phases
(of the Rete algorithm) that DIPS differs
significantly. As mentioned earlier, in OPS5, pro-
ductions placed in the conflict set are executed in a
serial order. In DIPS, this serial execution strategy
is replaced by a concurrent, one (Concurrent Execu-
tion process in Figure 2}. This process con-
currently executes a set of productions in the
conflict, set. Within the Concurrent Execution pro-
cess, all the tasks associated with the execution of
a candidate production will be defined as a single
transaction. Within such a transaction, the first
task is a retrieval from the WM relations; this is
reflected by the W M R e a d operation of the Con-
current, Execution process. The next task is exe-
cuting the corresponding RHS (r ight-hand side)
actions. These actions represent changes to the
WM classes and include insertions, deletions and
updates of the WM elements. This is reflected by
the W M U p d a t e operations in the figure. Details
of the Concurrent Execution process (CEP) are in
section 5.

4. T h e M a t c h / M a i n t e n a n c e P r o c e s s

In DIPS, each WM class is simulated using a
WM relation which stores occurrences of this WM

54 S I G M O D R E C O R D , Vol. 18, No . 3, S e p t e m b e r 1989

class. The antecedents of productions are compiled
and stored using a relational data structure, the
COND relation. There is one COND relation for
each WM relation in the system. The COND rela-
tion associated with a WM relation R, stores the
descriptions of conditions found in all productions
that involve R in their antecedents. Partial match
information about the occurrences of other WM
classes involved in the same production as R, link-
ing those occurrences to the occurrences of R, are
also stored in the COND relation for R.

Insertion and deletion of occurrences of WM
classes (tuples in the WM relations) will affect the
antecedents of productions that test conditions
against these classes. Insertion of tuples may cause
the antecedents to become satisfied and deletion
will make them no longer satisfied. The
antecedents could also include negative conditions,
i.e., they verify the absence of some occurrences of
a WM class. Thus, insertion or deletion into a WM
class may also effect productions with negative
conditions.

The details of the COND relational structures
and the insertion and deletion algorithms of the
MMP are discussed in [14]. Here, we use an exam-
ple to illustrate the operation of the algorithm that
handles insertion of tuples into WM relations.
.Assume three relations E(na~ae. s a l a r y , dno),
W(name,mgr, j ob) , D(clname.mgr. clno) (standing
for Emp, WorksFor and Dept respectively). The
following defines a production which is used to fire
all Clerks working in the Toy depar tment and
making 20K:

(p Rule-I
(E T name <x> T salary 20K ~ dno <Z>)
(W T name <x> ~mgr <y> ~job ' C l e r k ')
(D ?dname 'Toy' ~mgr <y> 7dno <z>)

(r e m o v e 1))

This production is initially stored as a single
tuple within three COND relations, which
correspond to the three WM classes in the LHS of
the production. Suppose now that we insert the
tuples W(Mlke. John. Clerk), D(Toy, Tom. 8),
E(Mike.20K.8) and W(Mike. Tom. Clerk) in the
sequence given. The contents of the various COND
relations will be as follows (for brevity we use E
for E, W for W, and D for D)

COND-E

CEN

I

1
1

1

name

<X>

Mlke

<X>

Mlke

I
!salary dno RCE WD

20K <z> (W.2) . (D.3) O0

20K <z> (W.2) . (D.3) I0
20K 8 (W.2) . (D.3) 01
20K 8 (W.2) . (D.3) i i

CEN name

2 <x>

2 <x>

2 Mlke

2 Mlke

mgr] o b RCE ! ED

<y> C l e r k : E . I) . (D . 3] O0

Tom Cle rk [E. I) . (D,3] 01
<y> C l e r k ' .E. i) . (D.3~I i0
Tom Clerk (E,i).(D,3]i ii

C0ND-D l

CEN dname mar dno RCE EW

3 Toy <y> <Z> (E . 1) . (W , 2) 00

3 Toy John <z> (E . I) . (W . 2) 01
3 Toy <y> 8 (E.i),(W.2) i0
3 Toy John 8 (E . i) . (W . 2) I I
3 Toy Tom <Z> (E . I) . (W . 2) 01
3 Toy Tom 8 (E . i) . (W . 2) Ii

For each production, the RCE list in each tuple of
the COND relations indicates which conditions
(involving other WM relations) of the same produc-
tion are affected by insertions or deletions in the
current relation being examined. There is one
Mark bit for each RCE, which if set indicates that
the pattern is created by a tuple tha t satisfies the
corresponding condition element. These Mark bits
are stored in the last column of the COND rela-
tions. For example, the insertion of tuple
W(Mike. John. Clerk) is recorded in both COND-E
and COND-D. Thus. when a tuple is inserted later
in the current WM relation which matches that.
pattern, we know immediately tha t there are
matching occurrences of related WM classes,
without having to examine the other WM
relation(s). Notice that when W(Mike. Tom. Clerk)
is inserted, the last tuple in COND-W causes Rule-1
to be put in the conflict set because all Mark bits
are set (indicating the existence of matching tuples
E and D).

Comparing the DIPS Approach with OPS5 we
can see that matching is very fast, in DIPS because

S I G M O D R E C O R D , Vol . 18, N o . 3, S e p t e m b e r 1989 55

only a single search over a COND relation is neces-
sary. The propagation cost, is the same as the cost
incurred by a Rete Network. The method is easily
parallelizable, since propagation of changes can be
performed in parallel to all the COND relations.
In contrast to that , the Rete Network method is
highly sequential.

5. Concurrent Execution of Product ions

There are many sources of concurrency in exe-
cuting productions. If several combinations of the
WM elements satisfy a single production in the
conflict set, then this results in intra-prodnetion
concurrency (within a single production). In DIPS,
a set-oriented selection will retrieve all possible
combinations of the WM tuples satisfying each
antecedent. Thus, a selected production can be
simultaneously applied to all possible combinations
of the WM tuples, that are retrieved. Similarly,
there is a potential for inter-production con-
currency; i.e., for executing several different pro-
ductions from the conflict set.

In the rest of this section, we investigate the
concurrent execution of productions in the conflict
set. First, we show the equivalence of a serial and
a concurrent execution. Next, we define the require-
ments for a correct concurrent execution strategy,
in DIPS. Our notion of correctness is based on the
serializsbility criterion; WM relations will not be
updated until a transaction commits, and we
guarantee a correct execution that is serializable,
based on 2 Phase Locking mechanisms. Details on
the estimated performance benefits of a concurrent
execution are in [13].

Consider an initial set @ 1 of transactions in the
conflict set. In a serial production system, in each
step i, a single transaction, T i is arbitrarily selected
from the conflict set and applied. We use the term
"arbitrarily", because the OPS5 conflict resolution
strategies are syntactic. Subsequently, the produc-
tion system will determine if, as a result of apply-
ing Ti, some other transactions in this conflict set
are no longer applicable; if so, these transactions
will be deleted from the set. Let the set of transac-
tions deleted in step i be deli. Also as a result of
applying Ti, the production system will determine
if some additional transactions are now applicable
as well. Let the set of transactions added in step i
be addi. The new set of candidate transactions in
step i+1 is ~ i + 1 = ~ i - { T i } - d e l i U a d d i . This
process will continue until in step F, the set, • F is
empty.

The selection of each T i is arbitrary; thus, it is
entirely possible that in step 2, T 2 is selected from
the set @ 1 - { T l } - d e l l which is the set
~ 2 - a d d l . In other words, T 2 could also be
selected from the initial set @~ and not from the
added set of transactions add I. Similarly, in subse-
quent steps i, T/ can be selected from the set

i - I

@,-U ({Ts} U delj) After some ./'1 steps the

serial production system will have executed a
sequence of fl transactions Tl, T2,, TI1, where

each T/happens to be an element of the initial set
k0 i. After step fl, all transactions in @ 1 are either
executed or deleted and the set of applicable tran-

I1
sactions for step (f l+ 1), ~I1+1 is the set LJ addj,

j=l
i.e. all the transactions added in the fl previous
steps, which were not selected previously.

Given this same initial set @ l, a concurrent
execution strategy would interleave the execution
of this set of transactions. If an appropriate proto-
col is used, and the resulting schedule is serializ-
able, then it must be equivalent to some serial
schedule Tl, T2,. etc., where each T/ must be
from the initial set • I. In other words, the con-
current production system will execute an
equivalent serial schedule which will be the same as
some serial schedule arbitrarily selected by the
serial production system.

In a DBMS environment, a transaction commits
all its changes after it has terminated its execution
normally. Once the transaction commits, these
changes are physically made to the database. In a
concurrent environment, appropriate locks must be
obtained to satisfy the following: First, the inter-
leaved execution of a set of productions must. main-
tain consistency of the database, i.e. two transac-
tions that update the same WM relation must be
serializable. Second, transactions that are inter-
related and affect each other 's execution, that is
transactions that delete each other 's matching-
pattern tuples from the conflict, set, must interact,
correctly. For example, when a transaction ~- exe-
cutes, the selected commit point must be chosen to
enforce a delay in the execution (and commit) of
the transactions in the set, dell, i.e. transactions
that, are deleted as a result, of applying Ti. Transac-
tions in this set, must either not be executed or, if
executed, their changes must not be committed to
the database.

A locking protocol is used in DIPS to produce
serializable execution schedules. Consider a simple

56 S I G M O D R E C O R D , Vol . 18, N o . 3, S e p t e m b e r 1989

case where the antecedent of a production only
tests positive conditions on WM relations.

• Each transaction must obtain a read lock (R
lock) for specific tuples of the WM relations
that satisfy the LHS of the production. This
prevents the deletion or update of these tuples
by other transactions. Note that if any of
these retrievals returns an empty set of tuples,
then the transaction is aborted. This may hap-
pen if Ti is in the delete set of a previously
committed transaction. T/ is aborted since it
is in some delete set.

• Each transaction must obtain a write lock (W
lock) for specific tuples of the WM relation
that it deletes or updates. These would neces-
sarily be tuples for which it would have previ-
ously obtained an R lock; consequently, these
tuples must exist and could not have been
deleted. However, it could wait indefinitely in
case of a deadlock. In the case of an insertion,
a W lock needs to be obtained for the whole
relation.

• Once these locks are obtained, the transaction
can modify the WM relations, corresponding
to the RHS actions and then commit all of its
changes and release all locks.

In [13], we have proved the correctness of our
requirements for serializability by examining all
cases of inter-dependencies among productions
(through the WM relations).

6. C o n c l u s i o n s

In this short paper we have described the basic
approach taken by the DIPS system. DIPS pro-
vides ways for storing, maintaining and using large
production rule bases. DIPS uses a novel approach
to screen updates to the database for faster detec-
tion of applicable productions. This approach also
achieves localization of the match procedure in the
sense that a single relation has to be checked in
order to decide if an inserted or deleted tuple
renders a production applicable for firing. Thus,
our approach is not only suitable for relational
DBMS's but in addition makes our method easily
parallelizable. Finally, we use a new way to pro-
cess applicable productions based on the notion of
transactions. Applicable productions can be pro-
cessed concurrently, assuming that the DBMS will
serialize RHS actions (insertions and deletions)
through its concurrency control mechanism.

Our current work focuses on the implementa-
tion and optimization of the proposed approach.
First, we examine ways in which multiple query
processing and optimization algorithms can be
applied to provide optimal Rete Networks.
Although our approach does not assume any global
execution strategy, we are currently conducting a
performance analysis of the original Rete Network
and our approach. In addition, we study the pro-
perties and performance of a fully concurrent sys-
tem where transactions are used to implement the
actions of the various productions. Finally we plan
to investigate the parallel execution of the match-
ing algorithms in a SIMD environment such as the
Connection machine, where the COND relational
data structures will be partitioned.

7. References

[1] Blakeley, J.A., Larson, P., and Tompa, F.W.,
Efficiently Updating Materialized Views, Proe.
of the ACM-SIGMOD Conf., Washington, DC
(1986).

[2] Blakeley, J.A., Coburn, N., and Larson, P.,
Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable
Updates, Proc. of the 12th VLDB Conf.,
Kyoto, Japan (1986).

[3] Buneman, O.P., and Clemons, E.K.,
Efficiently Monitoring Relational Databases,
ACM TODS (4) 3 (1979).

[4] de Maindreville, C.. and Simon, E., A Produc-
tion Rule Based Approach to Deductive Data-
bases, Proe. of the 4th Data Engineering
Conf., Los Angeles, CA (1988).

[5] Dayal. U. et al, The HiPAC Project: Combin-
ing Active Databases and Timing Constraints,
SIGMOD Record (17) 1 (1988).

[6] Delcambre, L.M.L, and Theredge, J.N., The
Relational Production Language: A Production
Language for Relational Databases, in Ezpert
Database Systems: Proceedings From the First
International Conference (Kershberg, L., Ed.),
Benjamin/Cummings Publishing Company,
Inc., Menlo Park, CA (1988).

[7] Eswaran. K.P. el. al.. The Notions of Con-
sistency and Predicate Locks in a Database
System, CACM(19) 11 (1976).

[8] Forgy, C.L., OPS5 User's Manual, Tech.
Report CN'fU-CS-81-135, Carnegie-Mellon
University (1981).

S I G M O D R E C O R D , Vol. 18, No. 3, September 1989 57

[9] Forgy, C.L., Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match
Problem, Artificial Intelligence (19) (1982).

[10] Hayes-Roth, F., Rule Based Systems, CACM
(28) 9 (1985).

[11] Kershberg, L., Editor, Expert Database Sys-
tems: Proceedings From the First Interna-
tional Workshop, Benjamin/Cummings Pub-
lishing Company, Inc., Menlo Park, CA
(1986).

[12] Kershberg, L., Editor, Expert Database Sys-
tems: Proceedings From the First Interna-
tional Conference. Benjamin/Cummings Pub-
lishing Company, Inc., Menlo Park, CA
(1987).

[13] Raschid, L., Sellis, T., and Lin, C-C., Exploit-
ing Concurrency in a DBMS Implementation
for Production Systems, Proe. of the Intern.
Syrup. on Databases in Parallel and Distri-
buted Systems, Austin, TX (1988).

[14] Sellis, T., Lin, C-C., and Rasehid, L., Imple-
menting Large Production Systems in a DBMS
Environment: Concepts and Algorithms, Proc.
of the ACM-SIGMOD Conf., Chicago, IL
(1988).

[15] Stonebraker, M., Sellis, T., and Hanson, E.,
Rule Indexing Implementations in Database
Systems, In [12].

58 SIGMOD RECORD, Vol. 18, No. 3, September 1989

