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Abstract  

In this paper we highlight the basic approach taken 
in the design of the DIPS system, and briefly 
present the main contributions. These include the 
use of special data structures to store rule 
definitions; they are implemented using relations. 
A matching algorithm uses these structures to 
efficiently identify when the antecedents of produc- 
tions are satisfied, making them applicable for exe- 
cution. Partial match information stored in the 
data structures is used by the matching algorithm. 
We also describe a proposed concurrent execution 
strategy for applicable productions, which sur- 
passes in performance, the traditional sequential 
OPS5 production execution algorithm. The 
requirements for a correct, serializable execution, 
based on locking, is described. An advantage of 
the matching technique in DIPS is that it is fully 
parallelizable, which makes it attractive for imple- 
mentation in parallel computing environments. 

1. Introduction 

The integration of artificial intelligence (AI) 
and database management (DBMS) has been the 
focus of recent research [11,12]. An important 
aspect of this integration is identifying functional 
similarities in database processing and reasoning 
with rules. This allows techniques designed for use 
in either AI or DBMS technology to be tailored for 
use in a functionally integrated environment. 

Existing relational database systems have some 
limited rule subsystems to provide integrity control 
and protection. Updates are "filtered" and com- 
mitted only if several user-defined constraints are 
met. Updates to the database may trigger the 
firing of rules, which in turn, may perform several 
updates to the database. Triggers and their imple- 
mentation in DBMS have been studied in various 
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contexts [1,2,3,7,15] and they are similar to pro- 
duction rules in AI production systems [10]. The 
problem of supporting rule-based reasoning 
efficiently in a database environment is the focus of 
our research. 

In this paper, we describe the Data Intensive 
Production System (DIPS), designed to efficiently 
support production rules in a database environ- 
ment. In DIPS, production definitions are stored 
using special data structures implemented using 
relations. A matching algorithm uses these struc- 
tures to determine when the antecedents of produc- 
tions are satisfied; these productions are then 
scheduled for execution. The algorithm stores 
information on partially satisfied productions, as 
well, using these relational data structures. Section 
2 describes production systems and section 3 
describes the architecture of DIPS. The relational 
data structures and the matching algorithm based 
on these structures are described in section 4. 

In section 5, we examine a concurrent execution 
strategy for the execution of productions in DIPS. 
We demonstrate the equivalence of a serial execu- 
tion strategy, as in OPSh, and the proposed con- 
current execution strategy and we define the 
requirements for a correct, serializable execution, 
based on a locking technique. 

The set-oriented matching mechanism in DIPS, 
together with the concurrent execution strategy, 
has the potential to be very efficient if the data 
base and rule base are very large. In addition, the 
DIPS matching algorithm is easily parallelizable. 
Using advanced database technology allows us to 
provide new methods and algorithms that are fully 
compatible with the relational model, yet appropri- 
ate for very large production systems. 

2. Production Systems and OPS5 

Production systems capture problem solving 
knowledge in the form of rules or productions and 
provide a good characterization of the process of 
reasoning using rules [10]. A production system is 
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a collection of Condition-Action statements, called 
productions. The Condition part  is on the left-  
hand side of a production (LHS) and is satisfied by 
data  stored in a global database, composed of 
Working Memory {WM} elements. The action part  
is on the r ight-hand side (RHS) and executes 
operations that  can modify WM. A production 
system repeatedly performs the following opera- 
tions, in sequence: 

Match: For each production r, determine if 
LHS(r) is satisfied by the current WM 
contents. If so, add the qualifying pro- 
duction to the Conflict Set. 

Select: Select one production out of the conflict 
set; if there is no such production, halt. 

Act: Perform the actions in the RHS of the 
selected production. This will change the 
content of the WM and as a result, addi- 
tional productions may have to be fired, 
or some productions may be deleted. 

The OPS5 production system 18] has enjoyed 
much popularity in AI research and applications. 
A_n OPS5 production consists of (1) the symbol p, 
(2) the name of the production, (3) the LHS, (4) 
the symbol "~, and (5) the RHS actions. The fol- 
lowing are two productions: 

(p R1 
(Emp TNaae Mike ~ Salary <S> ~Dno <D>) 
(Dept ~Dno <D> ~D Toy ~Floor 1 TMgr <M>) 
"~ (remove I)) 

(p R2 
(Emp '~Name Mike I" Salary <S> ~Dno <D>) 
(Dept ~'Dno <D> '~D Shoe ;Floor i 7Mgr <M>) 

( r e m o v e  i) ) 
that  remove Mike from the WM class Emp if he 
works on the first, floor, in the Toy department 
(R1) or the Shoe department (R2). The 1' symbol 
is used to indicate attribute names and <x> is a 
variable. 

The efficiency of OPS5 [8}. has been attr ibuted 
to the efficiency of the Rete algorithm and its 
implementation [8.9}. Here. the database resides 
entirely in virtual memory, and does not, persist 
after the execution of a program. The Rete algo- 
rithm exploits temporal redundancy, i.e., the exe- 
cution of a single production results in very small 
changes to WM. The Rete algorithm compiles the 
LHS condition elements, in lexical ordering, into a 
binary discrimination network. Figure 1 illustrates 

the result of compiling the above two productions. 

Root 

Class='Emp" Class='Dept" 

l l 
Name=Mike Floor= 1 

, ~Shoe 
left.Dno=right.Dno left.Dno=right.Dno 

RI is satisfied R2 is satisfied 

Figure 1: The Rete Network for R1 and R2 

There is a root node which receives all input 
tuples. One-input nodes are used to check single 
attr ibute conditions of the form a t t r  op con-  
s t a n t ,  where op6 { <,>,_< ,_> ,= ,~ }. Two-input 
nodes are used to check joins of the form 

left.attribute op right attribute 

A tuple t is first, checked at one-input nodes to 
determine if it is an Emp or a Dept tuple. If so, it 
is then propagated to the successors of the qualify- 
ing node of the network. In case a check is per- 
formed at. a two-input  node, and a matching value 
is not, found at the corresponding join branch, the 
tuple is queued up at the network waiting for a 
future arrival of a matching tuple. When such a 
tuple comes through the network, the result of the 
join is a token that  is propagated to the successors 
of the two-input  node. Finally, if a token makes it 
all the way till the "bottom" of the Rete Network, 
a production or set. of productions have qualified 
and the system adds these productions to the 
conflict, set, together with the token that  caused 
the production to become active. 

In OPSS, productions placed in the conflict set 
are executed in a serial order. In each cycle, a sin- 
gle production is selected and its RHS actions are 
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then executed; this may result in changes to the 
WM. This triggers the next match phase. Updates 
to the WM are propagated through the Rete net- 
work. Consequently, productions in the conflict set 
may be deleted, or new productions may be added. 
When several combinations of the WM elements 
satisfy a single production, OPS5 stores each com- 
bination as a separate instantiation of the produc- 
tion in the conflict set, and each is executed 
independently. Similarly, a WM element could 
simultaneously satisfy several productions. Again 
in OPSS, only a serial execution strategy is fol- 
lowed. 

3. T h e  D I P S  S y s t e m  

The DIPS system views the task of satisfying 
the LHS of a production from a DBMS perspective. 
In general, we can consider the LHS as a well 
formed formula describing a condition that  must 
be satisfied by ' the  data stored in a knowledge base. 
The LHS is equivalent to a retrieval operation in a 
non-procedural SQL-like language or a tree of 
relational algebraic operations. Satisfying the LHS 
of a production is equivalent to executing a 
retrieval operation against the occurrences in a 
knowledge base; this approach has been the basis 
of some proposals for implementing production sys- 
tems in DBMS environments such as in [4] and [6]. 

Figure 2 shows the general architecture of 
DIPS. As in OPSS, the Match/Maintenance process 
(MMP) is triggered by one (or more) changes to 
WM relations. The W M R e a d  operation in the 
figure represents this dependency. Functionally, 
the MMP is similar to the Match phase of the Rete 
algorithm. This process identifies productions 
whose antecedents are satisfied. The process makes 
use of the special COND relations that  store pro- 
duction definitions as well as information on par- 
tially satisfied productions, as discussed in the next 
section. It comprises inser t ion  and de le t ion  algo- 
rithms that  update the COND relations, as shown 
by the C O N D U p d a t e  operation. The MMP 
identifies m a t c h i n g  p a t t e r n s  corresponding to 
productions whose antecedents are satisfied and are 
ready for execution. The patterns are placed in the 
conflict, set. and this is reflected by the C S U p d a t e  
operation in Figure 2. The difference between 
DIPS and OPS5 is that. in the latter, the mainte- 
nance of the Rete network precedes the update of 
the conflict set. In DIPS, the update of the conflict, 
set ( C S U p d a t e )  precedes the maintenance process 
( C O N D U p d a t e ) .  This implies that productions 
whose antecedents are satisfied are identified at, an 
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Figure 2 DIPS Architecture 

earlier instant (and can be executed earlier). 

It is with respect to the Select and Act phases 
(of the Rete algorithm) that  DIPS differs 
significantly. As mentioned earlier, in OPS5, pro- 
ductions placed in the conflict set are executed in a 
serial order. In DIPS, this serial execution strategy 
is replaced by a concurrent, one (Concurrent Execu- 
tion process in Figure 2}. This process con- 
currently executes a set of productions in the 
conflict, set. Within the Concurrent  Execution pro- 
cess, all the tasks associated with the execution of 
a candidate production will be defined as a single 
transaction. Within such a transaction, the first 
task is a retrieval from the WM relations; this is 
reflected by the W M R e a d  operation of the Con- 
current, Execution process. The next task is exe- 
cuting the corresponding RHS (r ight-hand side) 
actions. These actions represent changes to the 
WM classes and include insertions, deletions and 
updates of the WM elements. This is reflected by 
the W M U p d a t e  operations in the figure. Details 
of the Concurrent Execution process (CEP) are in 
section 5. 

4. T h e  M a t c h / M a i n t e n a n c e  P r o c e s s  

In DIPS, each WM class is simulated using a 
WM relation which stores occurrences of this WM 
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class. The antecedents of productions are compiled 
and stored using a relational data structure, the 
COND relation. There is one COND relation for 
each WM relation in the system. The COND rela- 
tion associated with a WM relation R, stores the 
descriptions of conditions found in all productions 
that involve R in their antecedents. Partial match 
information about the occurrences of other WM 
classes involved in the same production as R, link- 
ing those occurrences to the occurrences of R, are 
also stored in the COND relation for R. 

Insertion and deletion of occurrences of WM 
classes (tuples in the WM relations) will affect the 
antecedents of productions that  test conditions 
against these classes. Insertion of tuples may cause 
the antecedents to become satisfied and deletion 
will make them no longer satisfied. The 
antecedents could also include negative conditions, 
i.e., they verify the absence of some occurrences of 
a WM class. Thus, insertion or deletion into a WM 
class may also effect productions with negative 
conditions. 

The details of the COND relational structures 
and the insertion and deletion algorithms of the 
MMP are discussed in [14]. Here, we use an exam- 
ple to illustrate the operation of the algorithm that  
handles insertion of tuples into WM relations. 
.Assume three relations E(na~ae. s a l a r y ,  dno), 
W(name,mgr, j ob ) ,  D(clname.mgr. clno) (standing 
for Emp, WorksFor and Dept respectively). The 
following defines a production which is used to fire 
all Clerks working in the Toy depar tment  and 
making 20K: 

(p Rule-I 
(E T name <x> T salary 20K ~ dno <Z>) 
(W T name <x> ~mgr <y> ~job ' C l e r k ' )  
(D ?dname 'Toy' ~mgr <y> 7dno <z>) 

( r e m o v e  1 )) 

This production is initially stored as a single 
tuple within three COND relations, which 
correspond to the three WM classes in the LHS of 
the production. Suppose now that  we insert the 
tuples W(Mlke. John. Clerk), D(Toy, Tom. 8), 
E(Mike.20K.8) and W(Mike. Tom. Clerk) in the 
sequence given. The contents of the various COND 
relations will be as follows (for brevity we use E 
for E, W for W, and D for D) 

COND-E 

CEN 

I 

1 
1 

1 

name 

<X> 

Mlke 

<X> 

Mlke 

I 
!salary dno RCE WD 

20K <z> (W.2) . (D.3)  O0 

20K <z> (W.2) . (D.3)  I0 
20K 8 (W.2) . (D.3)  01 
20K 8 (W.2) . (D.3)  i i  

CEN name 

2 <x> 

2 <x> 

2 Mlke 

2 Mlke 

mgr ] o b  RCE ! ED 

<y> C l e r k  : E . I ) . ( D . 3 ]  O0 

Tom Cle rk  [E. I ) .  (D,3] 01 
<y> C l e r k  ' .E. i ) . (D.3~I i0 
Tom Clerk (E,i).(D,3]i ii 

C0ND-D l 

CEN dname mar dno RCE EW 

3 Toy <y> <Z> ( E . 1 ) . ( W , 2 )  00 

3 Toy John <z> ( E . I ) . ( W . 2 )  01 
3 Toy <y> 8 (E.i),(W.2) i0 
3 Toy John 8 ( E . i ) . ( W . 2 )  I I  
3 Toy Tom <Z> ( E . I ) . ( W . 2 )  01 
3 Toy Tom 8 ( E . i ) . ( W . 2 )  Ii 

For each production, the RCE list in each tuple of 
the COND relations indicates which conditions 
(involving other WM relations) of the same produc- 
tion are affected by insertions or deletions in the 
current relation being examined. There is one 
Mark bit for each RCE, which if set indicates that  
the pattern is created by a tuple tha t  satisfies the 
corresponding condition element. These Mark bits 
are stored in the last column of the COND rela- 
tions. For example, the insertion of tuple 
W(Mike. John. Clerk)  is recorded in both COND-E 
and COND-D. Thus. when a tuple is inserted later 
in the current WM relation which matches that. 
pattern, we know immediately tha t  there are 
matching occurrences of related WM classes, 
without having to examine the other WM 
relation(s). Notice that  when W(Mike. Tom. Clerk) 
is inserted, the last tuple in COND-W causes Rule-1  
to be put in the conflict set because all Mark bits 
are set (indicating the existence of matching tuples 
E and D). 

Comparing the DIPS Approach with OPS5 we 
can see that  matching is very fast, in DIPS because 
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only a single search over a COND relation is neces- 
sary. The propagation cost, is the same as the cost 
incurred by a Rete Network. The method is easily 
parallelizable, since propagation of changes can be 
performed in parallel to all the COND relations. 
In contrast to that ,  the Rete Network method is 
highly sequential. 

5. Concurrent  Execution of  Product ions  

There are many sources of concurrency in exe- 
cuting productions. If several combinations of the 
WM elements satisfy a single production in the 
conflict set, then this results in intra-prodnetion 
concurrency (within a single production). In DIPS, 
a set-oriented selection will retrieve all possible 
combinations of the WM tuples satisfying each 
antecedent. Thus, a selected production can be 
simultaneously applied to all possible combinations 
of the WM tuples, that  are retrieved. Similarly, 
there is a potential for inter-production con- 
currency; i.e., for executing several different pro- 
ductions from the conflict set. 

In the rest of this section, we investigate the 
concurrent execution of productions in the conflict 
set. First, we show the equivalence of a serial and 
a concurrent execution. Next, we define the require- 
ments for a correct concurrent execution strategy, 
in DIPS. Our notion of correctness is based on the 
serializsbility criterion; WM relations will not be 
updated until a transaction commits, and we 
guarantee a correct execution that  is serializable, 
based on 2 Phase Locking mechanisms. Details on 
the estimated performance benefits of a concurrent 
execution are in [13]. 

Consider an initial set @ 1 of transactions in the 
conflict set. In a serial production system, in each 
step i, a single transaction, T i is arbitrarily selected 
from the conflict set and applied. We use the term 
"arbitrarily",  because the OPS5 conflict resolution 
strategies are syntactic. Subsequently, the produc- 
tion system will determine if, as a result of apply- 
ing Ti, some other transactions in this conflict set 
are no longer applicable; if so, these transactions 
will be deleted from the set. Let the set of transac- 
tions deleted in step i be deli. Also as a result of 
applying Ti, the production system will determine 
if some additional transactions are now applicable 
as well. Let the set of transactions added in step i 
be addi. The new set of candidate transactions in 
step i+1  is ~ i + 1 =  ~ i - { T i } - d e l i U a d d i .  This 
process will continue until in step F, the set, • F is 
empty. 

The selection of each T i is arbitrary; thus, it is 
entirely possible that  in step 2, T 2 is selected from 
the set @ 1 - { T  l } - d e l l  which is the set 
~ 2 - a d d l .  In other words, T 2 could also be 
selected from the initial set @~ and not from the 
added set of transactions add I. Similarly, in subse- 
quent steps i, T/ can be selected from the set 

i - I  

@,-U ({Ts} U delj) After some ./'1 steps the 

serial production system will have executed a 
sequence of fl transactions Tl, T2, ...., TI1, where 

each T/happens  to be an element of the initial set 
k0 i. After step fl, all transactions in @ 1 are either 
executed or deleted and the set of applicable tran- 

I1 
sactions for step ( f l+  1), ~I1+1 is the set LJ addj, 

j=l 
i.e. all the transactions added in the fl previous 
steps, which were not selected previously. 

Given this same initial set @ l, a concurrent 
execution strategy would interleave the execution 
of this set of transactions. If an appropriate proto- 
col is used, and the resulting schedule is serializ- 
able, then it must be equivalent to some serial 
schedule Tl, T2,. .... etc., where each T/ must be 
from the initial set • I. In other words, the con- 
current production system will execute an 
equivalent serial schedule which will be the same as 
some serial schedule arbitrarily selected by the 
serial production system. 

In a DBMS environment, a transaction commits 
all its changes after it has terminated its execution 
normally. Once the transaction commits, these 
changes are physically made to the database. In a 
concurrent environment, appropriate locks must be 
obtained to satisfy the following: First, the inter- 
leaved execution of a set of productions must. main- 
tain consistency of the database, i.e. two transac- 
tions that  update the same WM relation must be 
serializable. Second, transactions that  are inter-  
related and affect each other 's execution, that  is 
transactions that  delete each other 's matching-  
pattern tuples from the conflict, set, must interact, 
correctly. For example, when a transaction ~- exe- 
cutes, the selected commit point must be chosen to 
enforce a delay in the execution (and commit) of 
the transactions in the set, dell, i.e. transactions 
that, are deleted as a result, of applying Ti. Transac- 
tions in this set, must either not be executed or, if 
executed, their changes must not be committed to 
the database. 

A locking protocol is used in DIPS to produce 
serializable execution schedules. Consider a simple 
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case where the antecedent of a production only 
tests positive conditions on WM relations. 

• Each transaction must obtain a read lock (R 
lock) for specific tuples of the WM relations 
that satisfy the LHS of the production. This 
prevents the deletion or update of these tuples 
by other transactions. Note that if any of 
these retrievals returns an empty set of tuples, 
then the transaction is aborted. This may hap- 
pen if Ti is in the delete set of a previously 
committed transaction. T/ is aborted since it 
is in some delete set. 

• Each transaction must obtain a write lock (W 
lock) for specific tuples of the WM relation 
that it deletes or updates. These would neces- 
sarily be tuples for which it would have previ- 
ously obtained an R lock; consequently, these 
tuples must exist and could not have been 
deleted. However, it could wait indefinitely in 
case of a deadlock. In the case of an insertion, 
a W lock needs to be obtained for the whole 
relation. 

• Once these locks are obtained, the transaction 
can modify the WM relations, corresponding 
to the RHS actions and then commit all of its 
changes and release all locks. 

In [13], we have proved the correctness of our 
requirements for serializability by examining all 
cases of inter-dependencies among productions 
(through the WM relations). 

6. C o n c l u s i o n s  

In this short paper we have described the basic 
approach taken by the DIPS system. DIPS pro- 
vides ways for storing, maintaining and using large 
production rule bases. DIPS uses a novel approach 
to screen updates to the database for faster detec- 
tion of applicable productions. This approach also 
achieves localization of the match procedure in the 
sense that a single relation has to be checked in 
order to decide if an inserted or deleted tuple 
renders a production applicable for firing. Thus, 
our approach is not only suitable for relational 
DBMS's but in addition makes our method easily 
parallelizable. Finally, we use a new way to pro- 
cess applicable productions based on the notion of 
transactions. Applicable productions can be pro- 
cessed concurrently, assuming that the DBMS will 
serialize RHS actions (insertions and deletions) 
through its concurrency control mechanism. 

Our current work focuses on the implementa- 
tion and optimization of the proposed approach. 
First, we examine ways in which multiple query 
processing and optimization algorithms can be 
applied to provide optimal Rete Networks. 
Although our approach does not assume any global 
execution strategy, we are currently conducting a 
performance analysis of the original Rete Network 
and our approach. In addition, we study the pro- 
perties and performance of a fully concurrent sys- 
tem where transactions are used to implement the 
actions of the various productions. Finally we plan 
to investigate the parallel execution of the match- 
ing algorithms in a SIMD environment such as the 
Connection machine, where the COND relational 
data structures will be partitioned. 
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