
N e w H o p e on D a t a M o d e l s and Typ e s : R e p o r t o f an
NSF-INRIA. worksop

Serge Abiteboul 1 , Peter Buneman 2, Claude Delobel 3,
Richard Hull 4, Paris Kanellakis 5, Victor Vianu 6

Abs t r ac t : In May, 1990, a small workshop was held in New Hope, Pennsylvania, to dis-
cuss the fundamental issues raised by continuing work on the interface between databases
and programming languages. Four topics were addressed: new directions stemming from
object-oriented data models, contributions of type theory to database programming lan-
guages (DBPLs), applications of logic to DBPL issues, and DBPL implementations.

This workshop was organized under the auspices of the INRIA-NSF program, Languages
for Databases and Knowledge Bases.

1 I n t r o d u c t i o n

The boundary between databases and programming languages is continuing to erode. The need
to combine database and programming language functionalities sterns primarily from the increased
complexity of database applications, and the desirability of providing persistence for data structures
in programming languages. Indeed, recent object-oriented database (OODB) systems provide im-
portant examples of incorporating into databases a number of behavioural constructs taken largely
from programming languages, and research into persistent programming languages has experimented
with incorporating some database capabilities into programming languages.

The research efforts to date have been largely successful in their stated goals. Equally impor-
tant, they have highlighted some of the more profound questions raised by the attempt to combine
programming and database functionalities. One such question concerns the tension between the pro-
gramming language notion of type and the database (and object-oriented programming language)
notion of class: types describe the structure of programming values, while classes have both a struc-
tural component and an associated extent or set of currently active members. Two fundamental
problems are: (1) it is unclear which extent(s) should be associated with a class or type; and (2)
static type-checking paradigms do not apply to systems which allow objects to "migrate" between
classes, and hence to change type.

A second fundamental issue concerns the development of formal foundations for database pro-
grarnming languages (DBPLs). For example, the relational model enjoys a close connection with
mathematical logic: a number of research contributions have resulted from this connection, includ-
ing, for example, the development of declarative query languages (which in turn influenced the
development of SQL), and the current activity in deductive databases. The connection between
logic and OODB models is not as immediate. For example, many OODB models incorporate the
set structure and thus have second-order characteristics (in the database sense of the term). Also,
a central component of databases concerns a stale which changes over time, and a key contribution
of the OODB models is the incorporation of behavior (including update) at a fundamental level
in the schema. In contrast, the logic tools used to date on the relational model have been largely
independent of updates. Indeed, although the community has not agreed on what object identity

1: I.N.Ft.I.A.; 2: U. Pennsylvania; 3: LRI, Altair; 4: USC; 5: Brown U.; 6: UCSD.

S I G M O D R E C O R D , Vol. 19, No. 4, D e c e m b e r 1990 41

is, its interaction with persistence and updating is a central aspect. A second approach to providing
foundations for the OODB models stems from functional programming languages. These languages
have constructs matching or at least close to many OODB constructs, and offer substantial typ-
ing disciplines. Again, however, functional languages - even though some of them have imperative
features - do not appear to have given sufficient prominence to persistent changes of state.

These and related issues formed the focus of the workshop. Although not exhaustive in its
coverage, the workshop raised a number of fundamental issues in the areas of data models and
types, and discussed some promising directions for resolving them. The workshop was organized
around four themes:

(a) Issues raised by current OODB models and systems;

(b) Contributions of type theory to DBPLs;

(c) The use of logic to provide foundations and specific results; and

(d) Practical issues raised in the area.

In this summary we briefly review each of these topics. No attempt is made here to survey the
relevant literature, and the references are restricted primarily to recent work relevant to the topics
discussed. (The reader may consult these papers for more bibliographic information.) A complete
report with a more detailed presentation of the lectures and discussions can be obtained from the
authors.

2 N e w D i r e c t i o n s for O b j e c t - O r i e n t e d D a t a M o d e l s

Object-oriented database systems were introduced to provide more flexibility in designing database
applications. The available systems usually offer (i) richer data models than relational systems and
(ii) better software environments for developing database applications. However, in many appli-
cations, one cannot take full advantage of the richer data model because of shortcomings of the
systems currently available and under development. Indeed, many fundamental issues are not well
understood, including, for example:

(1) The relationship between programming language types and database schemas.

(2) The concept of view as used in relational systems.

(3) The common OODB practice of viewing a class to be a type with an associated extent (or
"current population"). This is exacerbated by the common practice of blurring classes and
types, in the sense that in some OODB models it is permitted to use class names to restrict
coordinate/attribute ranges in type declarations.

(4) The relationship between object identifiers in OODBs and references in programming lan-
guages.

(5) Providing mechanisms to permit the "migration" of objects from one class to another.

(6) The problems associated with typing paradigms for heterogeneous collections.

42 S I G M O D R E C O R D , Vol. 19, No. 4, D e c e m b e r 1990

To a large extent this is because the field of object-oriented DBMSs has developed very quickly,
primarily by borrowing fragments of a number of technologies (relational, object-oriented, semantic
data models). In many cases the concepts used in OODBs are not faithful copies of the originals, and
the field has not had a chance to address in any real depth the issues arising from their combination.

Several speakers, including S. Abiteboul, A. Borgida, P. Buneman, l:t. Hull, D. Jacobs, D. Maier,
and P. Pdchard, focused on these problems and suggested proposals for resolving them.

Buneman's presentation, set the stage for much of the ensuing discussion in this area by con-
sidering the extent to which conventional programming language techniques can capture DBPL
functionalities. Buneman claimed that OODBs didn't provide anything new in terms of data mod-
els. However, object-oriented databases are a priori languages, and so, have forced us to address
problems such as what programming language interfaces should semantic data models have - an
issue so far largely ignored. With this in mind, Buneman examined some of the problems that arise
when one tries to incorporate data models (or more properly instances thereof) as data structures
in a programming language.

Richard emphasized the distinction between the notion of type systems as it is currently en-
countered in conventional programming languages and many DBPLs, and of schemas as in relational
databases [ALR90, LR90a, LRg0b]. S. Abiteboul proposed a powerful view mechanism [Abig0] as
a means of providing more flexibility, and showed how such mechanisms correct poor features of
currently used OODB models.

During the talks, four more focused problems arising in DBPLs were raised: choosing extents for
types; differences between object identifiers and references (if any) (see [AK89, WHW90]); the blur-
ring of types and classes; approaches for supporting object migration [BANLB*87, Sig89, ACO85,
SS89]; and type checking for heterogeneous collections [OBB89, Bor90].

In teres t ingly , model l ing issues (pe rhaps b y their religious na tu r e) ra ised ve ry lively
discussions. In par t icu lar , the four ques t ions men t ioned jus t above were highly cont ro-
versial . This shows tha t a l though semant ic model l ing concepts and d a t a b a s e languages
have b e e n m a t u r i n g for qu i te some t ime, these not ions are no t ye t s e t t l ed and requ i re
f u r t h e r research .

3 Programming Language Types and Databases

A second theme of the workshop concerned types and the problems associated with them in the context
off databases. One of the positive effects of this session was partly to dispel database community's
phobia of "type terrorists", some of whom were rumored to have infiltrated the workshop. As noted
earlier, there are considerable differences between types as arising in conventional programming
languages and schemas as arising in databases. Nevertheless, there was a general consensus that:

1. database languages should be enhanced with polymorphic types and should employ convenient
subtyping-inherit ance hierarchies;

2. database languages should be statically typed, as much as possible, and the programmer should
be aided by some form of type reconstruction;

3. several aspects of database languages require the development of new techniques for typing;
e.g., the inclusion of a minimal set of run-time checks to ensure type correctness; and

S I G M O D R E C O R D , Vol. 19, No. 4, D e c e m b e r 1990 43

4. most of the type information of the database is concentrated in the schema, so that schema
modification gives rise to a particular set of interesting new typing problems.

In the first of five talks on these issues, Kanellakis focused on the results in [KMM90], and
described recent developments on the algorithmic question of type reconstruction for languages with
polymorphism, such as core-ML, the Milner-Mycroft calculus, and System F.

Moving away from pure lambda calculus languages to the Fun language of Cardelli and Wegner,
Breazu-Tannen's talk explained how simultaneously to model parametric polymorphism, recursive
types, and inheritance [BCGS89, BGS90]. The talk of Ohori discussed issues in designing a poly-
morphie type system that can serve as the "polymorphic core" of database programming languages
[OBB89, OB88]. Such a core can be developed in two steps - first by defining a typed data algebra
which is rich enough to represent various data models, and then by extending existing polymorphic
type disciplines to the typed data algebra.

Moving away from functional types entirely, Waller examined a simple type system that is at
the core of any Object-Oriented Database Management System. Using techniques reminiscent of
data-flow analysis techniques for program schemes [AKW90, Wal90], he considered the problem of
incremental method checking to handle schema updates. Finally, A. Borgida described a hybrid
typing paradigm, in which the compiler inserts run-time tests into the code under certain conditions
in order to ensure the ultimate integrity of the database.

I t seems clear tha t the u n d e r s t a n d i n g of types has qu i t e m a t u r e d r ecen t l y and
th a t t echnica l solut ions to d a t a b a s e needs seem a l ready to exist . M o r e effor ts a re still
r equ i r ed to i m p o r t the t y p e t echno logy to the da tabase communi ty . A pos i t ive a spec t
is t ha t t he c o m m u n i t y is m o r e and more willing to accep t such technology.

4 The Perspective from Logic

It is essential to extend the fruitful coexistence of logic and relational databases to the object-oriented
database framework. A session devoted to logic aspects of object-oriented databases focused on sev-
eral new developments. Beeri examined the connection of logic-oriented database languages to ideas
from algebraic specification. Kifer and Warren, representing the "Stony Brook School of Thought",
described several "object-oriented" logics with first-order semantics. Vianu examined issues of ex-
pressive power of languages for complex objects. Kuper discussed constraint logic programming.

Beeri started from the premise that, in contrast to relational systems, where formal foundations
were given with the model, there is no commonly accepted formal description of OODB's. In con-
sidering the scope and requirements of such a foundation, he was led to reconsider the relationship
of database models and languages to other areas. In particular, there seems to be a close connec-
tion between the basic ideas of relational databases and logic programming to those of algebraic
specifications. Beeri claimed that relational db's, Horn-clause based deduction, ADT's, and also
most structural aspects of OODB's can be so defined, and this provides a uniform framework for
dealing with many db issue, in particular, declarative programming that unifies (to some extent)
functional and relational programming, queries, and views. When considering the behavioral aspects
of OODB's, a higher order flavor may be required.

This claim was also put forward very strongly by the Stony Brook School. Kifer gave an
overview of the main ideas developed in the works on C-logic, O-logic, F-logic, and I-IiLog [Mai86,
KJ89, KG89, CKW89b, CKW89a, CKW90]. The main theme of these works is that the higher-

44 S I G M O D R E C O R D , Vol. 19, No. 4, D e c e m b e r 1990

order concepts that are characteristic of object-oriented programming can and should be modeled
by logical formalisms with a first-order semantics. Kifer argued that features such as object-identity,
sets, classes, inheritance, typing, and encapsulation can be captured in this framework.

Various query languages for complex objects have been proposed. They are mostly extensions
of relational algebra and calculus lAB88, Hu187], and of Datalog "~ [AGgl, AK89, NS88], to complex
objects. Typically, queries in these languages have the potential for unrealistically high complexity.
Indeed, the design of tractable query languages for complex objects remains a challenging issue.
Vianu [GV90b, GV90a] discussed various calculus-like languages for databases containing complex
objects, and ways of evaluating their complexity.

A major recent development in logic programming is the interaction of logic and constraint
paradigms (CLP, Prolog III, CHIP [JL87, D+88]). While declarative database query languages have
been proposed, constraint programming has not really influenced query language design. The reason
for this seems to be that constraint solving can be more easily combined with top-down evaluation
strategies than with bottom-up ones. Kuper described a way to bridge the gap between bottom-up,
efficient declarative database programming and efficient constraint solving (the presentation was
based on joint work with Kanellakis and Revesz [KKR90]).

The need for formal techniques in object-oriented databases seems to be more and
more felt by researchers in the field. The variety of approaches and their interest
demonstrate that this is perhaps one of the most challenging issues facing the database
research community. Like the data modelling session, the logic session was quite ani-
mated. Issues such as the problem of naming objects in an object-orlented logic seemed
to inflame a substantial fraction of the audience (to the apparent surprise of another).

5 P r a c t i c a l I s s u e s

Another theme of the workshop was concerned with the implementation of database programming
languages or the use of type information in the context of databases. The first talk in the session
was by Matthes. He focused on the design and implementation of data-intensive applications by
presenting the experience of the DBPL/DAIDA project. Here, the conceptual design phases are
divided into three different steps:

• the knowledge representation language TELOS for domain analysis;

* the semantic data model TDL (based on TAXIS) for conceptual design of system states and
transitions; and

• the imperative database programming language DBPL for efficient management of typed data
using sets and first-order predicates for data manipulation in a persistent multi-user environ-
ment [MS89, SM90].

Transformations from one step to another are made automatically as far as possible. The second talk
dealt with the optimization of query languages in object-oriented database systems. The basic issue
on query optimization is to find transformation rules such that the semantics is the same but the cost
of evaluation against the database is less. The Revelation project, presented by D. Maler, explores
such possibilities [GM90, GMDK90]. Finally, Connor showed how a protected viewing mechanism
[C+90] could be programmed in a general-purpose language, Napier88 [M+89].

S I G M O D RECORD, Vol. 19, No. 4, D e c e m b e r 1990 45

T h e reason for this session was tha t in the field, sys tems i nco rpo ra t i ng new ideas
are be ing i m p l e m e n t e d as fast as new ideas are emerging. For ins tance , t he work of
Connor is ful ly i m p l e m e n t e d and deliverable. Tha t m u c h of the founda t iona l work in
o t h e r sessions was re levant to this session was evidence for i m p o r t a n c e of the field.

Acknowledgemen t s : We wish to thank all the participants to the workshop. A number of them
contributed to the complete report: C. Beeri, A. Borgida, V. Breazu-Tannen, D. Jacobs, M. Kifer,
G. Kuper, D. Maier, A. Ohori, P. Richard, J. Schmidt, E. Waller, D. Warren. However, we are fully
responsible for the errors or misrepresentations of point of views that may (intentionally or not)
occur in the report.

We are also grateful to Karen Carter, Anthony Kosky, and LimSoon Wong for their help in the
organization of the workshop.

The workshop received partial support from the National Science Foundation under grant #
INT-8817874 and from the Institut National de Recherche en Informatique et Automatique, as part
of a joint INRIA-NSF program.

R e f e r e n c e s

[Abi90]

[AB88]

[AC085]

lAG91]

[AK89]

[AKW90]

[ALK90]

[BANLB*87]

[BCGS89]

[BGS90]

[Bor90]

S. Abiteboul. Virtuality in object-oriented databases. In Journdes Bases de Donndes,
MontpeUier, France, 1990.

S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex
objects. In INRIA Research Report 846 (1988). To appear in TODS.

A. Albano, L. Cardelli, and R.. Orsini. Galileo: A strongly-typed, interactive concep-
tual language. A CM Transactions on Database Systems, 10(2):230-260, June 1985.

S. Abiteboul and S. Grumbach. A rule-based language with functions and sets. A CM
Transactions on Database Systems, to appear, 1991.

S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In
ACM-SIGMOD Intl. Conf. on Management of Data, 1989. To appear in Journal of
the A CM. "

S. Abiteboul, P. Kanellakis, and E. Waller. Method schemas. In ACM Intl. Symp. on
Principles of Database Systems, 1990.

M. Adiba, C. Lecluse, and P. Richard. Rationale and Design of Serendip, a Database
Programming Language. Technical Report, Altair, 1990. In preparation.

K.L. Chung, B.A. Nixon, D. Lauzon, A. Borgida, J. Mylopoulos, and M. Stanley.
Design of a Compiler for a Semantic Data Model. Technical Report CSPd-44, Depart-
ment of Computer Science, University of Toronto, May 1987.

V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit
coercion. In Proc. 4th IEEE LICS, 1989.

V. Breazu-Tannen, C. Gunter, and A. Scedrov. Computing with coercions. In Proc.
5th Conf. on Lisp and Functional Programming, 1990.

A. Borgida. On type checking and heterogeneity. 1990. in preparation.

46 S I G M O D R E C O R D , Vol. 19, No. 4, D e c e m b e r 1990

[CKW89a]

[CKW89b]

[CKW90]

[c+90]

[D+88]

[GM90]

[GMDK90]

[GV90a]

[GV90b]

[Hu187]

[JL87]

[KG89]

[KJ89]

[KKR90]

[KMM90]

IzR9oa]

[LR90b]

W. Chen, M. Kifer, and D.S. Warren. ttilog: a first-order semantics of higher-order
logic programming constructs. In Proceedings of North American Conf. on Logic
Programming, 1989.

W. Chen, M. Kifer, and D.S. Warren. Hilog as a platform for database languages (or
why predicate calculus is not enough). In Morgan Kaufmann, editor, The ~nd Intl.
Workshop on Database Programming Languages, 1989.

W. Chen, M. Kifer, and D.S. Warren. Foundations of higher-order logic programming.
1990. submitted for publication.

R. Connor, a protected viewing mechanism in Napier88, in proc. EDBT-gO

M. Dincbas et. al. The constraint logic programming language chip. In Proc. Fifth
Generation Computer Systems, Tokyo, Japan, 1988.

G. Graefe, D. Maier. Query Optimization in Object-Oriented Database Systems: a
Prospectus. In Advances in Object-Oriented Database Systems K. Dittrich, editor
Lecture Notes in Computer Science 334, Springer-Verlag, 1988.

G. Graefe, D. Maier, S. Daniels, T. Keller. A Software Architecture for Efficient Query
Processing in Object-Oriented Database Systems with Encapsulated Behavior. Unpl.
Manuscript, April, 1990.

S. Grumbach and V. Vianu. Tractable query languages for complex objects, in prepa-
ration.

S. Grumbach and V. Vianu. Playing games with objects. In Proc. Int'l. Conf. on
Database Theory, 1990. to appear.

R. Hull. A survey of theoretical research on typed complex database objects. In J.
Paredaens, editor, Databases, pages 193-256, Academic Press, 1987.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. ACM Symp. on
Principles of Programming Languages, pages 111-119, 1987.

M. Kifer and G. Laussen. F-logic: a higher-order language for reasoning about objects,
inheritance, and scheme. In ACM SIGMOD Int'l. Conf. on Management of Data,
pages 134--146, 1989.

M. Kifer and J. Wu. A logic for object-oriented logic programming (maier's o-logic
revisited). In Proc. A CM Syrup. on Principles of Database Systems, pages 379-393,
1989.

P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. In Proc. ACM
Syrup. on Principles of Database Systems, pages 299-313, 1990.

P.C. Kanellakis, H. Mairson, and J.C. Mitchell. Unification and ML type reconstruc-
tion. 1990. to appear as book chapter in MIT Press volume on unification, dedicated
to J.A. Robinson (full version manuscript available); see also ACM POPL 89 and ACM
POPL 90.

C. Lecluse and P. Richard. Data Abstraction, Bulk Data and relations in Database
Programming Languages. Technical Report 44, Altair, 1990. to appear.

C. Lecluse and P. Richard. Schemas and Views in Database Programming Languages.
Technical Report, Altair, 1990. to appear.

S I G M O D RECORD, Vol. 19, No. 4, December 1990 47

EMil86]

[M+89]

[MS89]

INS88]

[OB88]

[OBB89]

[Sig89]

[SMg0]

[ss891

[Wal90]

[wawgo]

D. Maier. A Logic for Objects, In Proc. Workshop on Foundations of Deductive
Databases and Logic Programming, Washington D.C., pp 6-26, 1986.

R. Morrison , A.L. Brown, R. Connor, A. Dearie. Napier88 Reference Manual, Per-
sistent Programming Research Report PPRR-77-89, University of St Andrews

F. Matthes and J.W. Schmidt. The Type System of DBPL. In Proc. off the 2nd
Workshop on Database Programming Languages, Salishan Lodge, Oregon, pages 255-
260, June 1989.

S.A. Naqvi and S.Tsur. A Logic Language for Data and Knowledge Bases. Computer
Science Press, Rockville, Md., 1988.

A. Ohori and P. Buneman. Type inference in a database programming language. In
Proc. 4th Conf. on Lisp and Functional Programming, 1988.

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli
- a polymorphic language with static type inference. In Proc. A CM-SIGMOD Intl.
Conf. on Management of Data, pages 46-57, Portland, Oregon, May - June 1989.

SIGMOD Record. Special Issue on Rule Management and Processing in Expert
Database Systems 18(3). September 1989.

J.W. Schmidt and F. Matthes. DBPL Language and System Manual. Esprit Project
892 MAP 2.3, FFachbereich Informatik, Universitiit Hamburg, West Germany, April
1990.

Tim Sheard and David Stemple. Automatic verification of database transaction safety.
A CM Transactions on Database Systems, 14(3):322-368, September 1989.

E. Waller. Updates in recursion-free method schemas. 1990. in preparation.

S. Widjojo, R. Hull, and D. Wile. A specificational approach to merging persistent
object bases. In Proc. of Fourth Intl. Workshop on Persistent Object Systems De-
sign, Implementation and Use, Morgan Kaufmann, Inc., Martha's Vineyard, Mass.,
September 1990. to appear.

48 SIGMOD RECORD, Vol. 19, No. 4, December 1990

